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Abstract. We present a new algorithm for computing the convolution of two compactly sup-
ported functions. The algorithm approximates the functions to be convolved using Fourier extensions
and then uses the fast Fourier transform to efficiently compute Fourier extension approximations to
the pieces of the result. The complexity of the algorithm is O

(
N(logN)2

)
, where N is the number

of degrees of freedom used in each of the Fourier extensions.
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1. Introduction. Let f : [a, b] → C and g : [c, d] → C be two compactly
supported functions on the real line. We consider the problem of approximating the
convolution h = f ∗ g, defined via the integral

(1.1) h(x) =
∫ ∞
−∞

f(t)g(x− t) dt =
∫ min(b,x−c)

max(a,x−d)
f(t)g(x− t) dt, x ∈ [a+ c, b+ d].

Since convolution is a commutative operation, we lose no generality in assuming that
g has the larger domain: d− c ≥ b− a. In this case, the limits of integration in (1.1)
can be visualized for each value of x by the diagram in Figure 1. Splitting h into the
three pieces suggested by the diagram, we have

(1.2a)

(1.2b)

(1.2c)

h(x) =



hL(x) =
∫ x−c

a

f(t)g(x− t)dt, x ∈ [a+ c, b+ c],

hM (x) =
∫ b

a

f(t)g(x− t)dt, x ∈ [b+ c, a+ d],

hR(x) =
∫ b

x−d
f(t)g(x− t)dt, x ∈ [a+ d, b+ d].
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Fig. 1. Schematic illustrating how the limits of integration in (1.1) vary with x, assuming that
d−c ≥ b−a. Given a value of x on the horizontal axis, the limits range over the values of t indicated
by the corresponding “slice” of the parallelogram.

We refer to hL, hM , and hR as the left, middle, and right pieces of the convolution,
respectively. The integrals for the left and right pieces are known as Volterra convo-
lution integrals because each has a limit that varies with x, while the integral for the
middle piece, which has constant limits, is a Fredholm convolution integral [6, 9, 10].

In [14], Hale and Townsend propose an algorithm for approximating h that first
approximates f and g by polynomials represented in the Legendre basis and then
convolves the approximations using a version of the convolution theorem for Legendre
polynomials. The result is a piecewise polynomial representation that can be evaluated
at any x in the domain of h to yield an approximation to h(x). If the polynomials
used to approximate f and g have degree at most M , their algorithm produces an
approximation to h in O(M2) operations.

In this article, we present a new algorithm for approximating h using Fourier
extensions instead of polynomials. The algorithm first constructs Fourier extension
approximations to f and g from samples at equispaced points and then uses these
to compute Fourier extension approximations to hL, hM , and hR. The advantage to
using Fourier representations is that the latter computations can be carried out in
just O(N logN) operations using the fast Fourier transform (FFT), where N is the
number of degrees of freedom in each of the Fourier extensions for f and g. Since
the extensions can be computed in just O(N(logN)2) operations by using recently
developed techniques [17], the overall complexity of our algorithm is O(N(logN)2).

Because Fourier extensions and polynomials approximate functions at different
rates, the values of M and N defined in the preceding paragraphs needed to attain
the same level of accuracy in the corresponding approximations to f and g may differ.
It is therefore not immediately clear from the preceding description how our method
compares with the one from [14]. We explore these issues in some of our numerical
experiments below.

Note that while our algorithm uses Fourier representations, it differs substantially
from the naive method of computing h by approximating (suitably zero-extended
versions of) f and g using trigonometric polynomials over a common interval and
convolving the approximations via the FFT. The discontinuities introduced by the
nonperiodicity of f and g makes the approximations used in this approach inefficient
and susceptible to artifacts such as the Gibbs phenomenon. One can ameliorate these
problems by smoothing out the discontinuities; however, this comes at the expense of
accuracy in the computation of h. Fourier extensions are more complicated theoreti-
cally and algorithmically, but they offer a way around these deficiencies.
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Our discussion is organized as follows. In section 2, we briefly review some con-
cepts related to Fourier extensions. In section 3, we present the details of our algo-
rithm. In section 4, we test our algorithm on a variety of numerical examples, and in
section 5, we conclude the paper with some additional remarks about future work.

2. Fourier extensions. Fourier extensions are a technique for approximating
functions on compact subintervals of the real line by using Fourier series, even if they
are not periodic. Briefly, the idea is to smoothly extend the function to a periodic
function on a larger domain and then approximate the extension using Fourier series.
In practice, we do not compute such an extension explicitly but, instead, directly
approximate the original function using the Fourier basis from the larger domain.

In symbols, suppose that F is a complex-valued function on [−1, 1]. For fixed
T > 1, we seek an approximation to F of the form

(2.1) F (x) ≈ Gn(x), Gn(x) =
n∑

k=−n

cke
ikπx/T , x ∈ [−1, 1].

The function Gn is a trigonometric polynomial of degree n that is periodic on the
interval [−T, T ]. The value T is known as the extension parameter [3] (or the con-
tinuation length [11]) and is commonly taken to be 2, although our algorithm will
involve Fourier extension approximations of lengths other than this.1 Note that the
approximation is not expected to be good for x /∈ [−1, 1], and in practice it rarely
is.2

The approximation in (2.1) is usually made with respect to a least-squares crite-
rion. One can choose Gn to minimize ‖F − Gn‖L2([−1,1]), where ‖ · ‖L2([−1,1]) is the
L2 norm on [−1, 1]; this is called the continuous Fourier extension problem. Alter-
natively, one can solve a discrete Fourier extension problem3 obtained by selecting
M = 2m + 1 > N = 2n + 1 points x−m, . . . , xm ∈ [−1, 1] and demanding that Gn
minimize

∑m
j=−m |F (xj)−Gn(xj)|2. The number of points M is typically chosen as

some fixed multiple of N , the number of degrees of freedom available in the extension.
That is, we have M = γN for some γ ≥ 1, known as the oversampling factor. For a
detailed explanation of why oversampling is important, we refer the reader to [7, sec-
tion 4.2]. Empirical studies find that taking γ = 2 yields adequate results in practice
[3, 5, 11]. The most commonly used points are the equispaced points xj = j/m, since
these enable one to employ numerical methods based on the FFT. Since the FFT
is integral to the success of our algorithm, we work exclusively with discrete Fourier
extensions based on equispaced points in this article.

It turns out that both the continuous and discrete extension problems are poorly
conditioned in that the coefficients ck in (2.1) are highly sensitive to perturbations in
F (measured in the appropriate 2-norm). Nevertheless, when solving these problems
numerically, while the computed ck may differ greatly from those of the exact solution,
the function Gn that they determine can still be an excellent approximation to F
provided that n is large enough that F can be resolved. These phenomena are studied
carefully in [2, 3, 15], to which we refer the reader for further details. We will observe

1The widely adopted rule of thumb that T = 2 is a good choice for general use originates with
[11], and the utility of this choice has been further confirmed by more recent studies [3, 5].

2Indeed, F may not even be defined for x /∈ [−1, 1]. Moreover, Gn typically does not converge
to anything outside [−1, 1] as n increases [15].

3The discrete problem is much more frequently discussed in the literature. Some references that
treat both the continuous and the discrete problems include [1, 3, 15].
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how these effects impact the stability of our proposed algorithm later in our numerical
experiments.

Several methods are available for solving the discrete Fourier extension problem
in equispaced points. The one we employ is the recently developed algorithm due to
Matthysen and Huybrechs [17], which exploits the rapid decay of the singular values
of the matrix associated with the least-squares problem using randomized techniques
to compute a solution in just O

(
N(logN)2

)
operations.4,5 At the time of this writing,

an implementation of their algorithm in the Julia language is publicly available on
GitHub.6 We have used this implementation to carry out all of the computations that
we present here.

For further general information about Fourier extensions, we direct the reader to
[3, 7, 11, 15, 17] and the references therein.

3. Fast convolution algorithm. The idea behind our proposed algorithm is
simple. To approximate a piece (left, middle, or right) of h = f ∗ g, we first approx-
imate f and g using Fourier extensions. Then, we convolve these approximations to
obtain a Fourier extension approximation to the result. Since the approximations are
expressed in the Fourier basis, their convolutions can be computed efficiently by using
the FFT. If we use extensions with N degrees of freedom to approximate f and g,
then the first phase of the algorithm can be performed in O

(
N(logN)2

)
operations

by using the techniques mentioned at the end of the preceding section. The second
phase takes O(N logN) operations, so the overall complexity is O

(
N(logN)2

)
.

We now present the details of our algorithm in full.

3.1. Changing variables. Although Fourier extensions can be computed for
functions defined on arbitrary intervals, it is convenient to describe our algorithm in
terms of functions defined on basic intervals centered at the origin. To this end, we
define the following mapped versions of f and g:

(3.1)
f̃(y) = f

(
b− a

2
y +

b+ a

2

)
, y ∈ [−1, 1],

g̃(y) = g

(
b− a

2
y +

d+ c

2

)
, y ∈ [−ρ, ρ],

where ρ = (d− c)/(b− a) ≥ 1. (Recall our assumption that d− c ≥ b− a.)
One can easily relate the convolution of f and g to that of f̃ and g̃. Define

(3.2)
h̃L(y) =

∫ y

−1
f̃(t)g̃(y − ρ− t) dt,

h̃R(y) =
∫ 1

y

f̃(t)g̃(y + ρ− t) dt,
y ∈ [−1, 1].

Then, h̃L and h̃R are the left and right pieces of f̃ ∗ g̃, respectively, translated so that

4An earlier algorithm of a similar flavor due to Lyon [16] attains the same complexity; however,
it can be used to compute extensions only with T = 2.

5The implied constant in the big-O symbol will depend on T and γ. We will not address this
issue here and will stick to the standard choices T = 2 and γ = 2 except where deviation is required;
see section 3.2. Further information and experiments may be found in [17].

6https://github.com/daanhb/FrameFun.jl

https://github.com/daanhb/FrameFun.jl
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their domains are both [−1, 1], and

(3.3)
hL(x) =

b− a
2

h̃L
(

2
x− c− b
b− a

+ 1
)
, x ∈ [a+ c, b+ c],

hR(x) =
b− a

2
h̃R
(

2
x− d− a
b− a

− 1
)
, x ∈ [a+ d, b+ d],

as can be seen via straightforward changes of the integration variables. For the middle
piece, we set

(3.4) h̃M (y) =
∫ 1

−1
f̃(t)g̃(y − t) dt, y ∈ [−(ρ− 1), ρ− 1] ,

and we have

(3.5) hM (x) =
b− a

2
h̃M

(
2x− (a+ b+ c+ d)

b− a

)
, x ∈ [b+ c, a+ d].

Note that the change-of-variable maps used to define f̃ and g̃ in (3.1) have iden-
tical derivatives. This feature is important because it ensures that the independent
variables of f̃ and g̃ are scaled relative to one another in the same way as those of the
original functions f and g. Without this, the mismatch in scaling would mean that
no simple relationship akin to (3.3) and (3.5) would exist between f ∗ g and f̃ ∗ g̃.

3.2. Approximation using Fourier extensions. The first step in our algo-
rithm is to approximate f̃ and g̃ on [−1, 1] and [−ρ, ρ], respectively, using Fourier
extensions. We must select a parameter T to use for the extensions; as mentioned in
section 2, T = 2 is the standard choice. An extension for f̃ with parameter T will use
the Fourier basis on [−T, T ], while one for g̃ will use the Fourier basis on [−ρT, ρT ].

For reasons that will become clear, however, we need the period on which the
extension for g̃ is based to be an integer multiple of that of the extension for f̃ .
Therefore, instead of approximating g̃ with an extension on [−ρT, ρT ], we use an
extension on [−κT, κT ], where κ is the smallest integer such that κ ≥ ρ. This choice
ensures that the extension parameter for the approximation to g̃ is as close to T as
possible while still allowing the period of the extension for g̃ to satisfy the required
condition.

Thus, if we use Fourier extensions of lengths M = 2m + 1 and N = 2n + 1 to
approximate f̃ and g̃, respectively, our approximations take the form

(3.6) f̃(y) ≈
m∑

j=−m
aje

ijπy/T , g̃(y) ≈
n∑

k=−n

bke
ikπy/(κT ).

3.3. Computing the left and right pieces. We now describe how to compute
h̃L and h̃R, from which hL and hR can be recovered using (3.3). We will focus on
the computation of h̃L; the procedure for computing h̃R is similar.7 Substituting the
approximations (3.6) into (3.2) and using the fact that∫ y

−1
ei(κj−k)πt/(κT ) dt =

{
κT
iπ

(
eiπ(κj−k)y/(κT )

κj−k + eiπ(k−κj)/(κT )

k−κj

)
, k 6= κj,

y + 1, k = κj,

7In more detail, h̃R(y), y ∈ [−1, 1], is just the evaluation at −y of the left piece of f̃∗ ∗ g̃∗, where
f̃∗(y) = f̃(−y) and g̃∗(y) = g̃(−y).
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we obtain

h̃L(y) ≈
m∑

j=−m
aj

n∑
k=−n

bke
ikπ(y−ρ)/(κT )

∫ y

−1
ei(κj−k)πt/(κT ) dt

=
m∑

j=−m
ãje

ijπy/T +
n∑

k=−n

b̃ke
ikπy/(κT ) + (y + 1)

m∑
j=−m
−n≤κj≤n

cje
ijπy/(κT ),(3.7)

where

(3.8) ãj =
κT

iπ
ajpj , pj =

n∑
k=−n
k 6=κj

bke
−ikπρ/(κT ) 1

κj − k
, −m ≤ j ≤ m,

and

(3.9) b̃k =
κT

iπ
bkqke

ikπ(1−ρ)/(κT ), qk =
m∑

j=−m
κj 6=k

aje
−ijπ/T 1

k − κj
, −n ≤ k ≤ n,

and

(3.10) cj = ajbκje
−ijπρ/T , −m ≤ j ≤ m,−n ≤ κj ≤ n.

The key observation to make is that the sums defining pj and qk in (3.8) and (3.9)
can be interpreted as matrix-vector products in which the matrices involved have a
Toeplitz structure. Let b = (b−ne−i(−n)πρ/(κT ), . . . , bne

−inπρ/(κT )), a (column) vector
of length N , and let P be the (2κm+ 1)×N matrix whose (ν, k) entry is

Pν,k =

{
1

ν−k , ν 6= k,

0, ν = k,

for −κm ≤ ν ≤ κm and −n ≤ k ≤ n. Let p̂ = Pb. If p̂ν denotes the νth component
of p̂, −κm ≤ ν ≤ κm, then from (3.8) we have pj = p̂κj . Thus, we can compute the
pj by computing p̂ and keeping every κth component. Similarly, if â is the vector of
length 2κm+ 1 defined by

âν =

{
aν/κe

−i(ν/κ)π/T , ν ≡ 0 mod κ,
0, otherwise,

for −κm ≤ ν ≤ κm and q = (q−n, . . . qn), then by (3.9) we have q = Qâ, where Q is
the N × (2κm+ 1) matrix whose (k, ν) entry is

Qk,ν =

{
1

k−ν , k 6= ν,

0, k = ν,

for −n ≤ k ≤ n and −κm ≤ ν ≤ κm.
Since Pν,k and Qk,ν depend only on the differences ν − k and k− ν, respectively,

and not on ν and k individually, P and Q are Toeplitz. Therefore, the multiplica-
tions needed to compute p̂ and q (and, hence, all the pj and qk) can be carried out
in O

(
(2κm+N) log(2κm+N)

)
operations by the standard technique of embedding



FAST CONVOLUTION USING FOURIER EXTENSIONS A3095

them in circulant matrices and using the FFT [21, section 4.8.4]. Since these multipli-
cations constitute the dominant cost in computing the coefficients ãj , b̃k, and cj , the
approximation (3.7) to h̃L can be formed in O

(
(2κm+N) log(2κm+N)

)
operations.

Noting that the first sum may be rewritten to use complex exponentials of period
κT by inserting factors of κ into the numerator and denominator of the exponent,
we see that the expansion (3.7) is nearly a Fourier extension approximation to h̃L

with extension parameter κT . The only problem is the appearance of the factor of
y+ 1 multiplying the third sum. We can eliminate this factor by approximating it on
[−1, 1] with a Fourier extension

(3.11) y + 1 ≈
d∑

r=−d

γre
irπy/T ,

where the degree d is chosen large enough to attain a desired level of accuracy. Rewrit-
ing this sum using complex exponentials of period κT , we have

y + 1 ≈
κd∑

r=−κd

γ̃re
irπy/(κT ),

where γ̃r = γr/κ for r ≡ 0 mod κ and γ̃r = 0 otherwise. Upon multiplying this series
with the third sum in (3.7), we obtain an approximation

(3.12) (y + 1)
m∑

j=−m
−n≤κj≤n

cje
ijπy/(κT ) ≈

d′∑
`=−d′

c̃`e
i`πy/(κT ),

where d′ = κd + min(m, dn/κe) and dxe denotes the least integer greater than or
equal to x. The coefficients c̃` are the finite Cauchy product (discrete convolution) of
{cj}mj=−m and {γ̃r}κdr=−κd and can be computed efficiently in O

(
d′ log(d′)

)
operations

using the standard FFT-based algorithm for multiplying trigonometric polynomials.
For the usual choice of T = 2, we find experimentally that an extension with

d = 24 (49 basis functions) is sufficient to approximate y + 1 to machine precision
uniformly on [−1, 1] in double-precision arithmetic. Note that this approximation can
be computed once, offline, and then reused as many times as necessary.

3.4. Computing the middle piece. The middle piece is handled similarly to
the left and right pieces. In fact, it is slightly simpler because the limits of integration
in (3.4) are constant, whereas those in (3.2) vary with y. Inserting the approximations
(3.6) into (3.4) and noting that∫ 1

−1
ei(κj−k)πt/(κT ) dt =

{
2κT
π

sin( π
κT (κj−k))
κj−k , k 6= κj,

2, k = κj,

we find

h̃M (y) ≈
m∑

j=−m
aj

n∑
k=−n

bke
ikπy/(κT )

∫ 1

−1
ei(κj−k)πt/(κT ) dt

=
n∑

k=−n

b̃ke
ikπy/(κT ) +

m∑
j=−m
−n≤κj≤n

c̃je
iκjπy/(κT ),(3.13)
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where

(3.14) b̃k =
2κT
π

bkrk, rk =
m∑

j=−m
κj 6=k

aj
sin
(
π
κT (κj − k)

)
κj − k

, −n ≤ k ≤ n,

and

(3.15) c̃j = 2ajbκj , −m ≤ j ≤ m,−n ≤ κj ≤ n.

The expansion (3.13) is a Fourier extension approximation to h̃M with period κT .
The dominant cost in computing the coefficients b̃k and c̃j in this expansion comes
from computing the values rk defined in (3.14); however, as was the case for pj and qk
in (3.8) and (3.9), we can accelerate the computation of the rk by taking advantage
of the structure of the sum. Letting r = (r−n, . . . , rn), a vector of length N = 2n+ 1,
we have r = Râ, where â = (â−κm, . . . , âκm) is the vector of length 2κm+ 1 defined
by

âν =

{
aν/κ, ν ≡ 0 mod κ,
0, otherwise,

for −κm ≤ ν ≤ κm, and R is the N × (2κm+ 1) Toeplitz matrix with entries

Rk,ν =

{
sin( π

κT (ν−k))
ν−k , k 6= ν,

0, k,= ν,

for −n ≤ k ≤ n and −κm ≤ ν ≤ κm. As before, this matrix can be applied to â in
O
(
(2κm+N) log(2κm+N)

)
operations by using the FFT.

3.5. Summary of the main algorithm. We summarize our algorithm for
computing a Fourier extension approximation to (1.1) as follows:

1. Choose an extension parameter T on which to base the approximations; tak-
ing T = 2 is standard and should suffice in general.

2. Compute Fourier extension approximations to f̃ and g̃ as prescribed by (3.6)
using one of the recently developed fast algorithms mentioned in section 2.

3. Compute Fourier extension approximations to h̃L, h̃M , and h̃R by appropri-
ately convolving the Fourier extensions computed in Step 2. This can be done
efficiently by using the FFT to compute the coefficients of the approximations
as governed by (3.7) through (3.12) for the left piece (and similarly for the
right piece) and (3.13) through (3.15) for the middle piece.

4. Undo the changes of variables according to (3.3) and (3.5) to obtain Fourier
extension approximations to hL, hM , and hR.

3.6. An alternative approach to the left and right pieces. In some ap-
plications, only the left and/or right piece of the convolution integral is of interest.
When this is the case, one may be able to save some operations by approximating
only the portion of g that enters into the convolution instead of all of g. We now
describe how to do this. As in section 3.3, we focus on the computation of the left
piece; the right piece can be handled analogously.

Let

g̃L(y) = g

(
b− a

2
y +

b− a
2

+ c

)
, y ∈ [−1, 1].
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The function g̃L maps the portion of g defined on [c, c + (b − a)] to [−1, 1]; this is
precisely the portion of g that is involved in the left piece of f ∗ g. One can easily see
that

(3.16) h̃L(y) =
∫ y

−1
f̃(t)g̃L(y − 1− t) dt, y ∈ [−1, 1],

where h̃L is as defined in (3.2). To approximate h̃L using (3.16), we approximate f̃
and g̃L using Fourier extensions:

(3.17) f̃(y) ≈
m∑

j=−m
aje

ijπy/T , g̃L(y) ≈
n∑

k=−n

bke
ikπy/T .

The difference between (3.6) and (3.17) is that since the domains of f̃ and g̃L are
the same, they can be approximated by extensions with the same parameter using
complex exponentials with the same period as if κ were equal to 1. Doing this will,
in general, reduce the length of the FFTs required to compute the coefficients of the
Fourier extension approximation to the convolution. Moreover, since g̃L represents
only a part of g, one probably will be able to get away with using a shorter series
(smaller value of n) to obtain an approximation of a given accuracy than one would
need in order to approximate all of g via g̃.

From here, we proceed exactly as in section 3.3, replacing g̃ with g̃L and taking
κ = 1 in all formulas. For completeness, we give the simplified formulas in full here.
By inserting (3.17) into (3.16), we obtain

h̃L(y) ≈
m∑

j=−m
aj

n∑
k=−n

bke
ikπ(y−1)/T

∫ y

−1
eiπ(j−k)t/T dt

=
m∑

j=−m
ãje

ijπy/T +
n∑

k=−n

b̃ke
ikπy/T + (y + 1)

min(m,n)∑
`=−min(m,n)

c`e
i`πy/T ,(3.18)

where

(3.19) ãj =
T

iπ
ajpje

−ijπ/T , pj =
n∑

k=−n
k 6=j

bk
eiπ(j−k)/T

j − k
, −m ≤ j ≤ m,

and

(3.20) b̃k =
T

iπ
bkqke

−ikπ/T , qk =
m∑

j=−m
j 6=k

aj
eiπ(k−j)/T

k − j
, −n ≤ k ≤ n,

and

(3.21) c` = a`b`e
−i`π/T , −min(m,n) ≤ ` ≤ min(m,n).

From (3.19), we have p = Pb, where p = (p−m, . . . , pm) and b = (b−n, . . . , bn) are
vectors of length M = 2m + 1 and N = 2n + 1, respectively, and P is the M × N
Toeplitz matrix whose (j, k) entry is

Pj,k =

{
eiπ(j−k)/T

j−k , j 6= k,

0, j = k,
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Fig. 2. Convolution of two boxes. (a) The functions f and g being convolved and the approxi-
mation to their convolution h. (b) The error in the approximation. Because of the simplicity of this
example, the error comes almost entirely from the precomputed approximation to y+1 in (3.12). The
error curve for the middle piece is missing because it has been computed exactly: constant functions
are part of the extended Fourier basis.

for −m ≤ j ≤ m and −n ≤ k ≤ n. Similarly, from (3.20), we have q = Qa, where
q = (q−n, . . . , qn), a = (a−m, . . . , am), and Q is the N ×M Toeplitz matrix defined
by

Qk,j =

{
eiπ(k−j)/T

k−j , j 6= k,

0, j = k,

for −m ≤ j ≤ m and −n ≤ k ≤ n.
This takes care of the first and second sums in (3.18). The multiplication of the

third sum by y+1 can be handled in exactly the same manner as described in section
3.3.

4. Numerical examples. We now examine the characteristics of the proposed
algorithm and evaluate its performance on a few numerical examples. The Fourier ex-
tensions were computed using the publicly available implementation of the Matthysen–
Huybrechs algorithm mentioned in section 2. In all examples, we use an extension
parameter of T = 2 and an oversampling factor of γ = 2 unless otherwise specified.

4.1. Convolution of two boxes. As an easy first test, we set f and g to be
the characteristic functions of the intervals [−1, 1] and [−2, 2], respectively. Figure
2(a) depicts f , g, and the computed approximation to their (full) convolution. Figure
2(b) displays the pointwise absolute error in the computation.

Since f and g can each be represented exactly by using just a single (zero-
frequency) Fourier coefficient (N = 1), this example is perhaps the simplest possible
problem to which our algorithm may be applied. The error in the result is also due al-
most entirely to the error in the precomputed approximation to y+1 in (3.12) needed
for the left and right pieces. The approximation to the middle piece hM produced by
our algorithm has only N = 1 Fourier coefficient. The approximations to hL and hR

have N = 97 coefficients each.8

8For this problem, m = n = 0 and κ = 2. Taking d = 24 in (3.11) as described at the end of
section 3.3, we have d′ = 48 in (3.12), so the right-hand side of (3.12) has 2d′ + 1 = 97 coefficients
in total.
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Fig. 3. A convolution related to renewal theory. (a) The functions f and g being convolved and
the approximation to the left piece of their convolution. (b) Absolute error in the approximations to
f , g, and the left piece of their convolution.

4.2. A convolution from renewal theory. For our next example, we consider
the Volterra convolution integral equation

(4.1) f(x) = g(x) +
∫ x

0
f(t)g(x− t) dt, x ≥ 0,

with
g(x) =

1
2
x2e−x.

This equation arises in renewal theory [10, Example 1.4.3], [13], and one can show
using Laplace transforms that the solution is

f(x) =
1
3
− 1

3

(
cos
√

3
2
x+
√

3 sin
√

3
2
x

)
e−3x/2.

We verify this solution by using our algorithm to approximate the integral that ap-
pears in (4.1) and comparing the result with f − g.

We approximate f and g (which are similar but not identical) on [0, 1] using
Fourier extensions with N = 71 degrees of freedom. Since only the left piece of f ∗g is
desired, we use the simplified version of our algorithm given in section 3.6 to perform
the computation. Figure 3(a) depicts f , g, and the computed approximation to the left
piece hL of their convolution, which is also defined on [0, 1]. The approximation to hL

uses N = 119 Fourier coefficients. The pointwise absolute error in the approximations
to f , g, and hL is displayed in Figure 3(b).

The functions f and g are not complicated and do not require many coefficients
to represent accurately, making this still a relatively easy example. Nevertheless, the
computation illustrates an interesting fact about approximating convolutions using
Fourier extensions. We observe from Figure 3(b) that while the error in the Fourier
extension approximations to f and g is as high as 10−13, the error in the approximation
to their convolution is uniform at a level just under 10−16. That is, the accuracy in
the approximation to hL (measured in the uniform norm) is roughly three orders of
magnitude greater than the accuracy in the approximations used to compute it. This
phenomenon can be partially explained by taking into account the fact that hL is
roughly 10 times smaller than f and g (i.e., we should consider measuring the error in
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a relative rather than an absolute sense), but this reasoning is not enough to account
for everything. The other key observation is that the regions of comparatively large
error in the approximations to f and g are localized to the endpoints, so they do not
contribute much to the convolution integral.

One can make this reasoning more precise as follows. Suppose that we have
approximated f and g by f̃ = f + δf and g̃ = g+ δg, respectively, where δf and δg are
functions that satisfy ‖δf‖∞ ≤ ε and ‖δg‖∞ ≤ ε for some ε > 0. Here, ‖ · ‖∞ denotes
the uniform norm. The error in the approximation to f ∗ g is

(f̃ ∗ g̃)(x)− (f ∗ g)(x) = (δf ∗ g)(x) + (f ∗ δg)(x) + (δf ∗ δg)(x).

Noting that the third term on the right-hand side is O(ε2) as ε→ 0, upon taking abso-
lute values and applying Hölder’s inequality to the integrals that define the remaining
two terms, we obtain

(4.2) ‖f̃ ∗ g̃ − f ∗ g‖∞ ≤ ‖g‖∞‖δf‖1 + ‖f‖∞‖δg‖1 +O(ε2),

where ‖ · ‖1 denotes the L1-norm over the appropriate domain.
From (4.2), we see that the uniform-norm error in the convolution can be bounded

by an expression in which the significant terms depend on ‖δf‖1 and ‖δg‖1 but not
‖δf‖∞ and ‖δg‖∞. That is, the integrals of the errors in the approximations to f and
g determine the error in the approximation to the result. Hence, these errors must be
large over a significant portion of the domain before their impacts become important.

In Figure 3(b), the areas of large error in f and g near the endpoints together
occupy well less than 1/10 of the total interval, and they turn out to be relatively
insignificant. This is useful to know, since error profiles similar to those in Figure
3(b) are not uncommon in practice.

The error analysis just performed is a bit cavalier in that it ignores the contribu-
tion to the error from the approximation (3.11) to y + 1. For the middle piece, the
y + 1 factor does not enter into the picture at all, and no changes are needed. For
the left piece, suppose that we approximate y+ 1 by y+ 1 + δy+1(y). Then, we don’t
compute f̃ ∗ g̃ exactly but instead compute an approximation h̃ ≈ f̃ ∗ g̃, and according
to (3.7) and (3.10), the pointwise absolute error in this approximation will be

(4.3)
∣∣h̃(y)− (f̃ ∗ g̃)(y)

∣∣ ≤
∣∣∣∣∣∣∣∣δy+1(y)

m∑
j=−m
−n≤κj≤n

cje
ijπy/(κT )

∣∣∣∣∣∣∣∣ ≤ |δy+1(y)|
m∑

j=−m
−n≤κj≤n

|ajbκj |

for all y in the domain of the left piece. The right piece may be analyzed similarly.
We conclude that the error in the approximation to y + 1 does not make a signifi-
cant contribution to the overall result, provided that the coefficients of the Fourier
extension approximations to f and g are not too large.

4.3. Convolution of oscillatory functions. Next, we apply our algorithm to
approximate the (full) convolution of the oscillatory functions f(x) = sin(100x)+x/50
and g(x) = cos(200x)2, both defined on [−1, 1]. The exact answer can be found by
using a symbolic computing system or a table to evaluate the necessary integrals. We
approximate f and g using Fourier extensions with N degrees of freedom for several
values of N ranging from 5 to 605 and measure both the time taken to compute the
convolution (averaged over 3 trials) and the maximum absolute error in the result on
a grid of 8192 equispaced points in [−2, 2].
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Fig. 4. Results for the oscillatory convolution of section 4.3. (a) Maximum error in the
convolution on a grid of 8192 equispaced points in [−2, 2] versus the number of degrees of freedom
N in the Fourier extensions. (b) Time required to compute the convolution versus N . The blue and
green lines show the time for approximating f and g and for the subsequent computations required
to convolve the approximations, respectively. The red line shows the total time taken (the sum of
the two).

The results are displayed in Figure 4. Figure 4(a) shows that the approximation
to the convolution has converged to the exact solution to nearly machine precision on
[−2, 2] once N exceeds approximately 525. Figure 4(b) shows that the amount of time
taken does indeed appear to grow at a rate bounded by O

(
N(logN)2

)
as predicted.

Moreover, the bulk of the time is clearly spent building the Fourier extension ap-
proximations to f and g. This is expected because the singular value decomposition
computed by the Matthysen–Huybrechs algorithm to solve the extension problems
is considerably more expensive than the handful of FFTs needed to convolve the
extensions, even taking the randomized nature of the algorithm into account.

Figure 4(a) displays a trend that initially appears alarming. For several values
of N , the error in the approximation is exceedingly high—on the order of 109. The
behavior disappears around N = 125, at which point the error settles down to a
nominal level of 10−3 before beginning its eventual decay to machine precision around
N = 500. Looking more closely, we find that the instability arises as a result of the
coefficients of the Fourier extension approximations to f and g being excessively large,
with some as high as 1011 for the values of N for which the instability is most severe.

This behavior is actually a well-understood property of Fourier extensions; for
extensive studies with quantitative results, we direct the reader to [2, 3]. The key
point is that it does not persist indefinitely as N increases; it emerges only in a
regime in which the function being approximated has not been adequately resolved.9

Thus, while this effect means that our algorithm exhibits instability for some values
of N , the instability is harmless, since those values of N all correspond to extensions
with insufficiently many degrees of freedom to approximate the function accurately,
meaning that a stably computed approximation would be of little utility anyway.

4.4. Comparison with methods based on polynomials. For our final ex-
periment, we compare our algorithm to the one of Hale and Townsend [14], which
approximates f and g by polynomials instead of Fourier extensions. Recall from the
introduction that this method scales as O(M2), where M is the degree of the poly-
nomials employed. At first glance, it would appear that the method of this article,

9See [2], especially Theorems 5.3–5.4, and [3], especially section 5.3.
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which scales as O
(
N(logN)2

)
(where, as usual, N denotes the number of degrees of

freedom in each of the Fourier extensions used), should be superior.
The problem with this reasoning is that it is not clear how M relates to N ,

so the complexities cannot be directly compared. Fourier extensions and polynomials
approximate functions at different rates. If the value of N needed for Fourier extension
approximations to f and g to attain a given accuracy is much greater than the value
of M needed for polynomial approximations to attain the same accuracy (e.g., if
N ∝M2), then the polynomial-based method may win out in the end.

Attempting to provide a definitive answer to the question of how M and N relate
in general is beyond the scope of this article. Nevertheless, we can show numerically
that there are situations in which our method may be competitive. For x ∈ [−1, 1], let
f(x) = 1 + 1/(1 +ωx2), a Runge-like function, where ω ∈ R is a given parameter. We
consider the convolution h = f ∗ f . As was the case with the previous example, the
exact answer to this problem may be found by using a symbolic computing system or
consulting a table of integrals.

For a range of values of ω, we determine M such that f is approximated uniformly
on [−1, 1] to within an accuracy of approximately 10−10 by its degree-M polynomial
interpolant in a grid of (second-kind) Chebyshev points. We convolve this interpolant
with itself using the algorithm from [14] and measure the time taken. We do not
include the time taken to build the interpolant. We compare this with the time taken
to approximate and convolve f with itself using our algorithm with a Fourier extension
of length N that resolves f to approximately the same level of accuracy.10

As ω increases, the spike in f near the origin becomes increasingly narrow, and M
and N will need to increase accordingly; thus, this experiment should provide insight
into how the different methods scale as the problem complexity increases. All our
computations involving polynomials were carried out in MATLAB R2016b using the
Chebfun software package [12], which contains an implementation of the algorithm
from [14]. Accuracy of both the Fourier extension and polynomial approximations
was measured by computing the maximum absolute error on a fine grid in [−1, 1].

The results are displayed in Figure 5. Figures 5(a) and 5(b) show how the quan-
tities M and N described in the previous paragraph vary with ω. We observe from
Figure 5(b) that N ≈ 1.4M for this problem, which suggests that as ω increases,
the algorithm based on Fourier extensions should eventually exhibit superior perfor-
mance. This is borne out by the plots of Figure 5(c). Because the algorithms have
been implemented in different languages using different software packages, making a
fair direct comparison between the times is difficult. Nevertheless, the figure clearly
shows that the Fourier extension method becomes faster once ω is large enough. Fig-
ure 5(d) shows that all computations evaluate the convolutions to comparable levels
of accuracy.

Actually, the performance of the Fourier extension method for this particular
problem is even better than Figure 5(c) might suggest. The reason is that our im-
plementation of the algorithm does not take advantage of the fact that f is being
convolved with itself instead of with some other arbitrary function g. We therefore
actually construct the Fourier extension approximation to f twice over the course of
the computation. Since constructing the Fourier extension is the most expensive part
of the algorithm (see Figure 4(b)), taking advantage of this would lead to significant

10While M can be determined using features of Chebfun, at the time of this writing, construction
of an efficient general procedure for determining N is a matter of ongoing study. We determined N
using a brute-force search. The reported times do not include the time taken to compute M and N .
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Fig. 5. Results for the experiment of section 4.4 involving the convolution of f(x) =
1 + 1/(1 + ωx2) with itself. (a) Number of degrees of freedom N in the Fourier extension and
the degree M of the polynomial used to approximate f to the desired level of accuracy for a given
value of ω. (b) Ratio of N to M . (c) Times required to compute the convolution using both methods.
(d) Approximate uniform-norm error in the convolution computed using both methods.

savings. The polynomial-based method can benefit similarly; however, we already ex-
clude the times required to build the polynomial interpolants from our measurements
because they are negligible, so they do not appear in Figure 5(c) as is.

We close this section by noting a crucial difference between our method and the
polynomial-based method to which we have compared: the latter bases its approx-
imations on samples of f at Chebyshev points, whereas the former uses equispaced
points. Chebyshev points cluster quadratically near the endpoints of the approxima-
tion interval as the number of points increases, while in the center of the interval,
they are much less dense. As a result, the resolution power of Chebyshev interpolants
is greater near the endpoints than in the center.11

This suggests that the polynomial-based convolution method may perform better
when the operands exhibit greater variation near the extremes of the interval than
in the middle. Figure 6 shows the same four plots as Figure 5 but for the function
f(x) = 1 + 1/

(
1 + ω(x + 1)2

)
. This is the same Runge-like function previously

considered, but it has been translated so that the “spike” occurs at x = −1 instead of
x = 0. Comparing Figures 5(a) and 6(a), we see that for our earlier example, both N

11Statements like this can be made quantitatively precise using notions from potential theory; see
[20, chapter 12] for an introduction.
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Fig. 6. Same as Figure 5 but for the function f(x) = 1+1/
(
1+ω(x+1)2

)
instead. Most of the

variation in this function occurs near the interval endpoint at x = −1, where the sampling points
for the polynomial-based method (Chebyshev points) are densest. As a result, the polynomial-based
method exhibits superior performance in this case.

and M grow with ω at a rate of O(ω1/2), while for this example, the rate of growth of
M has been cut to O(ω1/4). This substantial reduction in the number of degrees of
freedom needed to approximate f by polynomials relative to those needed for Fourier
extensions gives the polynomial-based convolution method a decisive advantage in
this case, as indicated by the times in Figure 6(c).

This example does not negate the utility of our method, as not all functions
of interest have their variation so heavily concentrated near the endpoints of the
interval. Moreover, it is not uncommon for an application to demand samples be
taken on an equispaced grid instead of a Chebyshev grid. If this is the case, polynomial
interpolants cannot be used because of the Runge phenomenon [20, chapter 13].

One still can use polynomials by performing a discrete least-squares approxima-
tion (as is done for Fourier extensions) instead of interpolation; however, this comes
with some disadvantages. In order to ensure stable convergence, the number of sam-
ples taken must be proportional to the square of the degree of the polynomial used
[4, 8, 19]. This severely limits the size of the degree that can be used in practice.12

12Assuming the constant of proportionality is 1, even storing the (dense) 106× 103 matrix for the
least-squares problem with a degree-1000 polynomial requires 8 GB of memory in double precision.
In contrast, a Fourier extension approximation with twice as many degrees of freedom created using
the standard oversampling factor γ = 2 requires only 64 MB.
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At the same time, the convergence rate degrades; if the scheme is stable, it can con-
verge only at a rate that is subgeometric in the degree, even when the function being
approximated is entire [18]. These effects severely blunt the general advantage poly-
nomials enjoy over Fourier extensions with respect to rates of approximation, meaning
that our method will be even more competitive in this context.

5. Conclusion. We have presented a new numerical method for convolving two
functions with compact support. The method approximates the functions to be con-
volved using Fourier extensions and then convolves the extensions efficiently with
the aid of the FFT to produce a Fourier extension approximation to the convolu-
tion. When the extensions are computed using one of the recently developed fast
algorithms, the method takes O

(
N(logN)2

)
operations, where N is the number of

degrees of freedom in each of the Fourier extensions.
While we have worked exclusively with Fourier extensions in this article, we note

that the techniques described in section 3 can be used with any scheme that produces
sum-of-exponentials approximations of the form (3.6). We plan to investigate the
utility of our approach for computing convolutions in higher dimensions as well as
the possibility of using discretizations based on our method for solving convolution
integral equations. Other avenues for future work include the development of a more
detailed error analysis for our algorithm by using results from literature on Fourier
extensions [2, 3] and studying the behavior of our algorithm in the presence of noise.
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