

Reality Check: Practical Limitations of Technical Privacy Protection

Hans-Joachim Hof

MuSe - **Mu**nich IT **Se**curity Research Group Munich University of Applied Sciences

hof@hm.edu http://muse.bayern

Prof. Dr.-Ing. Hans-Joachim Hof

University of Karlsruhe, Germany Karlsruhe Institute of Technology (KIT)

CS student, PhD student, lecturer

SAP Markets, Palo Alto, USA

Software Developer

Siemens AG, Corporate Technology

Research Center "IT Security"

Munich University of Applied Sciences

- Full Professor
- Leader Munich IT Security Research Group
 - Network Security
 - Software Security

German Chapter of the ACM

Vice Chair

Introduction

Windows 10 spying: How to opt out of Microsoft's intrusive new terms of use

Googlers say "F*** you" to NSA, company encrypts internal network

NSA had reverse-engineered many of Google's and Yahoo's inner workings.

REPORT: CIA HAS TRIED FOR YEARS TO BREAK INTO APPLE GEAR

Leave Facebook if you don't want to be spied on, warns EU

Lax Privacy Today

- Businesses value personal data
- Businesses have strong lobby
- Governments tend to paranoia
- Study:
 - Users see growing need for privacy
 - However: they do not act privacy aware (e.g. more social network activities)

Drivers of Privacy Protection

Privacy Protection

- Non-Technical
 - Data avoidance, data minimization, anonymization, special roles in companies (privacy officers)...
 - Often accompanied by technical privacy protection
- Technical
 - Uses IT security means
 - Encryption, authentication, ...
- Technical privacy protection often presented as silver bullet, especially on user side
 - **→** True???

Effectiveness of IT Security Means

- Many sources on IT security incidents
- Focus on special aspects of IT security
- Surprisingly hard to compare figures (timescale, metrics, approach,...)
- Available sources of information:
 - Academia (e.g. Georgia Tech)
 - Governments (e.g. BSI, UK-Cert)
 - Security suppliers (e.g. Symantec, Kaspersky, McAfee)
 - Activists (e.g. Hackmageddon)
 - Personal communication (e.g. ACM IT Security Live)
 - Personal observation (e.g. B.Hive Honeypot)
 - Whistleblowers (e.g. Snowden)
- Be careful: all sources have a bias

Attack Numbers in 2014 (Latest Numbers)

- Malware (viruses, worms, ...) can be used to bypass security
- New malware pieces in 2014 (million)
 - 317 (Symantec)
 - 155 (McAfee)
 - 80 (BSI only Windows)
- McAfee: Number of new malware per quarter is increasing:

New Attack Quality in 2014

- McAfee: serious attacks on cryptography (esp. SSL/TLS) in last year
 - E.g. Heartbleed attack allows to wiretap encrypted communication with servers with little effort
- BSI: detected attacks by intelligence agencies on German infrastructure in business, research, and public administration
- BSI: 2014: > 1 million infections a month in Germany
- EU Study: 47% of users discovered malware

Attack targets

■ BSI: Number of critical vulnerabilities in standard IT product remains high, for 13 products:

Defense

- Symantec: average time to patch top 5 zero-days:
 - 2013: 4 days
 - 2014: 59 days
- Symantec: total days of exposure for top 5 zero-days:
 - 2013: 19 days
 - 2014: 295 days
- McAfee: most vulerable high-traffic websites were quickly patched, many low-traffic sites and IP-enabled devices remain vulnerable (Heartbleed)
- Heartbleed study: 43 % of admins tried to fix vulnerability, only 14% succeeded

Defense

- ENISA: Over 50% of malware undetected by antivirus products
- McAfee: Multiple Android applications fail to properly validate SSL certificates (allows wiretapping)
 - 18 apps from Top 25 downloaded mobile apps still vulnerable months after notification (!!!)
 - Leak account data of third party services (social networks, cloud, ...)
- Kaspersky: Analysis of home appliances, found a large number of vulnerabilities

To sum it up

- Huge increase in number of attacks
- Software quality (security) does not improve
- Software developers have problems in providing patches in a reasonable time or do not provide patches at all
- Service providers have problems proving secure services or do not care about security
- Common defense means becoming more and more useless

Effectiveness of security means not given

Areas for Improvement

- Software and service quality
- Trustworthiness of software
- Diversity for critical software components
- Use of standard IT in new domains
- Security and privacy education

Action Item: Software and Service Quality

- Software quality must be improved
 - Should target for zero vulnerabilities
 - Should target for attack resilient systems
 - Should over-engineer security
 - current risk-based approach may be wrong
- Usability of security means must be improved
 - Build usable software
 - Security by default
 - Automate: auto-update, ...
- Incident management must be improved
 - Software Developers: target for a very short time and good quality
 - Admins: detect problems fast, take countermeasures fast
- To improve situation, external pressure may be necessary (e.g. software liability law)

Action Item: Trustworthiness of Software

- Developers and users have problems judging on the trustworthiness of software
 - Many third party components (and many version changes)
 - Hard to verify OS and hardware
- Governments suspected to force developers to insert backdoors/vulnerabilities for surveillance (e.g. USA)
- German or European hardware platform and OS is desirable
- First steps: IT security made in Germany (However: limited approach)

Action Item: Diversity for Critical Software Components

- Too little diversity in critical (=widely used) components (e.g. OpenSSL library)
- Obviously: many eyes looking on these components did not succeed in avoiding vulnerabilities
- Forking existing Open Source projects could not be the solution

Action Item: Use of Standard IT in new Domains

- Computer Science, standard IT, and connection to the Internet coming to new domains
 - Connected Car
 - Internet of Things
 - Industry 4.0
 - Smart Homes
 - Smart TVs
 - ...
- Infects domains with new security problems
 - Often out of expertise of developers of these domains
 - Observations:
 - Domain experts often naive in considering risks
 - Computer scientists often ignorant to domain specific problems

Action Item: Security and Privacy Education

- Education of software developers helps to avoid vulnerabilities
 - Example: OWASP
 - Decline of SQL Injection and CSRF
- Security and privacy courses should be mandatory in CS education
- Teach
 - respect for security problems (baseline: know when to ask a security expert)
 - understanding of security problems, not recipes for security solutions
 - limitations of security means (e.g. certification)
 - importance of privacy

Thank you for your Attention

