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Introduction to CSIRO  

Australia’s Gasification Research Program 
 Coal gasification fundamentals 

 Fuel property impacts on gasification performance 

– Gasification Conversion reactions  

– Mineral matter behaviour 

 Application of research data through reaction and process models 

 

Relevance to biomass gasification applications 
– Lessons learned and special issues 

 Torrefaction of biomass 

– An enabling technology for efficiency and scale? 
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62% of our people hold 

university degrees  
2000 doctorates   
500 masters 

With our university 
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Coal Gasification R&D 



Gasification and IGCC systems – several fuel 
dependent issues to be addressed 

 Increase availability – slag management, fouling, 
corrosion, refractory degradation 

 Improved cold gas efficiency 

 Coal preparation & feeding (dry and slurry systems) 

 High temperature syngas cleaning 

Technology efficiency impact on CO2 emissions  

For pf systems, most future improvements are 
NOT coal related issues 

 Advanced materials – higher steam T, P 

 Coal issues affecting efficiency - slagging, fouling, 
drying, milling… 



High pressure, high temperature coal conversion 
measurements 

 Effects of reaction conditions and coal type 

 Development of coal test procedures  

Fundamental investigations of coal gasification 
reactions 

 mechanisms, kinetics, models 

Slag formation and flow 

Syngas cleaning & processing 

Gas separation (H2/CO2) 

Technology performance models 

To improve the understanding of coal performance in gasification technologies, 
supporting: 

• Coal selection and use in new technologies 

• Implementation of advanced coal technologies 

• Development of high efficiency IGCC-CCS systems  

Coal Gasification & IGCC Research 



Gasification Research  

Fuel Reactivity 

Reaction 
Fundamentals 

Gasification 
Behaviour 

Pyrolysis and 
Char 

Formation 

Alternative 
Fuels 

Mineral Matter 

Slag formation 
and flow 

Trace element 
behaviour 

CSIRO Gasification Research  

Pilot scale performance studies 

Modelling 

Mechanistic 
Gasification Models 

Gasifier Models 
Process model 

Integration 



Coal pyrolysis 
 Rapid volatile release 

 Determines char yield and morphology 

Combustion 
 Limited, fast.  O2 consumed early in process 

 Exothermic, provides heat for endothermic gasification 
reactions 

Char Gasification 
 Slow, rate determining.  Endothermic  

 CO2 and H2O converted to CO and H2.   

Slag formation and flow 
 Flux may be required to achieve adequate viscosity 

Coal Conversion in Gasification 
Gasification is a multi-stage process 

flux 

O2 

CO/CO2 

slag 

CO2 and H2O 

CO + H2 



Interrogating the Gasification Process 

Laboratory investigations to understand 
the important processes that combine to 
gasify coal under practical conditions. 

Larger-scale testing to ‘recombine’ process 
steps under process conditions 

Predictive capability of gasification 
behaviour 

Assess coals for specific gasification 
technologies 

Develop operating strategies 

Troubleshooting gasification processes 

Support technology development 

 
flux 

O2 

CO/CO2 

slag 

CO2 and H2O 

CO + H2 

Gas Analysis

Its not all about simulating the industrial 

process! 



• High pressures 
• Up to 30 bar 

• High temperatures and 
heating rates 
• Up to 1100°C 

• Over 1000°C/s 

 

Devolatilisation and Char Formation 
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Rapid devolatilisation 
measurements 
 High heating rate (~1000°C/s) 

 Pressure 15-20bar 

Cane trash and bagasse have 
extremely high volatile yields 
 70-85% (ad basis) 

 char yield is low 

Volatile yield of coals and biomass 
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Simple non-isothermal TGA 
experiment 

Drying, pyrolysis  
 Inert atmosphere 

 Devolatilisation complete by ~400°C 

 Total volatile yield ~85% 

– char yield low 

Pyrolysis profiles of sawdust 



Char Reactivity  
Fixed Bed Reactor 
 Intrinsic reaction kinetics of chars 

with CO2, H2O, O2  

 Detailed information regarding 
reaction rates & mechanisms, and 
how these relate to char properties 
(surface area, porosity, petrography 
etc) 

High Pressure TGA 
 Reaction rates at high pressures of 

CO2, H2O, CO, H2, and their 
mixtures 

 Impacts of high pressures on 
gasification reaction processes 

 Fundamental data for application 
of char reaction kinetics to relevant 
process conditions 



Carbon-Gas Reactions 

Science issues: 

 Competing reactions  

 Role of char surface  

 Complex kinetics 

Application issues: 

 Coal properties and pyrolysis conditions 
affect char reactivity 

 Char structure changes during reaction 

Cf + H2O         C(O) + H2  

C(O)  CO + Cf  

Cf + CO2         C(O) + CO  

C(O)  CO + Cf  

Char-CO2:  

Cf + H2  C(H2)  

Char-H2O:  

Complicated by: 
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Gasification rate of wood char is 
approx 100x greater than coal char 

 wood char surface area usually greater 
than coal char 

 ‘intrinsic’ reactivity of sawdust char still 
~10x greater than coal char 

Activation energy similar for coal and 
biomass chars (240-300kJ/mol) 

Low char yield and high char 
reactivity indicate that this is less 
likely to be limiting factor in biomass 
gasification 

 Affects T, particle size etc 

Gasification reactivity of biomass char 
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Moving up the Arrhenius Curve:  
High Temperature Rates 

Inverse Temperature 
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Regime I Regime II Regime III 

~800-

900°C 

T>1000°C Very high T 

 << 1 

Temperatures where 

gasification technologies 

operate 

Low-temperature 

‘intrinsic’ 

measurements 

External mass  
transfer control 

Chemical + pore 
diffusion control 

Chemical rate 
control 

 =1  < 0.5 



High Pressure Entrained Flow Reactor 

Gas Analysis

Feeder 

Preheating  

and mixing 

Three-section  

reaction zone 

Water quench 

Sampling probe  

and gas analysis 

20 bar pressure, up to 1500°C 

Coal feed rate of 1-5 kg/hr 

Gas mixtures of O2, CO2, H2O and N2 

Adjustable sampling probe - char and gas 
samples collected at different residence 
times (0.5-3s) 

 

 



CO2/char reaction rate at ‘high’ temperature 

CRC252

Residence time (s)
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First of a kind data for high pressure char/CO2 
and char/steam reactions (PEFR) 

Thiele modulus and effectiveness factor based 
on observed particle morphology  

 ‘effective’ diffusion length 

Low T ‘intrinsic’ and high T ‘practical’ rate data 
can be reconciled when a detailed 
understanding of char structure is available 

Still difficult to resolve burnoff effects 

Challenge to extend to  multiple reactants 

Char/CO2 reaction rates: understanding 
chemical and physical factors 

E M Hodge, D G Roberts, D J Harris and J F Stubington.  The 

Significance of Char Morphology to the Analysis of High 

Temperature Char-CO2 Reaction Rates, Energy and Fuels (2009). 
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Evaluation of Coal Gasification Behaviour 

Optimum range of stoichiometries for ‘gasification efficiency’. Trade-off to achieve maximum 
conversion.  

Higher volatile coals (generally) achieve greater conversion than lower volatile coals 

 Exception is CRC299 – indicates that char reactivity is also significant (agrees with TGA testing of coal suite) 

Higher temperature differentiates coals on the basis of different char reactivities 

Effect of coal type also reflects extent of conversion 

Conversion drives syngas composition (via gas phase equilibria) 
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• Volatile species (in syngas):  
• requirements for syngas cleaning 

• Condensed phases (slag, fly ash): 
• Syngas cleaning 

• Operational: slag viscosity 

• Utilisation/handling of waste 

• Physical & chemical properties: trace elements, 
leaching 

Mineral matter in gasification 
Coal mineral matter 

Liquid slag 

Condensed 
phases 

Volatile species 

Coarse slag 

Fine slag 

Solid ash 

Quench water and/ or 
gas cleaning 

Wall slag 

Tapped slag 

Fly ash 



Slag Viscosity Testing 
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• Slag Viscosity 

• 25 Pa s is the accepted maximum viscosity at the slag tap 

for successful operation 

• Flux addition required if viscosity is too high 

• Temperature of Critical Viscosity 

• Slag becomes heterogeneous 

• Trouble-free tapping of slag is not possible 



Bagasse ash composition 

Component Wt.% 

Ash content 0.62-3.2* 

SiO2 78.3 - 85.5 

Al2O3 5.3 - 8.6 

 Fe2O3 1.3 - 5.2 

CaO 2.1 - 3.3 

Na2O 0.1 - 0.3 

K2O 1.5 - 3.5 

MgO 0.2 - 1.7 

P2O5 0.5 - 1 

Mineralogy:  
• Mainly quartz, SiO2, 
• also phosphates: (Ca9MgK[PO4]7 and KAlP2O7) 

Bagasse  ash composition [1-3] 
* Excluding dirt, and up to 7% with dirt 

 Excluding dirt  

 Including dirt  

 Coal 

ashes 

[1] Dordeiro, et al, in Used of Recycled Materials in 
Building and Structures (2004) 
[2] Zanderson et al, Biomass&Bioen (1999) 
[3] Souza et al, J. Environ. Manage. 92 (2011)  

Bagasse  and coal ash compositions in SiO2-Al2O3-CaO 

phase diagram at 5wt.% FeO 



Melting & flow behaviour of bagasse ash 

No solids involved, slag 

flow only depends on 

viscosity of liquid, which 

is very high 

Slag flow depends on 

viscosity of liquid with solids. 

Even with some solids (up to 

20% ) viscosity < 25Pa∙s. 

 CRC703f coal slag (example): 

AFT for bagasse ash: 

• IDT (initial deformation 
temperature)  depends 
on low melting point 
fraction (K-species) and 
different than eutectic T. 

• ST (spherical 
temperature), and HT 
(Hemispherical 
temperature), are high 
due to slow melting and 
high viscosity of melt 

• FT (Flow temperature) is 
(>100 °C) higher  than 
liquidus temperature 

AFT is bulk characteristic 
of ash and depends: 

• Kinetics of melting 

• Melting temp. of 
minerals 

• Viscosity of slag 
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Bagasse in entrained flow gasifier 
Possible approaches: 

• Blending with kaolin** (70:30 ratio) to reduce 
S/A ratio and fluxing with CaCO3 (~10%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bagasse Ref coal* 

Coal for 

blending 

Ash 

content 0.62-3.2 ~10 ~10 

SiO2 78.34-85.5 78.5 36 

Al2O3 5.3- 8.55 10.8 30 

 Fe2O3 1.3-5.24 4.6 1.1 

CaO 2.1-3.27 0.3 29 

Na2O 0.12-0.33 1.1 0.17 

K2O 1.51-3.5 0.72 0.07 

MgO 0.15-1.1 0.6 0.26 

Blended Raw coal with 10% CaO
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Gasification Research  

Fuel Reactivity 

Reaction 
Fundamentals 

Gasification 
Behaviour 

Pyrolysis and 
Char 

Formation 

Alternative 
Fuels 

Mineral Matter 

Slag formation 
and flow 

Trace element 
behaviour 

Pilot scale performance studies 

Modelling 

Mechanistic 
Gasification Models 

Gasifier Models 
Process model 

Integration 



• Entrained-flow reactor  
– Application of transportable fundamental kinetics and 

structure data 

• Pilot and full scale modelling 
– Integration of coal performance data into process flow sheets 

 

 
 

 

 

Coal gasification models 
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Pilot scale test data consistent with 
laboratory based estimates for similar 
conditions 

In practice many factors determine practical 
operating conditions 

 Slag requirements may over-ride gasification 
reaction requirements 

 eg CRC704 where O:C of ~1.4 was needed 

Model performance 
Reconciliation with pilot and lab scale data 
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Optimum Vs Practical operating conditions 

•   Our modelling results shows that some coals must be operated under higher O:C 

ratio than targeted optimum operating conditions due to their slagging behaviour. 

•   Similar behavior is expected for biomass in entrained flow gasifier. 
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Torrefaction 
Preprocessing bagasse for 
transport, feeding and efficiency 
benefits 



Process Conditions: 
 200° - 300°C 

 Near atmospheric pressure 

 Absence of air 

 Residence time of 10-30 
min 

 Volatilisation of 
hemicellulose component 

 Heating rate <50°C/min 

The torrefaction process 
Mass and energy balance 

Source: Phil Hobson, QUT 
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Typically ~24 MJ/kg (HHV) 

Hydrophobic (maintains ~3% moisture) 

Stable in long term storage 

Friable 
 10% of the comminution energy required for untreated biomass 

 Compatible with conventional coal milling equipment 

Readily pelletised 
 50% of energy required to pelletise raw biomass 

 High residual lignin (bonding agent) 

Volatiles retained 
 50% to 60% volatiles 

Coal-like energy density and handling properties 

Torrefied bagasse 
Physical properties 



Grinding and milling 
Torrefaction improves energy and performance 

Source: Kiel, J. (2007) IEA Bioenergy workshop “Fuel storage, handling and preparation and system analysis for 
biomass combustion technologies”, Berlin 

Torrefied 

biomass 



Rotating Kiln Facility: 
Torrefaction, pyrolysis, combustion   

• ~500kg/h capacity (low grade coal combustion) 

• LPG pre-heater 

• Kiln temperature ≤900°C 

• Has been used with steam turbine and small gas turbine  

 

 



Syngas Technologies 

Gas Cleaning 

Particle removal 
High 

temperature 
sorbents 

Syngas Processing 

Catalysts for 
liquid fuels 
production 

High 
temperature 

WGS catalysts 

Gas Separation Membranes 

Amorphous 
membranes 

Crystalline 
membranes 

Fundamental 
studies of metal-
H2 interactions 

Catalytic Membrane Reactors 

Fabrication Demonstration 
Process 

optimisation 

Slipstream testing in coal-derived syngas 

CSIRO Advanced Syngas Technologies Research 



• Key enabling technologies for next 
generation coal based H2 energy systems  

• Large scale, low cost processes essential 
• High temperature gas cleaning systems 
• Catalytic shift reactions 
• Membrane separation systems 
• Membrane reactors 

• Shift and separation in a single unit 

H2 

Gas Cleaning, Processing and CO2/H2 
Separation 



No insurmountable technical barriers 
 Coal Gasification science is applicable 

– Devolatilisation, reactivity, mineral matter & slag behaviour 

 Relative importance of the fundamental processes varies 
– Drives technology & operating conditions 

Most issues relate to the nature of biomass as a feedstock 
 Torrefaction may be an important enabler 

– Dispersed and costly to transport 

– High moisture (30% to 60%) 

– Low volumetric energy density 

– Fibrous – not readily milled & fed into pressurised gasifier 

 Mineral matter content and composition 
– Alkali and silica affect slagging & downstream syngas processes  

– engineering design & operating strategies 

International partnerships are needed to facilitate research 
development, demonstration and deployment 
 Coordination and ‘critical mass’ are essential 

Bagasse gasification R&D drivers 

http://www.propubs.com/pictures/gsslagpou

r2.gif 



Thank You  
Contact: David Harris 

Phone: +61 7 3327 4617 

Email:   David.Harris@csiro.au 

 

CSIRO ADVANCED COAL TECHNOLOGY 



Operating window of main gasifiers types  

Moving beds Fluidized beds Entrained flow 

Downdraft Updraft Bubbling Circulating 

T°C 700-1200 700-900 <900 <900 1200-1500 

Tars low Very high intermediate intermediate Absent 

Control easy Very easy intermediate intermediate very complex 

Scale <1-5 MWth <20 Mth 10-100 Mth 20-100 Mth > 100 MWth 

feedstock very critical critical less critical less critical fine particles 


