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Abstract

The image of an object can vary dramatically depend-
ing on lighting, specularities/reflections and shadows. It is
often advantageous to separate these incidental variations
from the intrinsic aspects of an image. This paper describes
how the statistical tool of independent components analysis
can be used to separate some of these incidental compo-
nents. We describe the details of this method and show its
efficacy with examples of separating reflections off glass,
and separating the relative contributions of individual light
sources.

1. Introduction

The image of an object can vary dramatically depending
on lighting, specularities/reflections and shadows, and yet
our recognition of objects is amazingly robust despite these
incidental variations. Our visual system seems to separate
the various components that contribute to the formation of
an image, yielding stable and reliable percepts. To facilitate
such tasks as object recognition, visual-based navigation,
and scene segmentation we would like to design computer
systems that have a similar ability to separate the incidental
from the intrinsic aspects of an image.

The combination of incidental and intrinsic components
can often be approximated as a linear mixing process. Un-
der these conditions we show how the statistical tool of in-
dependent components analysis (ICA) can be used to sepa-
rate these components. One commonly occurring example
is the presence of reflections on glass, for example when
viewing a painting framed behind glass (Figure 1). Because
it provides a simple illustration we will focus on the prob-
lem of separating reflections from glass while leaving in-
tact the image of objects behind the glass (see [10, 4, 11, 9]
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Figure 1: Renoir’s On the Terrace, Sheila and Sheila’s
reflection.

for different approaches to removing specular reflections).
We will show later how the same general techniques can be
used to separate the relative contributions of individual light
sources.

Let’s first look more closely at the simple physics of re-
flections from planar surfaces. Shown in Figure 2 is an ide-
alized example of a photograph of a painting behind glass.
The final image is a linear combination of the light reflected
by the painting and the light directly reflected by the glass.
The amount of light at a single point in the image can be
expressed as:

y1 = aP + bR; (1)

whereP andR are the amount of light contributed by the
painting and reflection, anda andb are multiplicative con-
stants. We would like to remove the contribution of the
reflectionR from the imagey1, but the above equation
provides only a single constraint in four unknowns. Ad-
ditional constraints may be added by exploiting the fact that
reflections are partially polarized and that by photographing
through a linear polarizer the relative strength of the reflec-
tions can be adjusted.1 With respect to Equation (1), the

1The polarizer can only completely remove the reflection when the
viewing angle to the glass is at Brewster’s angle, typically a severe angle
resulting in significant geometric distortions [3].
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Figure 2: A photograph of a painting behind glass con-
tains a superposition of the light reflected by the painting
and the light reflected directly off the glass.

linear polarizer has the effect of manipulating the relative
contributions of the painting and reflection. The second im-
age takes the form:

y2 = cP + dR: (2)

The above equation provides another constraint, but two
new unknowns have also been introduced, leaving us with a
total of two constraints in six unknowns, and little hope of
a solution without making further assumptions.

To solve the underconstrained set of equations we make
the modest assumption that the image of the painting and
reflection are independent. Intuitively this means that for
each spatial position the pixel intensity in one image pro-
vides no predictive information about the pixel intensity in
the second image. This is a perfectly reasonable assump-
tion since there is no reason to expect a correlation between
the image of objects behind the glass and the image of ob-
jects reflected by the glass. Given the linear model of image
formation and this assumption of independence we perform
independent components analysis (ICA) to separate the re-
flection from the desired image. In the next section the de-
tails of this statistical technique are outlined, and in the fol-
lowing section several examples of its efficacy are given.

2 Separating Images

The general problem of image separation can be stated
as follows: givenN distinct linear combinations ofN im-
ages determine the originalN images. For our application
we can restrict ourselves to the case of just two images. De-
noting these images in row vector form asx1 andx2, the
linear mixing can be expressed in matrix form as follows:�

y1
y2

�
=

�
a b
c d

��
x1
x2

�

Y = MX; (3)

where the matrixM embodies the linear mixing. Note that
this form is the same as the model of reflections given in

Equations (1) and (2), and that with this model it is assumed
that the linear mixing is uniform over the entire image. The
mixed images inY each contain a linear combination of the
source images inX . Our job is to recover the sources im-
ages from the mixed images. Of course given the full rank
(i.e., invertible) matrixM it would be trivial to estimate the
source images by left multiplying the mixed images with
the inverse mixing matrix,~X = M�1Y . But we don’t typi-
cally know the mixing matrix, so our job will be to estimate
it from the mixed images alone.

Equation (3) provides two constraints in six unknowns
and so cannot be solved without further assumptions. The
first assumption we make is that the pair of source im-
ages are independent. DenotingX1 andX2 as the random
variables from which the pixel intensities of source images
x1 andx2 are drawn, this assumption can be expressed as
P (X1; X2) = P (X1)�P (X2) (i.e., the joint probability dis-
tribution is separable). Although the constraint is expressed
in terms of these continuous random variables we will typi-
cally work with the histograms of sampled images that, be-
cause of the dense sampling, are good approximations to
the continuous probability distributions. The second mod-
est assumption is that the mixing matrixM is full rank.
With these two assumptions the general estimation prob-
lem is known as independent components analysis (ICA) of
which there is a large and varied literature. Early contribu-
tors include [1, 5, 6, 8], and more recently there has been a
renewed interest in the learning community (e.g., [2]). We
present an analytic version of ICA based on higher-order
statistical moments most similar to that of [5]. We pro-
vide a different formulation based on maximizing a series
of error functions and give a simple and intuitive geometric
interpretation of these steps.

We begin by attempting to gain some insight into the
structure of the mixing matrix by decomposing it accord-
ing to the singular value decomposition (SVD):

M = R1SR2; (4)

whereR1 andR2 are orthonormal (rotation) matrices andS
is a diagonal (scaling) matrix. Shown in Figure 3 is a geo-
metric interpretation of the effects of each of these matrices
on the joint probability distribution of the source imagesX .
According to our assumption of independence this distribu-
tion should be separable; for illustration purposes consider
the case when the marginal distributions are uniform, then
the joint distribution is a square (in practice no such con-
straint is imposed on the marginal distributions). The mix-
ing matrix rotates, scales, and again rotates this distribution
transforming the square into a parallelogram. The estima-
tion of the independent source images reduces to determin-
ing how to transform the parallelogram back into a square.
Or more generally, transforming the two-dimensional joint
distribution into a separable product of one-dimensional
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Figure 3: Shown at the bottom left is an idealized joint
probability distribution for a pair of independent images,
where for illustration purposes only the marginal distri-
butions are assumed to be uniform. The linear mixing of
these images, Equation (3), transforms this distribution,
via a rotation, scaling, and rotation, from a square into a
parallelogram (left). The goal of ICA is to transform this
parallelogram back into a square, yielding the original in-
dependent images (right).

distributions. As Figure 3 suggests this may be accom-
plished by applying the opposite rotations and scalings in
reverse order.

The first step in separating the images is to apply a rota-
tion that aligns the long and short axis of the parallelogram
with the primary axis. These are easily determined since
they are the axes with the maximal/minimal variance. As-
suming zero mean measurements, the variance at an arbi-
trary orientation is:

E(�1) =

NX
i=1

�
( y1(i) y2(i) )

�
cos(�1)
sin(�1)

��2
: (5)

The axis of maximal variance is determined by finding the
angle�1 that maximizes this error function (Figure 4). The
axis of minimal variance is orthogonal to this axis oriented
at�1 � �=2. These axes correspond to the principle axes as
determined by principle components analysis (PCA). This
error function can be maximized analytically by differenti-
ating with respect to�1, setting equal to zero and solving,

to yield:

�1 =
1

2
tan�1

"P
N

i=1
r2(i) sin(2�(i))PN

i=1
r2(i) cos(2�(i))

#
; (6)

where, because it takes on a particularly simple form, the
solution is given in polar coordinatesr(i) = y1(i)

2+y2(i)
2

and�(i) = tan�1(y2(i)=y1(i)) (see [7] for details). Then,
the first rotation matrix in the separation is:

~R1 =

�
cos(�1) sin(�1)
� sin(�1) cos(�1)

�
: (7)

Following the first rotation, the now aligned parallelo-
gram needs to be transformed into a diamond (Figure 3).
More precisely, the axes need to be independently scaled
so that the variance is rotationally invariant. The scaling
of each axis is determined by first computing the variance
along the axis of maximal and minimal variance, i.e., the
axis oriented at�1 and�1 � �=2:

s1 =

NX
i=1

�
( y1(i) y2(i) )

�
cos(�1)
sin(�1)

��2
(8)

s2 =

NX
i=1

�
( y1(i) y2(i) )

�
cos(�1 � �=2)
sin(�1 � �=2)

��2
;(9)

and then the scaling matrix is constructed by placing the
inverse variances along the diagonal:

~S =

�
s�1
1

0
0 s�1

2

�
: (10)

Combined, the first rotation and scaling are equivalent to
PCA plus whitening. But notice from Figure 3 that this is
insufficient for separating the mixed images into their inde-
pendent components (the mixed images are only decorre-
lated, a necessary but insufficient condition). A final rota-
tion is needed to separate the independent components.

One approach to the determination of the final rotation is
to find the orientation�2 that maximizes the fourth statisti-
cal moment. The fourth moment at an arbitrary orientation
is given by:

E(�2) =

NX
i=1

�
( y0

1
(i) y0

2
(i) )

�
cos(�2)
sin(�2)

��4
; (11)

wherey0
1

andy0
2

are the result of rotating and scaling the
initial mixed imagesy1 andy2 according to Equations (7)
and (10). This error function cannot be solved analytically,
but the following normalized fourth moment does lend itself
to an analytic solution:

E0(�2) =
1

jjy0
1
jj2 + jjy0

2
jj2

E(�2): (12)
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Figure 4: Shown is the variation in the second moment
(variance) as the joint probability distribution is rotated
and projected onto the horizontal axis (Equation (5)). The
variance is minimal along the short axis and maximal at
the orthogonal orientation.

The axis where the fourth moment is maximal is determined
by finding the angle�2 that maximizes this error function
(Figure 5). As before, we differentiate with respect to�2, set
equal to zero and solve [7] yielding the maximal solution:

�2 =
1

4
tan�1

"PN

i=1
r2(i) sin(4�(i))P

N

i=1
r2(i) cos(4�(i))

#
; (13)

again, for convenience, expressed in polar coordinates. The
final rotation matrix then takes the form:

~R2 =

�
cos(�2) sin(�2)
� sin(�2) cos(�2)

�
: (14)

The estimation of the source imagesX from the mixed
imagesY is now a simple matter of applying the three ma-
trices in Equations (7), (10), and (14):

~X = ( ~R2
~S ~R1)Y: (15)

There are two inherent ambiguities in the recovery of the
independent components. First is the ordering ambiguity,
that is, the following mixings are indistinguishable:�

a b
c d

��
x1
x2

�
=

�
b a
d c

��
x2
x1

�
: (16)

Second is a scale ambiguity, that is, the independent compo-
nents can only be determined within a scale factor since, for
example, the following mixings are also indistinguishable.�

a b
c d

��
x1
x2

�
=

�
a=
 b=�
c=
 d=�

��

x1
�x2

�
: (17)

For our purposes, the first of these ambiguities is not criti-
cal, and the second is dealt with by scaling the final images
to fill the full intensity range.
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Figure 5: Shown is the variation in the fourth moment as
the joint probability distribution is rotated and projected
onto the horizontal axis (Equation (12)). The fourth mo-
ment is maximal at the orientation required to transform
the diamond into a square, yielding the independent im-
ages.

3 Separating Reflections

In our first experiment we photographed a painting
framed behind glass with the reflection of a mannequin
(“Sheila”). The painting with reflection was photographed
twice through a linear polarizer oriented so that the reflec-
tion was maximized, and then at the orthogonal direction
to minimize the reflection. Note that even at the minimal
orientation the reflection is still quite salient. We used a
color digital video camera (Canon Optura DV, Canon Inc.)
whose video signal was digitized through a S-video connec-
tion onto a Silicon Graphics computer. The camera was cal-
ibrated to ensure a linear response. The final three channel
(RGB) color images have a spatial resolution of640� 480
pixels. In our results the entire three channel image was
used in computing the independent sources.

Shown along the top row of Figure 6 are the initial im-
ages and shown along the bottom row are the results of sep-
arating the independent components. In between are the
intermediate steps leading to the separation as specified by
Equations (7), (10), (14) and (15). Note how the normal-
ized joint histogram (third column) transforms in a similar
manner to the idealization of Figure 3, yielding the indepen-
dent components - the painting and the reflection of Sheila.
Shown in Figure 7 are the results from an outdoor scene
where the reflections were removed from a storefront win-
dow.

Note that even in the presence of an imperfect polarizer,
a noisy sensor, imperfections in the glass, and the simple
linear mixing model, we are able to separate the reflections
leaving the images behind the glass largely intact.
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Figure 6: Along the top row are a pair of images of
Renoir’sOn the Terracewith a reflection of Sheila pho-
tographed through a linear polarizer at orthogonal orien-
tations. Along the bottom row are the independent com-
ponents. Also shown are the intermediate steps leading to
the separation of the independent components. The third
column shows the normalized joint histogram of the pair
of images to its left.

Figure 7: Shown along the top row are a pair of images
photographed through a linear polarizer at orthogonal ori-
entations, and shown along the bottom row are the sepa-
rated components.

4 Separating Lighting

In addition to separating reflections, we have also used
ICA to separate the relative contributions of individual light
sources. A scene illuminated with a single spatially vary-
ing light source,L(u; v), can be expressed asI(u; v) =
aL(u; v)R(u; v), whereR(u; v) is the reflectance function
of the scene anda is a multiplicative constant that regulates
the brightness of the light source. The same scene illumi-
nated with two light sources can be expressed as,

y1 = aL1R+ bL2R

= ax1 + bx2; (18)

where, for convenience, the spatial parameters are dropped.
Note that this image is a linear combination of the image of
the scene illuminated with each light source independently.
Consider now a second image taken with a different weight-
ing of the light sources,

y2 = cx1 + dx2: (19)

Note that this pair of images is of the same form as that
of Equation (3), and thus amenable to separation through
ICA. However, the assumption of statistical independence
is unlikely to strictly hold. In particular, although the same
scene illuminated with different light sources can look dra-
matically different, it is most certainly the case that they
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Figure 8: Shown along the top row are a pair of images
photographed with two light sources of varying bright-
nesses, and shown along the bottom row are the separated
components.

will not be independent (violating the basic assumption of
ICA). Nevertheless, if there is enough independent structure
in the joint distribution, then the separation outlined in the
previous section will still be effective.

Shown along the top row of Figure 8 are a pair of images
of Sheila. In both of these images a pair of light sources
with varying brightness was used, the first light source po-
sitioned below and to the left, and second above and to the
right. In the same figure are the separation results. Note
that the shadows along the face and back wall are consis-
tent with the individual light sources. Although not perfect,
these results are impressive in that they show that ICA is a
powerful separation tool even when the assumption of sta-
tistical independence does not strictly hold.

5 Discussion

To facilitate such tasks as object recognition, visual-
based navigation, and scene segmentation it would be ad-
vantageous to separate the intrinsic aspects of an image
from the incidental variations due to lighting, speculari-
ties/reflections, shadows, etc. We have shown how the sta-
tistical tool of independent components analysis (ICA) can
be useful in this regard. In particular, we employed ICA
in separating reflections from glass or glossy surfaces, and
in separating the relative contributions of individual light
sources. The separation of reflections may be useful to
professional photographers, autonomous vehicles with in-
board cameras where reflections from the vehicle wind-

shield cause problems for navigation, and in the field of
surveillance where activities behind a reflective window
may be revealed. A real-time implementation may be real-
ized by synchronizing the image capture with a liquid crys-
tal polarizer (e.g, [12]).

There are of course several natural extensions to our
work that will undoubtedly generalize its applicability.
Most notably, the linear mixing model of Equation (3) as-
sumes a spatially uniform linear combination of source im-
ages that is unlikely to always be true. To account for a
mixing that may vary spatially across the field of view, our
basic approach could be used in conjunction with a mix-
ture model approach to fit multiple linear models. Another
possible extension would be to employ a more generic ver-
sion of ICA that allows for a redundant system with more
measurements than unknowns.
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