Competitive Computer Security Stuco

Chris Lambert (chrislambert@cmu.edu)

Welcome to 98-212, Competitive Computer Security!

This is a technical course focused on offensive computer security, particu-
larly in the context of the computer security competitions called “Capture the
Flag” competitions. Its primary purpose is to teach the tools and tricks used in
offensive security, both for the purpose of honing your skills for these competi-
tions and also for use in better understanding what an attacker might actually
be capable of.

I’'m Chris Lambert—I'm a sophomore in Computer Science and a member
of the “Plaid Parliament of Pwning”—which we usually refer to as the slightly-
less-ridiculous “PPP.” PPP is Carnegie Mellon’s CTF team, as well as a security
research group. PPP is ranked as one of the best teams in the world, consistently
taking home first place finishes, most recently at RealWorldCTF in Beijing,
China and DEF CON CTF in Las Vegas.

CTFs are competitions held both online and in-person at conferences that
are competed in by many people active in information security. Many com-
panies send unofficial teams - for example, Raytheon SI, ManTech and Google
are represented. Many universities also have teams, such as CMU, MIT, UC
Berkeley, UC Santa Barbara, Georgia Tech, Boston University, and RPI.

This course will be held on Mondays from 7:00 to 8:20 pm in DH 2315 (for
registered on-campus students only) and on Zoom at

https://cmu.zoom.us/j/934685175257pwd=WC84dmNZQ0Q3aW10WGgxUTgzK1R4UT09

We will cover topics ranging throughout many aspects of computer security, in-
cluding web security, cryptography, reverse engineering and binary exploitation.

1 Course Policies

The StuCo system requires that I take attendance, so I will. You are allowed
2 unexcused absences, and “excused absences” as needed. There are two re-
quirements to be excused according to the Stuco committee. First, if you have
something come up toss me an email and everything will be fine. Second, you
have to complete the “homework checkpoint” that is posted for that week. The
homework will be hard if you do not come to lecture, and will be easy if you do.

Grades will be determined by completion of the homework. Time will be
provided in class to complete it.



2

The

Tentative Schedule

plan is currently to follow roughly the following order. With any lecture

day, real examples of challenges from CTFs are provided, with a basic challenge
being the assigned homework for the week. Time will be provided in class to
work on it, and just like in real CTFs collaboration is encouraged.

Week 1 | Introduction, course overview. “What is a CTF?”, tooling setup,
useful resources, and getting set up with the online platform for
the course

Week 2 | Free-run of selected challenges from actual CTFs. Specifically, in-
teresting challenges that don’t require much ahead-of-time knowl-
edge.

Week 3 | Introduction to reverse engineering (re): getting comfortable with
static reverse engineering tools, using debuggers to confirm your
hypotheses

Week 4 | Introduction to binary exploitation (pwn): a quick overview of
how x86 works, then looking at shellcode and ROP. Introducing
pwntools

Week 5 | Introduction to web exploitation (web): SQL injections, common
PHP mistakes, covering some of the variety of things in this cat-
egory

Week 6 | Introduction to cryptography (crypto): overview of popular cryp-
tosystems (RSA, ElGamal, DHKE)—should be review from 251
for CS students. Covering common attacks on RSA and how to
find papers and implement them using Sage.

After this point, progress will largely be determined by seeing how fast the
course should go. It’s the first time this course is being taught in a long time, so
I’'m not sure how long lectures should last nor how fast they should go. Ideally,
I would like to cover the following topics (and probably more) in another round
of the categories or depending on what people are most interested in:

non-x86 architectures (ARM, MIPS, etc.)

reverse engineering interpreted/VM languages (Java, Lua, Python)
exploitation on the heap (looking at glibc malloc internals)
exploiting function pointers (mostly vtables)

challenges with XSS and CSRF against web clients

SSRF on web services

dynamic typing issues with web languages (PHP, Javascript, Ruby)

symmetric cryptography (block ciphers, stream ciphers, padding)



e demos/working through interesting challenges from old CTF's
e using fuzzers to get starting points for bugs

e history of PPP



