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Abstract. We investigate the vulnerability of computer-vision-based signal classifiers to adversarial perturbations of

their inputs, where the signals and perturbations are subject to physical constraints. We consider a scenario in which

a source and interferer emit signals that propagate as waves to a detector, which attempts to classify the source by

analyzing the spectrogram of the signal it receives using a pre-trained neural network. By solving PDE-constrained

optimization problems, we construct interfering signals that cause the detector to misclassify the source even though

the perturbations to the spectrogram of the received signal are nearly imperceptible. Though such problems can have

millions of decision variables, we introduce methods to solve them efficiently. Our experiments demonstrate that one

can compute effective and physically realizable adversarial perturbations for a variety of machine learning models

under various physical conditions.
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1. Introduction

Advances in machine learning have produced advances in signal classification with perhaps the

greatest leaps occurring in the field of computer vision. Many methods have been proposed that

leverage techniques from computer vision to classify non-visual signals by representing them as

images. But despite their successes, computer vision methods have been shown to be susceptible

to adversarial perturbations, minor modifications to an input image that cause dramatic changes

in a classifier’s output. The existence of adversarial perturbations demonstrates that many types

of classifiers—in particular, deep neural networks—are not robust to small changes in their inputs.

In the wake of the seminal work of Szegedy et al. (2014), many methods have been developed for

constructing adversarial perturbations for neural network classifiers. Notable foundational examples

include the fast gradient sign method of Goodfellow et al. (2015), Deepfool (Moosavi-Dezfooli et al.

2016), and Carlini–Wagner perturbations (Carlini andWagner 2017). The zeroth-order optimization

approach of Chen et al. (2017) provides a way to compute adversarial perturbations in the absence

of gradient information. Bassett et al. (2020) construct perturbations which are less perceptible to

an observer by accounting for human perception of color and texture.

All of these methods construct perturbations under the assumption that the adversary has what

we call logical access to the classifier, i.e., the ability to modify inputs to the classifier directly. For
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computer vision, logical access is often an inappropriate assumption because in many applications,

the classifier receives its input from a sensor, such as a camera, and an adversary has only physical

access to the classifier via the sensor. That is, the adversary can only influence the inputs to the

classifier by manipulating the sensor’s physical environment. Physical access is a weaker assumption

on an adversary’s capabilities than logical access because constructing a perturbation that can be

physically realized is more difficult than constructing a perturbation using digital artifacts that

cannot be replicated in the sensor’s environment.

Computer vision researchers have successfully constructed adversarial perturbations under phys-

ical access assumptions (Kurakin et al. 2018, Sharif et al. 2016). In these works, the inputs to the

neural networks are direct images of the physical objects being classified. In other applications of

computer vision to signal classification, the relationship between the objects and their digital rep-

resentations is less direct. Here, we consider applications in which univariate signals to be classified

are represented as spectrograms, images that show how the signals’ frequency content changes with

time (Cohen 1995, Chapter 7). Classifying signals via their spectrograms is both simple (since one

can leverage off-the-shelf techniques from computer vision) and effective, having come to define the

state of the art in several areas (Liu et al. 2023, Sharma et al. 2020).

Motivated by the success and popularity of spectrogram classification techniques, we investigate

their susceptibility to adversarial perturbations under physical access assumptions. We model the

physical access constraints using partial differential equations (PDEs), leading to PDE-constrained

optimization problems for the perturbations. These problems are considerably more complicated

than the optimization problems typically encountered in the adversarial perturbations literature;

we show how to solve them efficiently. We also examine the effects of environmental noise, which

usually has a larger impact on the kinds of signals classified by spectrogram—such as acoustic or

(non-optical) electromagnetic signals—than it does for images.

2. Problem Formulation

To make our discussion concrete, we consider the following scenario. An intruding submarine wishes

to pass unnoticed through a region of seawater containing an acoustic detector. To accomplish

this, the submarine employs an external interferer, which emits a perturbing signal to confuse

the detector. The detector operates by using a neural network to process spectrograms of the

acoustic signals it receives. Our aim is to select a perturbing signal that will cause the detector

to misclassify a spectrogram and conclude that the submarine is not present, even though the

perturbed spectrogram differs little from the unperturbed one.

Figure 1 illustrates the general setup. Our region of water is is a rectangle Ω⊂R2. The submarine

and interferer are located at positions xs and xi, respectively, which may vary with time. The
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Figure 1 Problem setup. The submarine at xs(t) emits an acoustic signal g(t). The interferer at xi(t) emits a

perturbing signal f(t). The detector at xd receives a signal s(t), the result of f and g propagating

through Ω as waves.

detector is located at a fixed position xd. As it moves, the submarine emits a signal g(t). We want

to choose the signal f(t) emitted by the interferer to fool the detector.

We model the propagation of sound in Ω using the linear wave equation (Kinsler et al. 2000,

Section 5.5),
∂2u

∂t2
= c2∇2u+ q(x, t), (1)

where u is the acoustic pressure, c is the speed of sound in water, and ∇2 is the Laplacian. The

forcing term q(x, t) contains the signals generated by the submarine and the interferer, which we

model as point sources, taking q to have the form

q(x, t) = f(t)δε
(
x−xi(t)

)
+ g(t)δε

(
x−xs(t)

)
,

where ε is a small parameter and

δε(x) =
ε2

π2(x2
1 + ε2)(x2

2 + ε2)

approximates the Dirac delta (Gel’fand and Shilov 1964, Section 2.5). For simplicity, we assume

that Ω is initially devoid of sound, yielding the zero initial conditions

u(x,0) = 0 and
∂u

∂t
(x,0) = 0.

Additionally, we take Ω to be a region of open water away from the seafloor and surface so that

the effects of these boundaries may be neglected. To model the propagation of waves out through

the boundary ∂Ω of Ω, we use a first-order approximation to an absorbing boundary condition

(Engquist and Majda 1977) (Cohen and Pernet 2017, Section 6.1.2),

∂u

∂t
+ c∇u · n̂= 0, x∈ ∂Ω, (2)
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where n̂ denotes the outward-pointing unit normal vector to ∂Ω.

The detector computes a spectrogram ŝ = 10 log10 |Fs|2 in decibels (dB), of the signal s(t) =

u(xd, t) that it receives, where F is the short-time Fourier transform operator and | · | denotes the

elementwise modulus of a complex function. The detector then passes ŝ through a neural network

Φ that has been trained to recognize spectrograms produced by the submarine when the interferer

is absent. Let L denote the loss function used to train the network; this is a function that takes

Φ(ŝ) as one argument, together with a label y that assumes the value 1 (respectively, 0) when

the submarine is present (respectively, absent). To fool the detector, we want to select f to make

L
(
Φ(ŝ), y

)
as large as possible, and to model the requirement that f be emittable by a real speaker,

we constrain its frequency content to lie in a predetermined band. That is, we demand

PFf = 0,

where P projects onto the frequencies that are disallowed.

We have thus arrived at the following optimization problem for the perturbing signal f :

maximize
f,u,s,ŝ

J(f) =L
(
Φ(ŝ), y

)
subject to ∂2u

∂t2
= c2∇2u+ f(t)δε

(
x−xi(t)

)
+ g(t)δε

(
x−xs(t)

)
u(x,0) = ∂u

∂t
(x,0) = 0

∂u
∂t

+ c∇u · n̂= 0, x∈ ∂Ω

s(t) = u(xd, t)

ŝ= 10 log10 |Fs|2

PFf = 0.

(3)

What makes this optimization problem different from those usually encountered in the literature

on adversarial perturbations is the nature of the constraint. In our scenario, the perturbing signal

cannot interact with the input of the neural network directly; the interaction is mediated by the

physics of the surrounding environment as described by the PDE (1).

3. Discretization

To discretize (1) in space, we use a continuous Galerkin finite element method (Hughes 2000).

Applying standard manipulations, we arrive at the variational formulation

d2

dt2

∫
Ω

uv dV =−c2
∫
Ω

∇u · ∇v dV − c
d

dt

∫
∂Ω

uv dS+

∫
Ω

qv dV

for (1) with the boundary condition (2), where v is a test function. We partition Ω into a mesh of

conforming, nonoverlapping triangular elements and approximate u and q on the mesh by continuous

piecewise linear interpolants over the elements. At each time t, the interpolants are determined by
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the values of u(x, t) and q(x, t) at the mesh nodes (a P1 Lagrange representation), which we gather

into column vectors u(t) and q(t). Imposing the Galerkin condition yields the system of ODEs

Mu′′ =−c2Ku− cSu′ +Mq (4)

for u, where M, S, and K are the standard finite element mass, surface mass, and stiffness matrices.

We discretize (4) using a leapfrog scheme (LeVeque 2007, Section 5.3). For a single ODE u′′ =

f(u, t), the update equation for the scheme is

uk+1 − 2uk +uk−1

(∆t)2
= f(uk, tk), (5)

where ∆t is a chosen time step and uk is the approximation to the solution at time tk = k(∆t),

k = 0, . . . ,K. This is an explicit scheme, second-order accurate, and is nondissipative, making it

well-suited to undamped wave propagation problems, provided the wave numbers are low enough

to avoid dispersive artifacts (LeVeque 2007, Section 10.2.2). Applying (5) to (4) and rearranging

terms, we obtain(
M+

c(∆t)

2
S

)
uk+1 =

(
2M− c2(∆t)2K

)
uk +

(
c(∆t)

2
S−M

)
uk−1 +(∆t)2Mqk, (6)

where qk = q(tk) and uk approximates u(tk).

Equation (6) defines a sequence of K − 1 linear systems that can be solved to find u2, . . . ,uK

given initial data u0 and u1. To facilitate further discussion, it is useful to express these as a single

system for all the uk at once. (This is just for notational convenience; we do not form this system

in our implementation, which uses (6) directly.) Abusing notation, we redefine u to be the block

column vector

u=

u0

...
uK


and introduce the the block upper-triangular matrix

A=



I
I

A− A0 A+

A− A0 A+

. . .
. . .

. . .
A− A0 A+

 ,

where I is the identity matrix and

A− =M− c(∆t)

2
S, A0 = c2(∆t)2K− 2M, A+ =M+

c(∆t)

2
S.

Further, we decompose the forcing vector qk as

qk = f(tk)δ
k
i + g(tk)δ

k
s ,
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where δk
i and δk

s contain the values of δε
(
x−xi(tk)

)
and δε

(
x−xs(tk)

)
at the mesh nodes, respec-

tively, and define the matrices

B= (∆t)2



0
0
Mδ2

i

Mδ3
i

. . .

MδK−1
i


, C= (∆t)2



0
0
Mδ2

s

Mδ3
s

. . .

MδK−1
s


.

Gathering the values f(t0), . . . , f(tK) and g(t0), . . . , g(tK) into column vectors f and g, respectively,

we combine the equations (6) for k= 1, . . . ,K − 1 into a single block matrix equation,

Au=Bf +Cg.

We have thus completely discretized the PDE constraint in (3). Discretization of the remaining

variables and constraints is more straightforward. First, we introduce a row vector dT such that

dTuk extracts the value at the point x= xd of the finite element solution represented by uk. Defining

DT =


dT

dT

. . .
dT


K +1 copies,

we have that s=DTu contains the acoustic pressure observed by the detector at each time step.

If F is the matrix representing the short-time Fourier transform (see Section 4.3 below), then the

spectrogram of the signal (in dB) at the detector is ŝ = 10 log10 |Fs|2. Finally, let P be a matrix

that selects entries of a spectrogram corresponding to frequencies outside the band of allowable

frequencies for f .

Assembling all of these objects, we are led to the following discrete version of (3):

maximize
f ,u,s,ŝ

J(f) =L
(
Φ(ŝ), y

)
subject to Au=Bf +Cg

s=DTu

ŝ= 10 log10 |Fs|2

PFf = 0.

(7)

4. Computation

Our goal is to compute local maximizers of (7). To do this, we use a first-order descent method with

a projection to enforce the constraint PFf = 0 (Royset and Wets 2022, Section 2.D). The primary

computational difficulty is in the evaluations of the objective J and its gradient, both of which

appear to require solution of the constraining PDE. In this section, we discuss how to perform these

evaluations and the projection step efficiently.
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4.1. Efficient Evaluation of the Objective

Naively, it seems that each evaluation of J(f) requires a solution of the constraining PDE. Having

selected f , one first solves Au=Bf+Cg for u using the iteration (6). Then, one evaluates s=DTu,

then ŝ= 10 log10 |Fs|2, and finally J(f) = L
(
Φ(ŝ), y

)
. The solve for u is by far the most expensive

part of this computation, as (6) entails K−1 solves with the large matrix A+, which has dimension

equal to the number of nodes in the finite element mesh. One can reduce the cost by computing

and storing a factorization of A+, but the cost typically remains significant, especially if the mesh

is very fine or the number of time steps is very large.

Remarkably, we can exploit linear algebra to eliminate the need to solve for u entirely. The crucial

observation is that we are interested not in u itself but only in

s=DTu=DTA−1(Bf +Cg)

and that there are two ways to evaluate this product. One way evaluates A−1(Bf +Cg) first and

then multiplies the result by DT on the left; this corresponds to the naive approach just described

and requires a solve with A (via (6)) for each value of f . The other way evaluates YT =DTA−1 by

solving the adjoint equation

ATY=D (8)

and then computes

s=YT (Bf +Cg). (9)

This latter approach has a potential advantage: because Y does not depend on f , we can compute

it (or even YTB and YTC) once, offline, and then use it to find s for as many values of f as needed

in our optimization algorithm.

For this advantage to be realized, the effort required to solve (8) must be less than that required

to solve all of the systems that would arise under the naive approach. Since D has K+1 columns,

it would seem that solving (8) requires K + 1 solves with AT and, hence, that the alternative

approach would be advantageous only if the number of optimization steps exceeds K + 1, under

the reasonable assumption that solves with A and AT are of similar cost. In fact, the situation

is considerably better than this: due to the structure of A and D, we can solve (8) for a cost

comparable to that of just a single solve with AT .

In more detail, partitioning A as

A=

[
I

Ã Â

]
=



I
I

A− A0 A+

A− A0 A+

. . .
. . .

. . .
A− A0 A+


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and partitioning D as

D=

[
D̃

D̂

]
=



d
d

d
d

. . .
d


,

we have that

Y=A−TD=

[
D̃ −ÃT Â−T D̂

Â−T D̂

]
.

The first step in computing Y is to solve ÂT Ŷ = D̂ for Ŷ = Â−T D̂. The matrix ÂT is a block

upper triangular, block Toeplitz matrix with invertible diagonal blocks. The set of such matrices

(for a given partitioning) forms a group under matrix multiplication (see, e.g., Horn and Johnson

(2012, Section 0.9.7) for the non-block case); hence, Â−T has the same structure. The matrix D̂

is also block upper triangular (in fact, block diagonal) and block Toeplitz. The diagonal blocks of

D̂ are not invertible—indeed, they are not even square—but the partitioning of D̂ conforms to the

partitioning of ÂT and, hence, to that of Â−T . It follows that Ŷ, too, is block upper triangular

and block Toeplitz, being a product of two conformally-partitioned matrices with that structure:

Ŷ=


ŷ1 ŷ2 ŷ3 · · · ŷK−1

ŷ1 ŷ2 · · · ŷK−2

. . .
. . .

...
ŷ1 ŷ2

ŷ1

 .

We can therefore find all of Ŷ by finding just its last (block) column, and that can be accomplished

by solving just one system with ÂT that has the last column of D̂ as the right-hand side. With

Ŷ in hand, the remaining entries of Y can be found by computing −ÃT Ŷ, which is relatively

inexpensive.

This reduction in the cost of computing Y due to the structure of A and D is more than enough

to make the alternative approach to evaluating J(f) competitive. By using it, we were able to speed

up the computations presented in Section 5 dramatically compared to the naive approach.

4.2. Evaluation of Gradients

To compute the gradient of J , we apply the chain rule: ∇J = (dJ/df)T , where

dJ

df
=

∂L

∂Φ

dΦ

dŝ

dŝ

ds

ds

du

du

df
.

Traditionally in PDE-constrained optimization, dJ/df would be computed using the adjoint method

(Gunzburger 2003, Section 2.3.3), sometimes called the reduced gradient method (Luenberger and

Ye 2008, Section 12.6). In our context, this method first evaluates

dJ

du
=

∂L

∂Φ

dΦ

dŝ

dŝ

ds

ds

du
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using the solution u to the PDE corresponding to the value of f at which ∇J(f) is desired. Using

the fact that du/df =A−1B, it then evaluates

dJ

df
=

dJ

du

du

df
=

dJ

du
A−1B

not by forming A−1B, which is prohibitively expensive, and then multiplying on the left by dJ/du

but instead by evaluating λT = (dJ/du)A−1 and then computing dJ/df =λTB. The method derives

its name from the fact that the equation that must be solved for λ,

ATλ=

(
dJ

du

)T

,

involves the adjoint of A. Thus, evaluating ∇J(f) this way requires two expensive PDE solves: one

with A (the original equation, to find u) and one with AT (the adjoint equation, to find λ).

By adopting the approach to evaluating J from Section 4.1, we can eliminate both of these solves,

greatly reducing the cost of computing ∇J . For under that approach, by (9), the matrix

ds

du

du

df
=

ds

df
=YTB

is already in hand, as Y has been pre-computed by solving (8) offline. We evaluate dJ/df via

dJ

df
=

∂L

∂Φ

dΦ

dŝ

dŝ

ds
YTB,

using an automatic differentiation package to evaluate ∂L/∂Φ, dΦ/dŝ, and dŝ/ds, since they involve

differentiating through the neural network Φ. As our experiments below show, this approach to

evaluating ∇J is considerably more efficient than the adjoint method.

4.3. Computation of Spectrograms

We compute the spectrogram ŝ of the discrete signal s in the usual way via the short-time Fourier

transform (STFT) (Oppenheim et al. 1999, Section 10.3). We select L frequencies ω0, . . . , ωL−1,

divide s into M overlapping time windows of length W , and evaluate

ŝℓ,m = 10 log10

∣∣∣∣∣
W−1∑
k=0

w(k)smH+ke
−i 2πk

W ωℓ

∣∣∣∣∣
2

for 0 ≤ ℓ ≤ L − 1 and 0 ≤ m ≤ M − 1, where H is the distance between the starting indices of

adjacent windows (assumed to be constant) and w is the von Hann windowing function,

w(k) =
1

2
− 1

2
cos

(
2πk

W − 1

)
.

The value of ŝℓ,m represents the amount of power present in s at the ℓth frequency during the mth

time window, expressed in dB.
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The STFT is a linear operation and therefore can be represented by a matrix F. If we view the

matrix ŝ as a vector by stacking its columns, then F has dimensions LM ×K and for each value of

m has a copy of the L×W matrix

Q=

 w(0)e−i 2π0
W ω0 · · · w(W − 1)e−i

2π(W−1)
W ω0

...
...

w(0)e−i 2π0
W ωL−1 · · · w(W − 1)e−i

2π(W−1)
W ωL−1


occupying rows mL through (m+1)L− 1 and columns mH through mH +W − 1. Elsewhere, the

entries of F are zero.

4.4. Enforcing the Frequency Constraint

To restrict the frequency content in f , we identify the frequencies among ω0, . . . , ωL that we wish

to disallow and construct the selection matrix P so that F̃=PF contains exactly the rows of F

corresponding to those frequencies. (Each row of P is a row of the LM ×LM identity matrix.) The

constraint PFf = 0 then says that f must belong to the nullspace N (F̃) of F̃.

To enforce this constraint during the optimization procedure, we project the current search

direction onto N (F̃). If fν denotes the guess for the optimal value of f at the νth optimization step,

the update equation is

fν+1 = fν +αPN (F̃)∇J(fν),

where PN (F̃) is the orthogonal projector onto N (F̃) and α is the step size. We find PN (F̃) by noting

that since f is real, the constraint F̃f = 0 is equivalent to[
Re F̃

Im F̃

]
f = 0. (10)

Hence, PN (F̃) can be formed by taking the singular value decomposition of the matrix on the left-

hand side of (10) and extracting the right singular vectors corresponding to zero singular values.

5. Experimental Results

We now conduct several experiments that illustrate the effectiveness of our proposed approach for

computing adversarially perturbing signals under a physical access assumption.

5.1. Basic Setup

We take Ω to be the rectangle (0,100)× (0,100), with the lengths denominated in meters. We set

c= 1525ms−1, which is a reasonable estimate of the speed of sound in seawater (Kuperman and

Roux 2007). For simplicity, we fix the locations of the submarine and the interferer in time, setting

xs(t) = (5,75) and xi(t) = (9.75,68.75) for all t. We position the detector at xd = (52.5,12.5). (Note

that while our framework can accommodate settings in which each of these three agents is mobile,
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the method described in Section 4.1 for accelerating the evaluation of the objective requires the

location of the detector to be static.) We take P to be a bandpass filter for frequencies between

100Hz and 6000Hz.

We use the FEniCS software package to carry out our finite element computations (Alnæs et al.

2015, Logg et al. 2012). Our mesh for Ω consists of 23,270 unstructured (but nearly uniformly sized)

triangular elements and has 11,836 nodes. We integrate (1) to a final time of 1.0 s using 6000 time

steps, yielding a step size of ∆t ≈ 1.67× 10−4. For the STFT, we use L = 129 uniformly-spaced

frequencies between 0Hz and 3000Hz and a window length W = 64, which yields M = ⌈6000/64⌉=

94 time windows. In the context of (7), these parameters yield decision variables of the following

dimensions: u∈R71,016,000, f ∈R6000, ŝ∈R6000, and ŝ∈R129×94.

5.2. Spectrogram Classifiers

For the detector’s classifier Φ, we consider three neural network architectures from the computer

vision literature: VGG-19 (Simonyan and Zisserman 2015), Inception V3 (Szegedy et al. 2016),

and GoogLeNet (Szegedy et al. 2015). These models are pre-trained for image classification on the

1.2 million training images and 1000 classes from the ImageNet Large Scale Visual Recognition

Challenge (Russakovsky et al. 2015). To customize them for spectrogram-based signal detection,

we use the standard technique of transfer learning (Bengio 2012): we modify the dimensions of and

retrain the networks’ final layers specifically for this task.

We train the classifiers to discriminate between spectrograms generated by pure sine wave signals

g(t) = sin(ωt) emitted by potential intruders, where the frequency ω is allowed to assume one of

the 80 values 10, 20, . . . , 800Hz. Spectrograms corresponding to signals g(t) with ω ≤ 400Hz are

labeled malicious (i.e., as coming from our intruding submarine); those corresponding to higher

frequencies are labeled benign. To add realism, we assume that the signals received by the detector

have been corrupted with noise: the detector receives the signal s(t) that results from the signal

g(t) propagating through Ω, plus band-limited noise of the form (Hartmann 2007, Section 14.9.3)

η(t) =

L−1∑
ℓ=0

Aℓ cos(ωℓt)+Bℓ sin(ωℓt),

where Aℓ and Bℓ are independently drawn from a normal distribution with zero mean and variance

σ2
ℓ , and σℓ is proportional to the root-mean-square value of the component of s(t) (the noiseless

received signal) belonging to the STFT frequency band ωℓ. This way, the average power of the noise

in each band decreases at higher frequencies, matching the physical reality that higher-frequency

signals experience greater attenuation.

To generate training data, for each of the 80 allowable values of ω, we compute the signal s(t)

received by the detector in the absence of noise (and the interferer) by solving the wave propagation
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Figure 2 Sample spectrograms from the data used to train the neural networks Φ used by the detector. (a)

100Hz signal. (b) 300Hz signal. (c) 600Hz signal. (d) 750Hz signal. Spectrograms containing signals

with frequency less than or equal to 400Hz are labeled as containing a malicious intruder. Otherwise

the spectrograms are labeled benign.

Network Accuracy Without Interferer Accuracy With Interferer

Inception V3 97.75% 0.000%
GoogLeNet 97.50% 0.000%
VGG-19 95.88% 0.125%

Table 1 Classification accuracy of each network on the validation set.

problem. We then generate 40 noisy spectrograms for each frequency by adding Aℓ +Bℓi to each

entry of the STFT of the corresponding s(t), with Aℓ and Bℓ distributed as just described. The

result is a balanced training set of 3200 observations, examples of which are displayed in Figure

2. We also generate a separate testing data set for monitoring progress during training and a

validation data set for testing our method for computing perturbing signals, each consisting of 800

spectrograms, 10 for each value of ω. Finally, because the detector’s classification problem is a

binary decision over two classes—malicious or benign—we use a binary cross-entropy loss both to

train the classifiers and as the function L in the optimization problem (3).

With the aid of the PyTorch machine learning framework (Paszke et al. 2019), we train the

neural networks using stochastic gradient descent, terminating the training when the loss on the

testing set stops improving. The first column of Table 1 shows the accuracy of each model on the

spectrograms in the validation set. Absent the interferer, all the models are excellent classifiers,

attaining accuracy rates better than 95%.

5.3. Adversarial Perturbations

We now test our proposed method for constructing perturbing signals f(t) to be emitted by the

interferer in order to fool the classifiers. For each classifier, we take each spectrogram from the

validation set that it classified correctly and solve the discretized optimization problem (7) in search

of a perturbing signal that causes the classifier to misclassify the observation, ideally with high
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confidence. Any first-order method for unconstrained problems can be used to solve (7); we use

the limited-memory BFGS (L-BFGS) method as implemented by Zhu et al. (1997), computing the

objective and gradient as described in Sections 4.1 and 4.2 and applying the projected gradient

procedure described in Section 4.4. We start the algorithm with a zero initial guess and use the

automatic differentiation capabilities of PyTorch to compute derivatives involving Φ.

Among perturbing signals which succeed in inducing misclassification, small signals are preferable

to large ones because they require less energy to emit and are less likely to be detected by a

secondary classifier (e.g., a human observer). To achieve perturbing signals which are small, we

limit L-BFGS to at most 100 iterations. Every 10 iterations, we check if misclassification has been

achieved and, if so, terminate the algorithm.

Our results, summarized in the second column of Table 1, demonstrate that misclassification can

be achieved consistently. For both Inception V3 and GoogLeNet, we are able to induce misclas-

sification of every single spectrogram that they originally classified correctly. For VGG-19, we are

able to induce misclassification in all but one of the 800 observations in the validation set. More-

over, empirically, we find that many of the interfering signals have much smaller amplitude than

the signals emitted by the submarine/intruder. In many cases, the interfering signals are visually

indistinguishable from the background noise.

Figure 3 provides a typical example of this behavior. The figure displays both the original spec-

trogram and the spectrogram with the perturbing signal for a 260Hz intruder signal. Inception

V3 correctly classifies the original spectrogram as malicious with 99.0% confidence. The interfering

signal results in only minor changes to the spectrogram, but the classifier’s confidence that the

signal is malicious drops to 0.01%.

Figure 3c depicts the waveform f(t) emitted by the interferer for this example, which has an

amplitude of approximately 0.1. In these experiments, we always take the intruder signal to have

unit amplitude. Thus, the interfering signal is about 10 times weaker than the intruder signal in

this case, with the result that it blends easily into the background noise.

Figure 4 displays a similar example for a 70Hz signal initially classified correctly by GoogLeNet.

With the interfering signal—which is nearly 20 times weaker than the original signal—in place, the

detector’s confidence that the signal is malicious drops from 95.7% to 0.01%.

5.4. Computational Efficiency

We close with some remarks on the effectiveness of the technique described in Section 4.1 at reducing

the time required to complete the above computations. Table 2 shows the times (averaged over

800 runs) required to evaluate the objective function and its gradient for each network architecture

using both the naive approach (solving the PDE once for each objective evaluation, plus an adjoint
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Figure 3 The original (a) was correctly classified as malicious by Inception V3 with 99.0% confidence. When

the interfering signal is added, the perturbed spectrogram (b) is misclassified by the same network as

benign with 99.99% confidence. The waveform of the interfering signal is given in (c).

solve for each gradient evaluation) and the method of Section 4.1. These times were computed using

a single node of the “hamming” cluster at the High Performance Computing Center of the Naval

Postgraduate School; this node is equipped with dual 8-core AMD EPYC 7F32 CPUs clocked at

3.7 GHz and 512 GB of RAM. Note that in our implementation, the gradient cannot be computed

independently of the objective; hence, the times listed for the gradient computations include the

time required to perform an objective evaluation too. As the table makes clear, the method of

Section 4.1 is substantially faster than the naive approach by a factor ranging from 60x to 140x.

It is difficult to overstate the significance of these gains. The PDE problem we have considered in

these proof-of-concept experiments is relatively simple: the equation is linear and two-dimensional

in space; the spatial discretization is low-order and fairly coarse (only 11,000 degrees of freedom);

the temporal discretization is low-order and explicit; and the horizon for integration in time is
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Figure 4 The original (a) was classified as malicious by GoogLeNet with 95.7% confidence. When the interfering

signal is added, the perturbed spectrogram (b) is classified by the same network as benign with 99.99%

confidence. Though it is difficult to find visible differences between these spectrograms, they do exist.

One example can be found by looking closely in the region corresponding to 0.4 s and 1150Hz. The

waveform of the interfering signal is given in (c).

short (only 6,000 time steps). It takes only a handful of seconds to solve. Nevertheless, during

optimization, the objective and its gradient may be evaluated dozens of times, and those seconds

quickly add up to minutes—or even hours—to compute just one perturbing signal if the evaluations

are done the naive way. Using the approach of Section 4.1, we must solve the PDE (or, rather, its

adjoint) only once to computeY. Further evaluations of the objective and gradient then require only

cheap matrix-vector multiplies instead of an expensive solve. As a result, we are able to compute

all approximately 2400 perturbing signals in Section 5.3 with just a few hours of computing time.

With a more physically realistic scenario, each PDE solve may require several hours of time using

specialized high-performance computing hardware. In such a case the gains realized by using the

method of Section 4.1 would be even more substantial.



Bassett, Van Dellen, and Austin: Adversarial Perturbations of Physical Signals
16

Computation
Time (s)

Inception V3 GoogLeNet VGG-19

Objective (Naive) 6.8× 100 6.7× 100 6.7× 100

Objective (Section 4.1) 7.0× 10−2 4.9× 10−2 1.0× 10−1

Speedup 97.1 136.7 67.0

Gradient (Adjoint method) 1.3× 101 1.3× 101 1.3× 101

Gradient (Section 4.2) 1.5× 10−1 1.1× 10−1 1.4× 10−1

Speedup 86.7 118.2 92.9

Table 2 Times for evaluating the objective function and its gradient for each network using the naive/adjoint

approaches and the method of Sections 4.1-4.2. The speedup factor gained by using the latter is also listed.

6. Conclusion

We have demonstrated that adversarial perturbations can be used to fool neural network classifiers

when the adversary is limited to having only physical access to the classifiers’ inputs. By considering

an example from underwater acoustics, we have shown how to formulate the problem of computing

such perturbations as a PDE-constrained optimization problem and described how to solve that

problem efficiently.

In addition to being a novel application of PDE-constrained optimization to machine learning,

our results have implications for the real-world use of neural networks. Neural networks’ lack of

robustness, as embodied by their extreme sensitivity to small changes in their inputs, leaves them

ill-suited for settings in which those inputs can be manipulated by a motivated, sophisticated

adversary and in which misclassification has severe consequences. Many applications in security

and defense fit this description. By demonstrating that indirect manipulation of a network’s inputs

via a physical environment suffices to elicit these shortcomings, our work broadens the range of

threats that designers of, e.g., autonomous sensors should consider when choosing statistical and

machine learning models for use in their systems.

This work admits many potentially interesting extensions. For instance, by replacing the wave

equation with a different PDE (e.g., the Maxwell equations), one can study the adversarial manip-

ulation of signals whose propagation is governed by physics other than those of acoustics (e.g., the

physics of electromagnetics). Another promising direction is the generation of so-called “universal

perturbations” which can be applied regardless of the background noise. Universal perturbations

have been successfully constructed in computer vision under logical access assumptions (Moosavi-

Dezfooli et al. 2017). Investigating whether they can also be realized under physical access assump-

tions is therefore a natural avenue for future work.
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