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Chapter 1

Artificial Intelligence: A Primer for
Legal Practitioners

Hany Farid

I. Introduction

The technology revolution—spanning from (approximately) 1950 to today—
has seen several distinct stages. The initial personal computer revolution
spanned some five decades, from the development of large, centralized
computers in 1950 to 2000, when more than half of U.S. homes had a
personal computer. The next wave of the technology revolution spanned 25
years, from 1989 with Tim Berners-Lee’s conception of the underlying
protocols powering today’s World Wide Web to 2015, when approximately
half of the world’s population was online. The mobile revolution took a mere
five years, from the introduction of the first Apple iPhone in 2007 to 2012,
when the number of mobile phone users exceeded half of the world’s
population. In this most recent AI-powered wave of the technology
revolution, OpenAI’s ChatGPT went from zero to one billion users in only
one year.

Fifty, twenty-five, five, one year(s): the technology revolution is
accelerating with little sign of slowing.

The term “artificial intelligence” (AI) is not new. It dates to the 1950s,
when computers weighed thousands of pounds and cost today’s equivalent of
hundreds of thousands of dollars. Through a series of boom-bust cycles, AI
has recently emerged as a significant force in the technology revolution and
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A.

has become increasingly relevant to the legal profession. This chapter will
briefly review AI’s seven-decade history, describe two main branches of AI
(predictive and generative), and examine the potential implications of AI to
our society and justice system.

History of AI

In his seminal 1950 article, the great Alan Turing boldly asked if a machine
could think.1 Acknowledging that “think” and “machine” are difficult to
precisely define, Turing proposed an alternative way to ask this question.
What eventually became known as the Turing test has a human evaluator
interacting through a text-based conversation with a human and a computer,
the identities of which are concealed from the evaluator. If the evaluator
cannot reliably distinguish the machine from the human, the machine passes
the test, a proxy for achieving humanlike thinking. Turing boldly argued that
machines will be able to—by this definition—think.

Building on Turing’s seminal article, John McCarthy, then an assistant
professor of mathematics at Dartmouth College, coined the term “artificial
intelligence” and organized a small summer workshop in 1956 with the goal
of considering “the conjecture that every aspect of learning or any other
feature of intelligence can in principle be so precisely described that a
machine can be made to simulate it.”2

What would follow would be two decades of boom and bust for the field
of AI with ambitious efforts falling spectacularly short of bold claims of
what machines would soon be capable of. The 1980s saw a resurgence in AI
thanks to advances in artificial neural networks (see Section II.B), but by the
1990s AI again fell out of favor, failing to deliver on its promises. To this
point in its history, the field of AI was largely focused on knowledge-driven
solutions in which, as McCarthy described it, machines would be directly
imbued with rules and knowledge to simulate human intelligence. By the
1990s, however, the field of machine learning (ML) emerged from AI, in
which a more data-driven approach was taken where a machine analyzes
large amounts of relevant data from which it learns the necessary patterns
and knowledge. That is, the knowledge is extracted from data as opposed to
programmed directly.

Following another decade-long AI winter, two seminal events provided a
glimmer of hope for AI and ML. IBM’s Deep Blue in 1997 defeated world
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B.

champion Garry Kasparov in a six-game chess match, winning three games to
Kasparov’s two, with one draw (by comparison, just a year earlier,
Kasparov defeated Deep Blue, 4–2). Because chess has clearly defined rules
and well-defined objectives, it is perhaps not surprising that a machine
prevailed given its massive amounts of computing power allowing it to
explore and consider many more moves than humanly possible. However,
when IBM’s Watson in 2011 soundly defeated two of the all-time biggest
champions on the TV quiz show Jeopardy!, the machine exhibited a stunning
ability to reason in a less structured setting about human language and
knowledge.

By 2015, the current AI revolution was well under way. This revolution
is being powered by access to massive and powerful computing
infrastructure in the form of cloud computing, significant mathematical and
algorithmic breakthroughs in machine learning, and access to more than a
decade’s worth of data (text, image, video) digitized and uploaded for
anyone—including machines—to consume and learn from.

Overview

Arguably today’s use of the term “AI” is not faithful to Turing’s and
McCarthy’s conception of machine intelligence. Most of what today is
termed AI is more akin to data-driven ML. For expedience, however, I will
continue to use the term “AI” to describe this broad field, which
encompasses a range of different computational techniques.

I will describe two distinct branches within AI. The first, predictive AI,
embodies a class of techniques for extracting patterns from data for the
purpose of categorizing or characterizing data. This can range from
diagnosing cancer from a CT scan to recognizing people in images and
predicting who may default on a loan or recidivate if released on bail.
Predictive AI is probably closest to what Turing and McCarthy envisioned—
machines making humanlike decisions or analyses. The second, generative
AI, embodies a class of techniques for creating content (text, audio, image, or
video) that mimics the human content-creation process. Generative AI is
particularly intriguing because of its ability to mimic not just human
decision-making but human creativity, which was thought—until recently—to
be well out of reach of machines.
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II. Predictive AI

A predictive AI model takes as input diagnostic data and outputs a
prediction. This prediction can be characterized as continuous or categorical.
A continuous model may, for example, take as input the current
unemployment rate, average temperature, and current number of citywide
felonies and predict how many felonies will be committed in the next month.
A categorical model may take as input an individual’s employment status,
marital status, and previous number of convictions and predict if they are at
high risk of committing a felony in the next month. The former is continuous
because the model’s output is any numeric value, whereas the latter is
categorical because the model’s output is one of only two values, yes/no.

Building a continuous or categorical predictive-AI model typically
follows three distinct steps involving inputs and outputs: (1) collect training
data consisting of previous observations of the desired paired input/output
relationship—this data is split into a training set and an evaluation set, each
used in the next two steps; (2) train the computational model to learn the
desired input/output relationship specified in the training set; and (3)
evaluate the model to determine how well the model generalizes to
previously unseen data in the evaluation set.

Evaluation of a continuous model is typically reported as mean absolute
error (MAE). The MAE does not distinguish between over- and
underpredicting. The mean signed difference (MSD) can be used alongside
the MAE to reveal a potential bias in the model.

If, for example, a trained model predicts the number of monthly felonies for the first quarter of a year
to be 150, 200, and 80 and the actual counts are 180, 170, and 120, then the MAE is 1/3 × (|180 −
150| + |170 − 200| + |120 − 80|) = 33.3, where | ·| corresponds to absolute value. In other words, the
average monthly prediction of the model is expected to be accurate to within plus or minus 33.3
felonies (or a 21 percent error relative to the average monthly felony rate).

The MSD for the previous example is 1/3 × ((180 − 150) + (170 − 200) + (120 − 80)) = 13.3,
revealing a tendency of the model to underpredict the number of felonies (if this MSD was less than
zero, then the model would be biased to overpredict).

Evaluation of a categorical model is typically reported in terms of
overall accuracy and in terms of false positive and false negative rates. For
predicting if an individual is likely to commit a felony in the next month, the
overall accuracy specifies how many individuals in the dataset are correctly
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1.

classified. If we refer to the classification of high risk as a “positive,” then
the false positive rate specifies how many individuals were incorrectly
classified as being high risk (i.e., they did not commit a felony), and the false
negative rate specifies how many individuals were incorrectly classified as
low risk (i.e., they did commit a felony). While overall accuracy is an
important evaluation metric, these false positive and negative rates are
critical, as they characterize the nature and consequence of the model’s
mistakes.

For both continuous and categorical models, it is important to report both
training and evaluation accuracy as a measure of how well a trained model
will generalize to new data. Importantly, however, because the training data
and evaluation data are typically pulled from the same overall dataset,
generalization on the evaluation data does not necessarily imply that the
model will generalize once deployed in the wild. For example, if the model
used to predict if a person will commit a felony in the next month was trained
on only one narrow demographic, then it is likely to fail to generalize to
different demographics. It is critical, therefore, that the assessment of a
model’s accuracy also be determined by the size and diversity of the training
and evaluation datasets.

Predictive models range in computational complexity from techniques
dating back to the early 1800s to more modern techniques. The next two
sections describe the computational methodology underlying representative
examples of these predictive models, along with general guidelines for
assessing their reliability. The first class of regression techniques described
next are not generally categorized as AI but form the basis for the description
of artificial neural networks that form the basis of many AI-based predictive
models.

Regression

Continuous

Consider a continuous model to predict the number of daily citywide
shooting victims from the maximum daily temperature. Shown in Figure
1.1(a) is the relationship between these two variables collected over a
random sampling of 50 days (i.e., each data point corresponds to a single
day). We seek a model that captures the relationship in this data.
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The simplest model is a linear model that relates the temperature (t) to
the number of shootings (s) through a two-parameter equation of a line: s = at
+ b, where the model parameters a and b correspond to the slope and
intercept of a line. The model parameters are estimated by finding the values
of a and b that minimize the mean distance between the line and the data.
With an appropriate distance metric, this estimation—termed linear
regression—can be done using standard software and with no more
computing power than found on any laptop.

Figure 1.1: Continuous-valued linear regression in which the daily number of shooting victims is
predicted from the daily maximum temperature using (a) a first-order linear model (gray line), (b) a first-
order linear model (gray line) and second-order parabolic model (dashed curve), and (c) an overfitted
20th-order polynomial model (gray curve). These data are synthetically generated for the purpose of
illustration and do not correspond to real statistics.

The gray line shown in Figure 1.1(a) is the resulting fitted model. With
the model parameters (a, b) estimated, the number of shootings s on a given
day can be predicted from the expected maximum temperature t as s = at + b.

Consider now the slightly more complex relationship between
temperature and shootings shown in Figure 1.1(b), in which the number of
shootings begins to decrease at around 75°F. A linear model (solid gray line)
does a poor job of capturing the relationship, underestimating the number of
shootings at around 50°F and overestimating around 100°F and beyond. This
data can be better modeled with a higher-order model with three parameters
(a parabolic model) of the form s = at2 + bt + c. The same regression
techniques used to estimate the linear model are used to estimate the
parabolic model. Shown as a gray dashed curve is the estimated model that
more accurately captures the underlying data.
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2.

Generally speaking, the addition of more model parameters improves the
ability of the model to capture more complex patterns in the data. Care,
however, must be taken to ensure that increasingly larger models do not
overfit to the data. The data shown in Figure 1.1(c), for example, is fitted
with a 20th-order polynomial (a line is a first-order polynomial, and a
parabola is a second-order polynomial). Because of a dearth of data around
25°F, the model is highly unreliable in this region, as it has been overfitted to
the remaining data (note that the simpler model in panel (b) does not overfit
to the data in the same way). Notice also that the model struggles to
extrapolate beyond the provided temperature range, with erratic predictions
beyond 110°F.

In the previous examples, only one input (max daily temperature) was
correlated against the desired predicted variable (daily shooting victims).
Linear regression can be used to model the relationship between any number
of inputs and the desired predicted variable.

Linear regression, dating back to the early 1800s, is extremely well
understood both mathematically and computationally and has been widely
deployed across the sciences and social sciences. It is, therefore, highly
desirable in terms of its simplicity and explainability. The drawback of this
method is that unlike more modern techniques (see Section II.B), linear
regression may not be able to extract highly complex patterns in data.

Categorical

Consider now a categorical model to predict the likelihood that an
individual, if released on bail, will commit a crime in the next six months
based on their total number of prior convictions. Unlike the continuous model
in the previous section that predicted a numeric value, this model’s output is
only one of two values: yes/no.
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Figure 1.2: Categorical logistic regression in which the chance of recidivating after arrest is predicted
from the number of prior convictions using (a) a first-order linear model, (b) a step function that forces
the output of the linear model to be 0 or 1, and (c) a sigmoidal function that forces the output of the
linear model to be bounded between 0 and 1, interpretable as a probability of recidivating. These data
are synthetically generated for the purpose of illustration.

As before, we begin with a historical dataset in which defendants
released on bail are tracked for six months to determine who does and does
not recidivate and how this data correlates to the number of prior
convictions.

Shown in Figure 1.2(a) is the relationship between these two variables
collected for 50 individuals in which recidivism is encoded with a value of
1 and a lack of recidivism is encoded with a value of 0. We can, as
described in the previous section, employ a linear model that relates number
of prior convictions (p) to recidivism (r) through a two-parameter equation
of a line: r = ap + b, where the model parameters a and b correspond to the
slope and intercept of a line. This continuous model (gray line), however,
generates arbitrary numeric values, whereas we seek a yes/no (1/0) from the
categorical model.

By passing the output of this continuous model through a step function,
Figure 1.2(b), we can force all values less than a threshold to be 0 and all
values greater than this threshold to be 1. The model that combines a
continuous linear model with this step function can be directly trained using
well-understood techniques—termed logistic regression. The model is
trained by finding the parameters that maximize the classification accuracy
for individuals who do and do not recidivate. As with the previous linear
regression, this estimation can be performed using standard software and
with no more computing power than found on any laptop.

©2024 by the American Bar Association. Reprinted with permission. All rights reserved.  
This information or any portion thereof may not be copied or disseminated in any form 
or by any means or stored in an electronic database or retrieval system wihtout the express 
written consent of the American Bar Association. 



B.

An alternative formulation passes the output of a continuous model,
Figure 1.2(a), through a function with a gentler transition (termed a sigmoidal
function), Figure 1.2(c). This approach has the benefit of forcing the model to
generate—to the question of recidivism—a value bounded by 0 (no) and 1
(yes) with intermediate values between 0 and 1 corresponding to a
probability of recidivating. With respect to the data shown in Figure 1.2(c),
for example, a defendant with between zero and three prior convictions will
confidently be predicted as unlikely to recidivate (the model’s output is 0), a
defendant with greater than seven prior convictions will confidently be
predicted as likely to recidivate (the model’s output is 1), and in between at
five priors, the likelihood of recidivating is 50 percent (the model’s output is
0.5). Although this model generates a range of numeric values, unlike the
continuous model in Figure 1.2(a), these values are bounded between 0 and
1, and the numeric values can therefore be interpreted as a likelihood of the
predicted variable.

In the previous example, only one input variable was correlated against
the desired predicted variable. Logistic regression can be used to model the
relationship between any number of inputs and the desired predicted
variable.

This approach is categorized as supervised learning because it is
explicitly trained on known input (e.g., convictions) and output (e.g.,
recidivism) data. By comparison, a class of techniques termed unsupervised
learning begins with unlabeled data where the output variable is unknown
and then automatically clusters the data into two (or more) categories to learn
the relationship between the input variable and this learned categorization.

Like linear regression, logistic regression is extremely well understood
both mathematically and computationally and has been widely deployed
across the sciences and social sciences. It is, therefore, highly desirable in
terms of its simplicity and explainability. The drawback of this method is that
unlike more modern techniques (described next), logistic regression may not
be able to extract highly complex patterns in data.

Artificial Neural Networks

The grayed portion of Figure 1.3 is a graphical depiction of a categorical
model consisting of one output (y) and two inputs (x1, x2) of the form y =
w1x1 + w2x2 + w3 followed by a sigmoidal function that forces the output y to
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be bounded between 0 and 1 (see also Figure 1.2). As described in Section
II.A.2, the model parameters (w1, w2, and w3) can be estimated using logistic
regression.

The grayed portion of Figure 1.3 also represents a perceptron (the
simplest form of an artificial neural network (ANN)). Conceived of in 1958,
the perceptron3 is a categorical model (see Section II.A.2) in which the
relationship between the input and output remains the same, but the way in
which the model parameters are estimated is different. Because the
underlying model is the same as logistic regression, the perceptron can
struggle to capture complex patterns in the training data.

However, two or more perceptrons combined as shown in Figure 1.3
have been found to have more inference power. In this multilayer perceptron,
the inputs are first fed into two perceptrons with model parameters w1, w2,
w3 and w4, w5, w6. The outputs of these perceptrons are then fed into a third
perceptron with model parameters w7, w8 to yield the output z. The entire
model consists of all eight of these parameters.

This combination of simpler models has proven to be surprisingly
effective at learning complex patterns. Shown in Figure 1.3 is a tiny ANN by
comparison to today’s networks with millions to billions of parameters (the
term “deep learning” refers to neural architectures with a large number of
layers). As ANNs have grown in size (measured in terms of numbers of
parameters) and novel architectures (how the inputs are combined and
recombined), they have also grown in their ability to extract increasingly
more complex patterns relating the inputs to the desired output(s). Today’s
ANNs, for example, are capable of seemingly human-level face recognition,
interpreting diagnostic medical images, and traffic flow prediction. The
downside of ANNs is that the estimation of the model parameters requires
more complex algorithmic optimization, more computational power, and
more training data.
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Figure 1.3: The grayed portion is a graphical depiction of a simple three-input, one-output perceptron
of the form y = w1x1 + w2x2 + w3. Three (or more) perceptrons can be combined to form a multilayer
perceptron (also known as an artificial neural network (ANN)).

The general trend with all predictive models (from regression to ANNs)
is that the larger the model, the more data is required to produce reliable
models. As a very rough guideline, a typical rule of thumb calls for 10 to 100
data points for each model parameter. With billions of parameters, a typical
ANN needs massive amounts of data to ensure that it does not overfit to its
training data and thus will not be able to generalize when deployed (see, for
example, Figure 1.1(c)). In addition, this training data needs to be
representative of the data that the deployed model will eventually encounter.
A common limitation of a trained ANN is that it struggles to generalize to
data not represented in the training or validation datasets. For example,
because white male faces have traditionally been overrepresented in large
face datasets, ANN-powered face recognition has historically been less
accurate when classifying women or people of color.4

As ANNs have grown in size, datasets have correspondingly grown. As a
result, it has become increasingly more difficult to verify the integrity and
appropriate representation of these massive datasets. This complexity can be
partially alleviated using foundation models that are trained on large and
diverse datasets so that they can be applied in a wide range of applications.5
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Foundation models supported by large datasets have, therefore, become
increasingly important in AI.

Case Study: Recidivism

Over the past two decades, automated risk assessment has become more
common in the criminal justice system. A common use case asks whether
someone with a criminal offense will recidivate at some point in the future.
These tools rely on an individual’s criminal history, personal background,
and demographic information to make these risk predictions. One widely
used criminal risk assessment tool, Correctional Offender Management
Profiling for Alternative Sanctions (COMPAS, Northpointe), has been in use
since 2000.

In May 2016, writing for ProPublica, Angwin et al.6 analyzed the
efficacy of COMPAS in the pretrial context on over 7,000 individuals
arrested in Broward County, Florida, between 2013 and 2014. The analysis
indicated that the predictions were unreliable and racially biased. The
authors found that COMPAS’s overall accuracy for white defendants is 67.0
percent, slightly higher than its accuracy of 63.8 percent for black defendants
(and only somewhat better than chance performance of 50 percent on this
particular dataset). The mistakes made by COMPAS, however, affected black
and white defendants differently: black defendants who did not recidivate
were incorrectly predicted to reoffend at a rate of 44.9 percent, nearly twice
as high as their white counterparts at 23.5 percent; and white defendants who
did recidivate were incorrectly predicted to not reoffend at a rate of 47.7
percent, nearly twice as high as their black counterparts at 28.0 percent. In
other words, COMPAS appears to favor white defendants over black
defendants by underpredicting recidivism for white defendants and
overpredicting recidivism for black defendants.

What is peculiar about this racial asymmetry is that the predictive model
does not consider the race of the defendant as input. Because the makers of
COMPAS have not revealed the details of their predictive model, it is not
immediately obvious why their model is racially biased. Indeed, a common
criticism of COMPAS and many AI tools is that their algorithms are a “black
box,” and so there is limited ability to understand why or how they are
biased.
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3.

Absent transparency, the only way to discern these biases is through
reverse engineering. Effectively reverse engineering the COMPAS model has
shown that this model reduces to classifying defendants at high risk of
recidivism simply if they have a high rate of prior convictions (i.e., number
of convictions relative to their age).7 While conviction rate may be a
reasonable indicator for risk of recidivism, we also know that asymmetries
throughout the criminal justice system lead to higher policing, arrests,
prosecutions, and convictions for black defendants.8 As a result, the AI
model latched onto prior convictions—a proxy for race—as an indicator for
risk of recidivism probably because no other input data provided a better
indicator.

Overall, these models correctly predict recidivism only 65 percent of the
time and are significantly biased against black defendants. In addition, it has
been shown that these model predictions are no more accurate or less biased
than asking nonexperts to make the same prediction based on a limited
amount of information about a defendant.9 Here, and in general, the
deployment of AI does not guarantee more objective, accurate, or fair
decisions.

This case study provides several important lessons for the deployment of
predictive AI in the criminal justice system and beyond:

Reporting only the overall accuracy of a predictive model can hide
problematic bias. Bias is apparent when the false positives
(incorrectly classifying defendants as high risk) and false negatives
(incorrectly classifying defendants as low risk) are reported and
correlated against different demographic groups.
Even if a predictive model is not provided with specific
demographic information (age, gender, identity, race), demographics
can creep into the model through proxies. It is unlikely, therefore, for
AI models to be entirely blind to protected attributes such as race,
gender, and disability.
As noted earlier, COMPAS is an example of what is termed a black-
box model in which the details of how the model works are opaque
and the explainability of the model is weak. The model does not, for
example, explain why a particular defendant is rated as high or low
risk. By contrast, the reverse engineering performed in the Dressel
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and Farid analysis10 yielded an explainable model in which the
criterion for assessment was accessible. Explainability is important
to understanding the fairness and accuracy of AI-powered decision-
making.
Predictive AI will not necessarily create a utopian future. Instead,
because AI models are trained on historic data, predictive AI is
prone to repeat history.

III. Generative AI

Generative AI embodies a class of techniques for creating content (text,
audio, image, or video) that mimics the human content-creation process.11

This section describes how these techniques work and how (and if) AI-
generated content can be distinguished from real content.

Language

Ask ChatGPT just about anything and you will receive a surprisingly
coherent—if not always accurate—response. ChatGPT is a form of
generative AI commonly referred to as a large language model (LLM).12 The
first, and perhaps most important, thing to understand about LLMs is that they
build a response one word at a time. For example, when asked, “Harley-
Davidson is . . . ,” ChatGPT will compare this prompt to its internal
representation of billions of webpages and documents scraped from the
internet for a similar text fragment and add a likely next word: “a.” This
process is repeated adding “legendary,” followed by “American,”
“motorcycle,” and so on to produce a response like “Harley-Davidson is a
legendary American motorcycle brand known for its distinctive design, deep
cultural impact, and a loyal following among enthusiasts around the world.”

At each step, ChatGPT computes a rank-ordered list of possible next
words and selects a word that is likely, but not necessarily the most likely. It
has been observed—although not fully understood—that by adding
randomness to which top-ranked word is selected, ChatGPT produces more
interesting results (this is why ChatGPT will produce different responses
when repeatedly prompted with the same question).

What is particularly surprising about ChatGPT is that it produces
coherent responses even though it is generating a response one word at a time
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with no explicit knowledge of what is being asked: ChatGPT is, in a sense, a
sophisticated autocomplete similar to your email or text messaging app
autocompleting a word for you as you are typing a message.

A critical difference, however, between a simple autocomplete and an
LLM is that the LLM represents text differently, allowing it to match text
fragments based not on identical words but on a transformed representation
of the words that appears to capture something akin to meaning. For example,
the text fragments “Harley-Davidson is a legendary American motorcycle
brand . . . ,” “The legendary American motorcycle brand Harley-Davidson . .
. ,” and “Famed U.S.-based Harley motorcycles . . .” share a common
representation in the LLM-transformed representation of text fragments.

This word-by-word autocomplete also explains why today’s LLMs are
prone to fabricating facts—they simply do not (yet) have a mechanism to
fact-check their responses. If, for example, ChatGPT scraped a large number
of documents that claim that Harley-Davidson is a Canadian company, then
ChatGPT would happily regurgitate this falsehood.

ChatGPT, and LLMs in general, is powered by a large neural network
(Section II.B) that is designed to handle language as input and output—a so-
called transformer. The model is trained on a large corpus of text, mostly
scraped from a variety of websites (in many cases in violation of a site’s
terms of service and/or copyright law—a conversation, no doubt, for another
time). The model begins by transforming a text fragment into a numeric
representation—a so-called embedding. The model output consists of
approximately 50,000 numeric values, each corresponding to a word, and
with each numeric output value corresponding to the likelihood that the
corresponding word follows the input text fragment. The large corpus of
training text is used to train the model weights. Once the model is trained, a
text fragment (e.g., “Harley-Davidson is a legendary . . .”) is provided to it
as input, and the model then outputs a rank ordering of likely next words,
settling on “American” as the next word in the sequence.

As previously discussed in Section II.B, the general trend has been that
larger networks lead to more powerful AI models. Over four iterations,
ChatGPT has grown in size from 1.5 billion model parameters in GPT-2 to
175 billion (GPT-3), 350 billion (GPT-3.5), and just over 1 trillion
parameters (GPT-4). There is good reason to believe that future versions
with even more parameters will exhibit increasingly more sophisticated
behaviors.
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B.

1.

Artificial general intelligence (AGI) corresponds to a machine being
capable of performing any intellectual task performed by humans. It is
unclear if the path to AGI (if it exists) passes through LLMs or if
fundamentally different approaches to AI will be required to achieve true
AGI. Regardless, today’s LLMs exhibit hints of human-level thinking as
conceived of by Turing and McCarthy.

Visual

Before the more respectable term “generative AI” took root, AI-generated
audio/visual content was referred to as deepfakes, a term derived from the
moniker of a Reddit user who in 2017 used the then-nascent AI-powered
technology to create nonconsensual sexual imagery. This section will
describe how deepfake images and videos are constructed and different
interventions for detecting them.

Image

A generative adversarial network (GAN)13 is a common computational
technique for synthesizing images of people, cats, planes, or any other
category: generative because these systems are tasked with generating an
image; adversarial because these systems pit two separate components (the
generator and the discriminator) against each other; and network because the
computational machinery underlying the generator and discriminator is a
neural network (see Section II.B).

StyleGAN14 is one of the most successful systems for generating realistic
human faces. When tasked with generating a face, the generator starts by
laying down a random array of pixels and feeding this first guess to the
discriminator. If the discriminator, equipped with a large database of real
faces, can distinguish the generated image from the real faces, the
discriminator provides this feedback to the generator. The generator then
updates its initial guess and feeds this update to the discriminator in a second
round. This process continues with the generator and discriminator
competing in an adversarial game until an equilibrium is reached when the
generator produces an image that the discriminator cannot distinguish from
real faces.
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The various versions of StyleGAN are open source, with a fully
functioning version of StyleGAN2 available at
https://thispersondoesnotexist.com, where each page reload yields a new
synthesized face. Shown in the top row of Figure 1.4 are representative
examples of StyleGAN2-generated faces.

A recent perceptual study15 found that when asked to distinguish between
a real and AI-generated face, participants performed no better than chance. In
a second study in which participants were provided with training prior to
completing the task, their performance improved only slightly. AI-generated
faces are highly realistic and extremely difficult to perceptually distinguish
from reality.

Although highly realistic, GANs do not afford much control over the
appearance or surroundings of the synthesized face. By comparison, more
recent text-to-image (or diffusion-based) synthesis affords more rendering
control. Trained on billions of images with an accompanying descriptive
caption, the model progressively corrupts each training image until only
visual noise remains. The model then learns to denoise each image by
reversing this corruption. This model can then be conditioned to generate an
image that is semantically consistent with a text prompt like “a person on a
university campus,” as shown in the bottom row of Figure 1.4.

Figure 1.4: AI-generated images created by a generative adversarial network (top) and text-to-image
synthesis (bottom) with the prompt “a person on a university campus.”
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2. Video

Although there are several different incarnations of video deepfakes, two of
the most popular are so-called lip sync and face swap.

Given a reference video of a person talking and a new audio track (either
AI-generated or impersonated), a lip-sync deepfake generates a new video
track in four basic steps: (1) a neural network is trained to learn a mapping
between an audio track and an outline of the mouth shape consistent with the
audio; (2) a detailed image of the mouth region including nose, cheeks,
mouth, and chin is synthesized; (3) the synthesized mouth region is blended
onto a retimed reference video modified so that the head motion is consistent
with the audio (e.g., the head is typically still when there is a pause in the
speech); and (4) the jaw line is warped to match the shape and position of the
chin. Using this technology, a video can be altered to make someone say
things they never did.

A face-swap deepfake is a modified video in which one person’s
identity, from eyebrows to chin and cheek to cheek, is replaced with another
identity. For each video frame of the original identity A, a video frame is
synthesized where A’s face is swapped with a new identity B. The creation of
this deepfake consists of three basic steps: (1) an image of the identity B is
synthesized in the same head pose and expression as A; (2) any missing facial
or hair pixels that arise from the synthesis step are filled in; and (3) the
synthesized face B is blended into the original frame, replacing the identity of
A. Repeating this process frame after frame yields a video in which one
person’s identity is swapped with another. This technique is at its best with
access to many images of the co-opted identity B with different facial
expressions and head poses but can also be performed from only a single
image of B.

Several open-source implementations for both lip-sync and face-swap
deepfakes are freely available online, in addition to numerous commercial
implementations.

Today’s deepfake videos animate a person from the neck up. We are,
however, already seeing early examples of full-body deepfakes in which a
person’s entire body and movement can be manipulated. Although these
videos currently have fairly obvious visual artifacts, this full-body
puppeteering will soon be mastered, leading to even more realistic
deepfakes. Adding to the realism, a person’s voice can be cloned from only a
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3.

4.

minute or two of prerecorded audio. This means that a person’s face and
voice can be fully co-opted.

Although computationally more demanding, face-swap deepfakes can
also be created in real time, meaning that you will soon not know for sure if
the person at the other end of a video call is real or not.

Guardrails

Some—but not all—commercial generative-AI services place semantic
guardrails on user-generated prompts, making it difficult to create obviously
abusive content that is sexually explicit or depicts gore. On the other hand,
dozens of websites market services with the explicit purpose of inserting a
woman’s likeness into sexually explicit material. Dozens of websites allow
for the creation of lip-sync deep-fakes already being used to perpetrate
financial fraud and push disinformation campaigns. And several commercial
voice cloning services require nothing more than checking a box asserting
permission to use the voice in the uploaded audio.

While some regulatory or liability pressure might help rein in this Wild
West of generative AI, the plethora of open-source models will be nearly
impossible to control.

Real or Fake?

If past trends continue, it is reasonable to predict that all forms of generative
AI will eventually be perceptually indistinguishable from reality. The field of
digital forensics16 develops computational techniques to detect manipulated
media. There are two broad categories for detecting manipulated or AI-
generated content: reactive and proactive.

Reactive techniques analyze various aspects of an image or video for
traces of implausible or inconsistent properties. For example, shown in
Figure 1.5 is a simple AI-generated image created with the text prompt “three
boxes on a sidewalk on a sunny day.” As expected for a sunny day, the
generative AI created an image with cast shadows. The shape and position of
these shadows can be useful in a forensic analysis.

The geometry of cast shadows is dictated by the 3D shape and location of
an object and the illuminating light. This relationship is wonderfully simple:
a point on an object, its corresponding shadow, and the light source
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responsible for the shadow all lie on a single line. Because straight lines in
the 3D scene are imaged to straight lines in the 2D image, this constraint
holds in the image. Locate any point on a shadow and its corresponding point
on the object and draw a line through them. Repeat for as many clearly
defined shadow and object points as possible, and for an authentic image, all
the lines will intersect at one point—the location of the illuminating light. As
shown in Figure 1.5, these object-shadow constraints do intersect at a single
point for the central box (solid lines) but not the flanking boxes (dashed
lines), revealing a physically implausible scene in this AI-generated image.

Figure 1.5: An AI-generated image and a forensic analysis of the physical plausibility of the shadows.
The five shadow-object constraints do not intersect at a single point, revealing a physically implausible
scene.

The benefit of these types of reactive forensic techniques is that they are
applicable to a broad category of content. The drawback, however, is that
they often require the assistance of an experienced analyst.

Proactive techniques, on the other hand, operate at the source of content
creation, embedding into or extracting from an image or video an identifying
digital watermark or signature.

A simple watermark can be added to a digital image by, for example, tweaking every tenth image
pixel so that its color (typically encoded as a number in the range of 0 to 255) is even valued. Because
this adjustment is so minor, the watermark is visually imperceptible. And, because this periodic pattern
is unlikely to occur naturally, it can be used to verify an image’s provenance.

The ideal watermark is one that is imperceptible and resilient to basic
manipulations like cropping or resizing. Although the pixel manipulation just
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described is not resilient to, for example, image resizing, many robust
watermarking strategies have been proposed that are resilient—though not
impervious—to attempts to remove them.

The benefit of watermarks is that identifying information is directly
associated with a piece of content before it is released into the wild, making
identification fast and easy. The drawback is that watermarks are vulnerable
to attack, where an adversary can digitally remove the watermark while
leaving the underlying content largely intact.

Therefore, in addition to embedding watermarks, a creator can extract an
identifying fingerprint from the content and store it in a secure centralized
ledger. This fingerprint is also referred to as a perceptual hash.17 The
provenance of a piece of content can then be determined by comparing the
fingerprint of any image or video to the fingerprint stored in the ledger. Both
watermarks and fingerprints can be made cryptographically secure, making
them difficult to forge.

This type of watermarking and fingerprinting is equally effective for
proactively tracking AI-generated and human-recorded content but will
require integration into mobile devices and as many generative-AI services
as possible (see https://contentauthenticity.org for such an industry-led
effort).

Although not perfect, these combined reactive and proactive technologies
will make it harder to create a compelling fake and easier to verify the
integrity of real content. The creation and detection of manipulated media,
however, are inherently adversarial and both sides will continually adapt,
making distinguishing the real from the fake an ongoing challenge.

IV. Discussion

Writing a book chapter on technology is often fraught with concerns that the
content will soon be outdated. This chapter is no exception, particularly at a
moment when AI appears to be experiencing a real renaissance. We may
soon see entirely new methodologies for predictive- and generative-AI
methodologies as laid out in Sections II and III, and we may see entirely new
applications of AI. However, the basic methodologies outlined here—linear
regression, logistic regression, ANNs, GANs, and diffusion—are likely to
persist in some form in the coming years. Even if these methodologies
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change, the basic structure of AI techniques, and the cautionary notes, most
likely will not.

Moving forward, and mostly independent of the specific underlying
computational machinery powering AI, I contend that the legal profession
should both embrace and be cautious of the use of AI. I next enumerate key
takeaways regarding the use (or not) of AI in the legal profession:

Predictive AI can, in theory, be a powerful tool to remove bias in
everything from policing to sentencing. As described in Section II.C,
however, today’s AI-powered tools are trained on historical data that
itself contains various forms of bias. Any historical inequities will,
therefore, be mirrored in the output of predictive AI. The deployment
of predictive AI requires a careful examination of accuracy and
potential bias against different demographic groups.
While ANNs can extract complex patterns in data (Section II.B),
these mostly black-box predictive models offer little in terms of
explainability. That is, it can be difficult to understand why an ANN
predicts a certain outcome. Turning over life-altering decisions to
opaque machines should be of concern to everyone. To this end,
nascent efforts in explainable AI (xAI)18 hold some promise, but
significant breakthroughs are needed before we have a complete
understanding of large ANNs and LLMs.
While some predictive AI models are open source or otherwise
examinable, other commercial models are not. The number of bugs
per 1,000 lines of code is estimated to be between 0.5 and 25, and it
is estimated that even in widely scrutinized code, bugs can remain for
years.19 AI models that are not made open for scrutiny should,
therefore, be of concern to the courts.
Today’s incarnation of large language models like ChatGPT can
easily make up facts, details, and citations (Section III.A). Several
highly publicized cases have already exposed attorneys using an LLM
to write court briefs littered with nonexistent citations. While it is
likely that LLMs will eventually work out this hallucination problem,
in the interim, the courts will need to establish guidelines for how
and when LLMs can be used in court filings.
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Generative AI will complicate the process of authenticating
audio/visual evidence. While 20 years ago photo-editing tools like
Photoshop made it possible for photographic evidence to be
manipulated, skill and time were required to do so convincingly.
Today, however, nearly anyone has access to powerful generative-AI
tools to create and manipulate audio/visual content (Section III.B.1
and III.B.2). In addition, it is now easy for anyone to claim that
audio/video evidence is fake—the so-called liar’s dividend.20 That
is, the mere existence of deepfakes casts a cloud over all
photographic evidence. We will, therefore, need to carefully rethink
how the rules of evidence should be updated to contend with this new
era of generative AI and deepfakes.
More broadly, AI is not a panacea for all that ails us. On the one
hand, AI-powered face recognition can be quite accurate, surpassing
humans in some situations.21 On the other hand, AI is unlikely to
quickly alleviate significant failings in the field of forensic science.22

A recent study, for example, found that a state-of-the-art AI system for
estimating a person’s height and weight from a photograph is no more
accurate than a visual assessment made by a nonexpert.23 The
archetypal Silicon Valley motto of “move fast and break things”
should not be a model for the courts; we must innovate, move
carefully, and not break things.
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