

Genomics and Epidemiology for Gastric Adenocarcinomas (GE4GAC)

Emmanuel Dias-Neto Lab. of Medical Genomics AC Camargo Cancer Center

WHY GASTRIC CANCER?

- 4th most common malignancy in the world
- 2nd most common cause of cancer-related death
- Important geographic variation:

High-risk areas: Japan, Korea, Latin America (Brazil, Peru), Russia

Low-risk areas: USA, Israel, Kuwait, Canada, UK

Estadiamento indeterminado

In Brazil (INCa, 2016)

- 3rd more incident tumor in men
- 5th more incident tumor in women
- 20.5k new cases/year
- 14.2k deaths/year

Overall 5-year survival rates (all stages) (Jemal et al., 2010; Theuer et al., 2000)

- 40-60% in Japan
- 15-30% in the USA

-Ethnicity and treatment response (Kim et al., 2010):

Group	Chemotherapy + Bevacizumab	Chemotherapy + placebo
Asians	13.9	12.1
Non-asians	11.5	6.5*
		*p<0.01

Message: the disease is different according to the ethnical background!

Module 1 - Epidemiology

To collect epidemiologic information from ~2,000 individuals:
Control 1 – Cancer prevention program: no cancer and no gastric complains.

Control 2 – Endoscopic controls (some gastric issues, no cancer)Cases – diagnosis of gastric adenocarcinoma

- Detailed socio-demographic information
- Data regarding diet, ethanol & tobacco consumption
- Use of drugs such as aspirin, anti-inflammatory agents, antibiotics, proton-pump inhibitors, sweeteners
- Brazil: Southeast, North, Northeast
- Peru?

Dynamic alterations in gastric cancer...

Intestinal type: ~54%

Presents as "glandular structures" in histology Higher prevalence of *H. pylori* infections *Declining globally* Male:Female ratio = 2:1

Older patients

Better prognosis

Diffuse type: ~32%

Infiltrative lesions Loss of CDH1 (20%)

Male:Female ratio = 1:1

Incidence is is not declining so fast (growing?)

Younger age Worse prognosis

Mixed type: ~14%

Idade ao diagnóstico	%
<20 anos	0.1
20-34	1.7
35-44	4.5
45-54	12.2
55-64	20.4
65-74	24.7
75-84	24.3
>84 anos	12.2

Module 2 – Molecular Biology

Full support from the epidemiology module

- 2.1 Microbiome analysis
- 2.2 Early Onset/Familial Gastric Cancer
- 2.3 Markers of neoadjuvant chemotherapy response
- 2.4 Markers of prognosis

Module 2.1 – Microbiome Analysis

- Gastric juice collected from >150 patients
- Biopsies available for ~90%

A Trial and Error Approach

Microbiome

Human Genome

Nayak & Turnbaugh, 2016

Microbiome and chemotherapy response?

Trends in Immunology

Klevorn & Teague, 2016

Oral Cancer - Species Richness

Thomas et al., in preparation

Best predictive genera PCoA plot – public dataset

Rectal Cancer

Thomas et al., *in preparation*

Non-Cancer A Rectal-Cancer

Non-cancer Rectal-cancer

Non-cancer Rectal-cancer

Non-cancer Rectal-cancer

Thomas et al., in preparation

Non-cancer Rectal-cancer

Non-cancer Rectal-cancer

Gastric cancer - bacterial diversity

Abundance of distinct genera

Shotgun metagenomics?

Microbiome manipulation?

www.metasub.org

CITY PROFILES

Children and the

ABOUT

MA

MEETINGS LINKS CONTACT Q

PEOPLE

METHODS

MetaSUB Metagenomics & Metadesign of Subways & Urban Biomes

letaSUB

* Negative for CDH1

Why should we study the double-stranded transcriptome?

PCA3 is located in the intronic antisense strand of PRUNE2

Salameh et al., 2015

PCA3 regulates mRNA and protein levels of PRUNE2

Mature PCA3 forms a dsRNA complex with immature PRUNE2

dsRNA – trigger anti-viral response?

ADAR1 – Double-stranded RNA-specific deaminase

PCA3, PRUNE2 & ADAR1 co-localize in the cell nucleus and are resistant to RNAseA treatment

Sensitive to RNAse-H treatment (dsRNA)

If the PCA3/PRUNE2/ADAR complex is functional, we should detect RNA editing

RNA editing was also observed in prostate cancer samples

If PCA3 and ADAR1 act blocking PRUNE2, we shall be able to reduce tumor growth if we control these transcripts

The study of the ds-transcriptome (dsRNA-Seq) in gastric cancer may reveal novel actionable targets for this malignancy

- Gene panel (~160 transcripts) based in the 4 most recent comprehensive studies of gastric cancer genomics (200 cases)
- Evaluate the effect of cumulative mutations and prognosis
- WES for polar cases (disease free-survival)
- Gene panel v2.0
- Molecular Ancestry studies

Acknowledgements

University of Toronto, Canada

Daniel de Carvalho, PhD

Universidade Federal de Minas Gerais (UFMG)

Luiz Gonzaga Vaz Coelho, PhD (FM) Eduardo M. Tarazona-Santos, PhD (ICB)

Institute of Cancer, Ceará, Brazil

Rosane Santana, PhD

Universidade Federal do Pará (UFPA)

Paulo Assumpção, PhD Rommel Burbano, PhD

Universidade de São Paulo (USP)

Ana CV Krepischi, PhD João Carlos Setúbal, PhD Andrew M. Thomas, MSc

Medical Genomics Lab

Maria Amorim, PhD Helano C. Freitas, MSc Diana Noronha Nunes, PhD Melissa Poll Pizzi Lais Senda Emilio Tarcitano, MSc Andrew M. Thomas, MSc

Dept. of Clinical Oncology Marcello Fanelli Celso Abdon Lopes, PhD

CIPE-AC Camargo Antuani Baptistella Bruna Barros, PhD Dirce Carraro, PhD Edson Cassinella Ludmilla Chinen, PhD Michele Landemberger, PhD Vilma Martins, PhD Elisa Napolitano, PhD Rodrigo Ramalho, PhD

Department of Abdominal Surgery

Felipe Coimbra Wilson L. Costa Jr, PhD Adriane Pelosof

Dept. of Pathology Maria Dirlei Begnami, PhD Fernando A. Soares, PhD

Epidemiology group Maria Paula Curado, PhD Rodolfo Cezar Diego Silva Calebe Nobrega Camila Gatti Graziela Baladão Ana Carolina Pereira

Bioinformatics group

Israel Tojal, PhD Rodrigo Drummond, PhD Renan Valieris

emmanuel@cipe.accamargo.org.br

shRNA ADAR1: increases PCA3 & PRUNE2 levels (protein and mRNA)

RNA-ChIP: ADAR1 and paraspeckle proteins are in the same complex as PCA3 & PRUNE2

Paraspeckle-proteins: nuclear retention/degradation

