

The Earth BioGenome Project: Sequencing Life for the Future of Life

Harris Lewin, Gene Robinson, John Kress, and the EBP Working Group

The Earth BioGenome Project: Grand Challenge

<u>Mission</u>: To sequence the DNA of every known species from the three life domains in 10 years

The Earth BioGenome Project: Grand Challenge

<u>Vision</u>: To create a new foundation for science that drives solutions for preserving Earth's biodiversity and sustaining human societies

Organizational Meetings

Establishing a National and Global Framework to Sustain Biodiversity: "The Earth BioGenome Project"

November 6, 2015 Smithsonian Castle Commons, Washington, D.C.

The Earth BioGenome Project

August 8, 2016 US National Academy of Sciences Council Meeting Woods Hole, MA

The Earth BioGenome Project

September 19, 2016 OSTP Washington, DC

Earth BioGenome Workshop & Global Biodiversity Genomics Conference

February 20-23, 2017 National Museum of Natural History, Washington, D.C.

Science MAAAS

Sequencing all life captivates biologists

"To sequence everything in the world—that is the reason we are here."

Huanming Yang, quoted by Elizabeth Pennisi, Science

52% vertebrate population lost in past 40 years

20,000 endangered species

WHY SEQUENCE LIFE?

Maximize returns to society and human welfare Conserve, protect, and restore biodiversity Revolutionize biology

Genomes are books of life

How many species are there?

Species	Earth			Ocean		
	Catalogued	Predicted	±SE	Catalogued	Predicted	±SE
Eukaryotes						
Animalia	953,434	7,770,000	958,000	171,082	2,150,000	145,000
Chromista	13,033	27,500	30,500	4,859	7,400	9,640
Fungi	43,271	611,000	297,000	1,097	5,320	11,100
Plantae	215,644	298,000	8,200	8,600	16,600	9,130
Protozoa	8,118	36,400	6,690	8,118	36,400	6,690
Total	1,233,500	8,740,000	1,300,000	193,756	2,210,000	182,000
Prokaryotes						
Archaea	2	455	160		1	
Bacteria	10,358	9,680	3,470	652	1,320	436
Total	10,860	10,100	3,630	653	1,32	430
Grand Total	1,244,360	8,750,-00	1,300,000	194, .09	2,210,000	.82,000

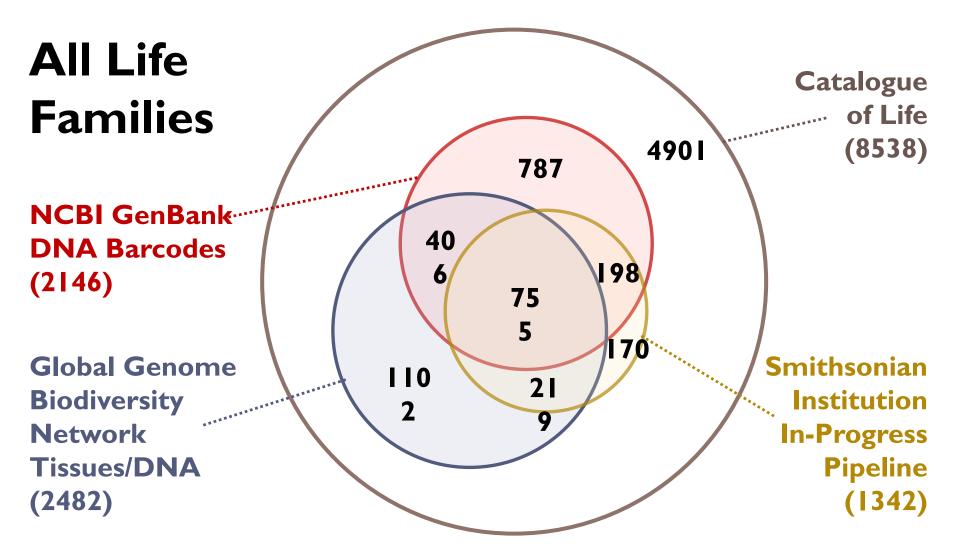
Press Release 16-052

Researchers find that Earth may be home to 1 trillion species

Largest analysis of microbial data reveals that 99.999 percent of all species remain undiscovered

Mora et al., PLoS Biology 9:e1001127, 2011

EBP Strategy 1: The Phylogenomic Wave


- Domains:
- Eukaryotic Kingdoms:
- Eukaryotic Phyla:

- 3 (Eubacteria, Archaea, Eukarya)
- 5 (animal, plant, fungi, chromista and protozoa)
- 61 (35 animal; 10 plant; 2 fungi; 14 chromists+protozoa)
- Eukaryotic Classes: 266
- Eukaryotic Orders: 1253
- Eukaryotic Families: 9330 (Phase I)
- Eukaryotic Genera: 140,000-200,000 (Phase II)
- Eukaryotic Species: ~I.5 million known (Phase III)

Sources: Global Genome Initiative Knowledge Portal (Jonathan Coddington); Catalog of Life (Luisa Abucay & Yuri Roskov)

The Sample Challenge

Jon Coddington et al., Smithsonian, February 2017

EBP Strategy 2: "Google Life"

- Location Sampling (e.g. Ocean Sampling Day Consortium; Genomic Observatories Network; NEON; Critical Zone Observatory; CALeDNA)
- Sequence all organisms in a particular geographical area (e.g., within biodiversity hotspots); soil, land, water and air
- Enables studies of the effect of environmental change on biodiversity (genomic ecology)
- Produce a multidimensional and dynamic view of life on earth

Is it feasible to sequence 1.5 million Euks?

YES – even with today's technology

Next generation sequencers

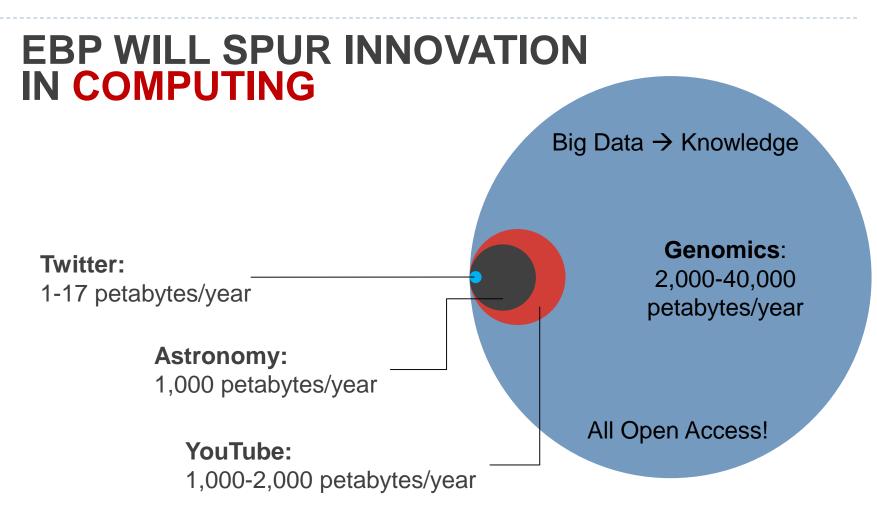
- I0,000 genomes/year
- I5 Illumina XTen machines (or 30 NovaSeq 6000) can do 1.5 million genomes in 10 years
- Assumes 3 Gbp average genome (range 2.9 Mbp 130 Gbp) and 30-50x coverage

Costs

- Biorepositories, sample collection, processing and distribution
- BioObservatories
- Sequencers
- Genome Sequencing and Annotation
- Diversity and RNA sequencing
- IT and Bioinformatics
- Total Estimated Cost: ~\$4.3 billion

Cost of Human Genome Project: \$2.7 billion 1991 dollars (\$4.814 billion in 2017 dollars)

- Cost of B2 bomber program (through 2004) = \$44.75 billion (1997 dollars)
 - \$2.13 billion per aircraft (\$3.1524 billion in today's dollars)



EBP WILL SPUR INNOVATION IN TECHNOLOGY

- Sample collection
- Sample identification
- Sample sequencing

Source: "Big Data: Astronomical or Genomical?" PLoS Biology, 7, 2015

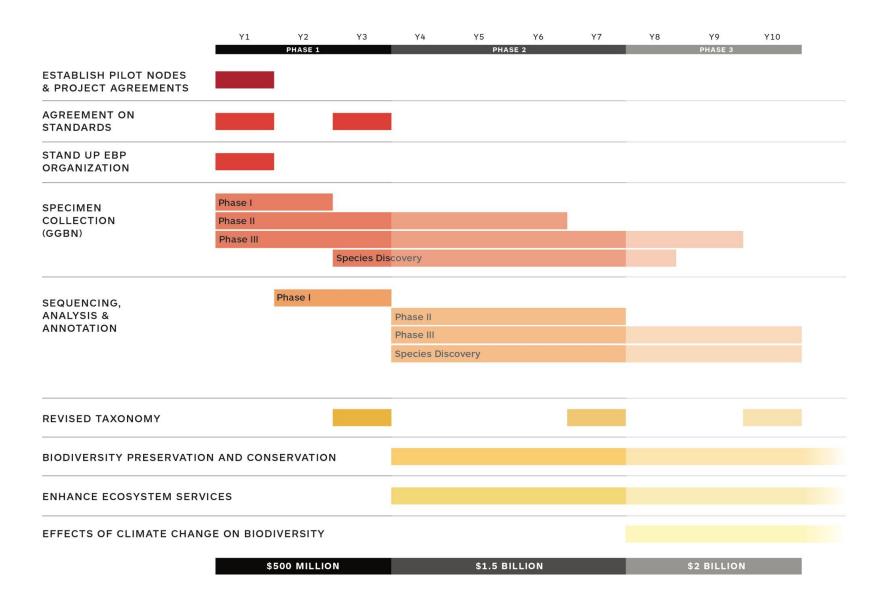
EBP WILL INSPIRE THE NEXT GENERATION OF SCIENTISTS

GLOBAL NETWORK OF COMMUNITIES

Open access

Compliance with the Convention on Biological Diversity and the Nagoya Protocol on Access and Benefit Sharing (ABS)

International EBP working group **already established.**


Major Role For Brazil

- ~10% of world's biodiversity
- Curated collections
- Well-established science infrastructure
- Global research collaborations

PROJECT ROADMAP (2018 launch)

Funding Sources for the EBP

National funding agencies (global)

- Frame as a global grand challenge
- Most US federal agencies would have some stake in this project

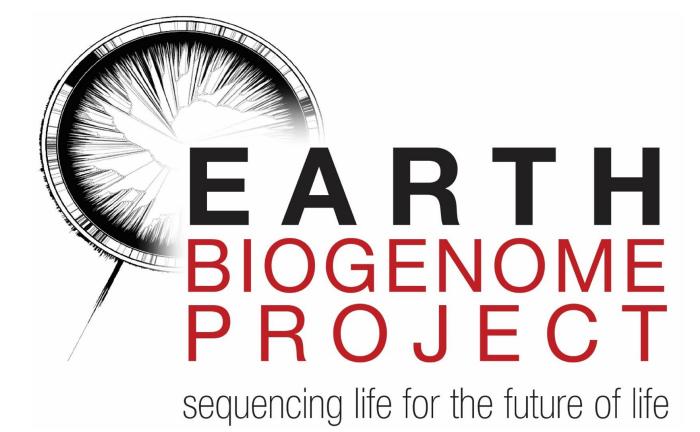
Private Corporations

- Technology providers have a stake
- Ecosystem health has economic value

Foundations

- Attractive as a big idea whose time has come
- Preserving biodiversity has great impact on culture and the environment

Crowd sourcing and funding


- Citizen science model (e.g., Kittybiome; CALeDNA)
- Commemorative sponsorship

EBP: the most ambitious project in the history of biology

- First true global mega-genome sequencing project
- Involve thousands of scientists and millions of citizens around the world
- Very Big Data (exceeding I Exabyte) will drive new computational architectures, methods and models
- Revolutionize our understanding of biology
- Radically improve conservation efforts
- Create new resources for agriculture, medicine and ecosystem services

