

September, 17, 2012

Dr. Fernando Landgraf

Diretor Presidente do IPT landgraf@ipt.br

- Technology choice
- Economic viability
- IPT's pilot plant proposal

Brazil energy consumption per year

Chart 1.4.a - Final Energy Consumption

106 ton equivalent oil

Today's difficulties with ethanol price

and Historical Prices (in 2010 dollars)

Oil price evolution: if price increase continues, ethanol strives

Source: U.S. Energy Information Administration and the California Energy Commission

Potential sugarcane harvest growth growth

Sugarcane Biomass power potential in 2010

$$P_{th} = M_{cane} \cdot F_{bagasse+straw} \cdot LHV \cdot /8000h$$

\$ = (600 Mt/year \cdot 0,20 \cdot 17 GJ/t \cdot 0,277 MWh/GJ / 8000 h/year) = $= 70 \text{ GW}_{th}$

Instaled cogeneration capacity in 2011: 3GW

New technologies for a better use of sugarcane bagasse and straw

- Biochemical route
 - hydrolysis
- Thermochemical route
 - Improvement of boilers technology
 - Gasification
 - Fluidized bed technology
 - Entrained flow technology

Gasification

- Gasification is a process that converts organic or fossil based carbonaceous materials into a gas mixture of carbon monoxide, hydrogen and carbon dioxide, called synthesis gas, or syngas.
- The Syngas can be used to generate electrical power, liquid fuels or chemicals.

Main gasification concepts

Gasifier concepts at different scales

Choice depends:

Which is the most adequate scale

Which products are desired

1500

1000 MW **FUEL CAPACITY**

150 kt/year

Värnamo 2009-05-19

Scale

- A typical Brazilian sugarcane mill harvests 4 Mt/year of sugarcane.
- Each ton gives 150kg of sugar, 140kg of bagasse and 60kg of available straw.
- So, 800 kt of dry biomass /year is available.
- It is possible to envision a mill where all biomass is gasified to produce power and chemical products.
- For this scale, Entrained Flow Gasification is the best solution

Commercial Gaseification plant

Why choose entrained flow gasification:

- Large scale commercial plants for petrochemical waste and coal gasification are in use today.
- Quality of generated gases: low tar and methane levels due to high operating temperatures (greater than 1300° C) and high CO and H2 levels.
- The ability to operate with liquid flows or low granulometry particulate materials (bio-oil and torrified grounded biomass).
- High pressures and high power.
- The ability to remove molten ashes

Potential for gasification plants the greenfields of the 2020's:

Present situation of Biomass gasification in the world

- No commercial plants
- Several pilot plants and many technological challenges
- Large R&D investments: Germany, USA, Sweden,
- Large coal gasification commercial plants in China (1Mt coal/year), South Africa and USA

Projeto Chemrec, Suécia

Projeto BioTfuel - França

Economic viability

Data from literature

	Swanson et al (2010)	Boerrigter (2006)
Biomass	Corn stover	Woody biomass from European forest chipped and dried
Pre-treatment	Grinding and drying via steam	Torrefaction with fixed cost of 1,5 Euro/GJ
Gas cleaning	Cold gas cleaning; SWGS	Rectisol (CAPEX 59 M US\$ 2011)
Plant size (MWth)	389	4.250
Method	ASPEN Plus & Icarus	Engineering analogy with a GTL plant

Investment

Gasification plant size: 800MT/year (100t/h)

<u>Stages</u>	Investment (M US\$2011)				
Pretreatment	45				
Gasification	60				
Gas cleaning and conditioning	60				
Fischer Tropsch Unit	75				
ASU (air separation unit)	45				
20MW Electric generation unit	65				
OBL	340				
total	690				

Scenarios for 2020 - 2030

scenario	Bagasse cost (US\$/ton)	Discount rate	Diesel price 2020-2030 (US\$/litro)
Optimist	30	0,08	2,1
probable	50	0,10	1,8
Pessimist	70	0,12	1,5

647 MWth gasification plant 800 mtb/a

FT Fuel production; Energy efficiency = 55%

	TCI (M US\$2010)	NPV (M US\$)	ROI
optimist	549	786	286%
probable	689	334	114%
pessimist	917	-2	-1%

TCI: Total Capital Investment

Brazilian Biosyngas project

- IPT (São Paulo State Research Institute) is coordinating a proposal to build a 500kg/h biomass gasification pilot plant in Piracicaba (SP)
- Objective is to be able to define the Conceptual Design of a 800 kt/year (100t/h, 470MW_{th}) plant in 2020, with CAPEX of US 500M
- 5 year project budget is US\$ 40M.
- Three industrial partners (Oxiteno, Petrobras and Vale) are interested in developing, outside the project, the technologies from gas to biofuels, biochemicals or Electrical Energy.

Pilot Plant gasifier specification

- 2,5MW_{th}, approx. 500kg biomass/h capacity
- "flex": able to gasify powder or biooil
- Oxygen blown
- no heat recovery
- Gas composition targets:
 - 80% (CO+H₂)
 - < 0,5% CH₄
 - <1g tarr / Nm³</p>
 - < 0,5%N₂

Technical challenges

- Bagasse drying unit design choice
- Bagasse torrefaction unit design choice
- Gasifier design for 3% ash content
- Earth separation before gasifier, to lower ash silica content
- Gas cleaning

Project status

- 3.5 years of negociation and planning
- 20 workshops with companies and ICTs for business structuring
- Partners formally committed
- IP negotiations completed
- Environmental licences granted
- BNDES and FINEP approval in final stages
- Sao Paulo State resources available, to fund Plant Basic Design
- Personnel hiring in process
 - 30 researchers already involved

Results from the modeling team

Time Chart.

BIOSYNGAS PROJECT – TIME CHART													
	2012		2013		2014		_	2015		2016		2017	
	1 °	2°	1°	2°	1°	2 °							
Project management													
Defining intellectual property rights													
Defining governance													
Signing contracts (BNDES, FINEP, GESP, companies)													
Conceptual design phase													
Preliminary design phase													
Detailed engineering phase													
Pre-treatment system implementation													
Gas cleaning system implementation													
Utilities													
Instrumentation and control center													
Civil engineering													
Gasifier Development and assembly													
System integration													
Cold commissioning													
Hot commissioning													
Long duration testing (totally 3.000 h)													
Economic feasibility and risk management													

Budget

BUDGET						
ITENS	VALOR (MILLION R\$)					
Equipments	38.2					
Facilities	3.6					
Travel costs	1.2					
Consumables	3.3					
Man power (IPT, CTC, companies)	11.4					
Subcontracted services	20.4					
Administrative costs	2.9					
Contingencies	5.7					
Total	86.8					

Pilot plant: Piracicaba

Piracicaba IPT Plant – Old Sugar Cane Plant in ESALQ area

Final remarks

- Gasification is an important option for a better use of bagasse in the 2020's, depending on oil price evolution.
- Entrained Flow gasification technology is a viable alternative.
- No commercial technology is available, so a pilot plant is a necessary step.
- The team wants to incentive Brazilian research groups to join the effort and face the scientific challenges that lay before us.

Partners

Partner Companies

Financing

