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Abstract

Brain deformation models have proven to be a powerful tool in compensating for soft

tissue deformation during image-guided neurosurgery. The accuracy of these models can

be improved by incorporating intraoperative measurements of brain motion. We have

designed and implemented a passive intraoperative stereo vision (iSV) system capable

of estimating the 3-D shape of the surgical scene in near real-time. The motion of the

estimated cortical surface is then tracked over time. This cortical motion is used to

guide a full brain model, which subsequently updates a preoperative MR volume. We

have found that the iSV system is accurate to within approximately 1mm. Executing

on a 1.1 GHz Pentium machine, the 3-D estimation from a stereo pair of 1024 × 768

resolution images requires approximately 60 seconds of computation. Based on data from

representative clinical cases, we show that stereopsis guidance improves the accuracy

of brain shift compensation both at and below the cortical surface. Specifically, we

report an average error reduction of 3.7mm relative to the model estimate without using

intraoperative data. In addition, advantages of our iSV system include its fast acquisition

rates, predominantly automated steps, and overall accuracy. These characteristics allow

us to capture other important cortical behavior such as the tissue resection and the

pulsatile motion of the cortical surface.
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The real voyage of discovery consists of not in seeking new landscapes but in having new

eyes.

- Marcel Proust
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Contributions

Below are what we consider the major contributions of this work:

• We have designed and implemented an intraoperative stereo vision (iSV) system

capable of estimating the shape of the cortical surface. Some advantages of this

approach are:

1. The system utilizes the binocular optics the operating microscope.

2. The system acquires the stereo images at 15 pairs per second.

3. We have selected and implemented three matching constraints that have re-

liably solved the correspondence problem of stereopsis for the reconstruction

of the cortical surface.

4. The reconstruction of the cortical shape from an image pair takes less than

60 seconds on a 1.2 GHz PC.

5. Through multiple experiments, we have found that the iSV system is accurate

to within approximately 1mm.

• Based on the estimates of the 3-D cortical shape over time, the system tracks the

cortical surface displacement.

1. The tracking of the cortical surface does not interrupt the surgery.

2. A variety of cortical motions, including soft tissue deformation, tissue retrac-

tion and resection, and the cortical pulsation, have been recovered.

3. The tracking accuracy using the iSV system is comparable to that of an

optical stylus.

• Under the guidance of the cortical motion, a poroelastic brain model predicts the

full volume deformation, which is then used to update the preoperative MR.
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1. Based on data from representative clinical cases, we show that stereopsis

guidance improves the accuracy of brain shift compensation both at and below

the cortical surface.

2. The versatility of the iSV system may aid the brain model to compensate for

more complex tissue deformation occurring during retraction and resection.

• We have implemented and tested all the proposed steps as a complete end-to-end

system.
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Chapter 1

Introduction

The value of medical images in providing navigational guidance during surgical interven-

tions was recognized immediately after the techniques of generating these images were

invented. Less than three months after the discovery of x-rays, a bromide print was

used to aid the surgical removal of a needle from a woman’s hand [93]. The advent of

advanced imaging modalities such as magnetic resonance (MR) and computed tomog-

raphy (CT) imaging has dramatically enhanced the safety and effectiveness of surgical

procedures. Images generated from these techniques provide a detailed description of

the patient’s anatomy and can be used as a surgical atlas. The goal is to make surgical

procedures safer, less invasive, and more effective.

We know from experience that, in order to utilize a map, one needs to establish a

correlation between the map and the physical space through which one tries to navi-

gate. A publicly displayed map at an international airport or a crowded shopping mall

clearly points out the location of its readers on the map (“YOU ARE HERE!”). This

information, along with other useful cues such as knowing the direction of north both in

the physical space and on the map, helps to correlate the map and the physical space.

Based on this correlation, travellers utilize the map to guide their journey. In order to

use medical images to guide a surgery, a similar correspondence between these images
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and the patient in the operating room (OR) needs to be established. With this corre-

spondence, the position of a surgical target (e.g., a tumor or a herniation in the spine),

clearly visible in the MR/CT images, can be more easily visualized by the surgeon in

the OR. A suitable surgical trajectory leading to the target is then planned.

1.1 Image-guided Neurosurgery

1.1.1 Current Implementations

In neurosurgery, MR images of the patient’s head acquired prior to the procedure are

commonly used as the atlas to help surgeons navigate. In order to establish image

guidance, the coordinate system of the preoperative MR (pMR) volume is rigidly rotated

and translated to align with the coordinate system of the patient in the OR. Under

homogeneous coordinates 1, this transformation takes the form:


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, (1.1)

where a point in the preoperative image volume, (XP , YP , ZP ), is related to a point in

the world coordinate, (XW , YW , ZW ), through the 3 × 3 rigid-body rotation matrix, R

1Note that by using homogeneous coordinates, rotation and translation can be performed by multi-

plying with a single transformation matrix; that is, a rotation in the homogeneous 4-D space is equivalent

to a rotation and translation in the underlying 3-D space.
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(generated from 3 Euler angles, roll, pitch, and yaw), and the 3×1 translation vector, T .

R and T are embodied into the single 4× 4 matrix WTP , which relates the preoperative

image frame with the world coordinate frame. Whereas the preoperative coordinate

frame is defined by the image voxel grid, the world coordinate frame is usually defined

by a 3-D positioning device used to track the position of the patient and surgical devices

in the OR.

This transformation between the two coordinate systems, WTP , is computed based

on the locations of a set of features both in the image volume and in the OR. The

commonly used features for patient registration are scalp-attached fiducials, as shown in

Figure 1.1(a). They are constructed of materials that will appear hyperintense on MR

imaging so that they will be readily visible on preoperative imaging studies.

Given the position of n points in the world (XWi, YWi, ZWi), 1 ≤ i ≤ n) and their

coordinates in the pMR volume (XPi, YPi, ZPi), 1 ≤ i ≤ n), WTP can be determined by

solving the following equation using standard linear algebra:
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


(1.2)

The process of obtaining the transformation between the pMR volume and the world

coordinates is often referred to as registration. Here, we use the term registration to

describe the establishment of a spatial correspondence between preoperative images and

a physical space, i.e., the OR. As we will see later, the term registration can also mean

aligning different medical images or aligning images with a computational model. To

avoid confusion, we refer to the process of aligning the preoperative images with the

patient in the OR as patient registration.

The estimated transformation expressed by Equation (1.1) allows any point in the
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surgical field to be viewed in the context of patient anatomy, which is represented by the

preoperative images. An example of the procedural process and outcome of establishing

the correspondence between the operating field and the pMR is shown in Figure 1.1.

Since the coordinate system in the OR is defined by the positioning system capable

of tracking other surgical tools, registration can be expanded to include other surgical

devices such as an operating microscope.

1.1.2 The Stereoscopic Operating Microscope

Since its introduction in 1962 [39], the stereoscopic operating microscope has been an

integral part of a neurosurgical OR. Surgeons use the microscope to locate cortical struc-

tures and deeper features exposed during operation. As an extension of neurosurgical

image-guidance, an operating microscope can also be employed to assist the surgical nav-

igation. For example, at Dartmouth-Hitchcock Medical Center, a stereoscopic operating

microscope (Model M695, Leica USA, Rockleigh NJ) is ceiling-mounted on a robotic

platform, as shown in Figure 1.2. The microscope is continuously tracked by a posi-

tioning device (Polaris System, Northern Digital Inc. Ontario, CANADA) that employs

infrared sensors. Focusing of the microscope is accomplished by aligning two laser beams

propagated through each of the binocular paths of the microscope and which converge

at the focal point. Through the transformation established during patient registration,

this focal point can be viewed in the context of 3-D and patient-specific image studies.

In Figure 1.1(c), the location of the focal point is depicted as the crosshairs in sagittal,

axial, and trajectory views. By registering an important element of the surgeon’s visual

field with the preoperative images, the navigational system offers more direct assistance

to the surgeon in selection of the trajectory through or around cerebral structures.

Although it is an important element of the surgeon’s view through the operating mi-

croscope, the focal point is insufficient to accurately convey the geometrical relationship

between the current surgical scene and the patient’s anatomy. It is desirable to establish

4



(a) (b)

(c)

Figure 1.1: Pictorial description of image-guided surgery: (a) fiducials (arrows) are

attached to a patient’s scalp to correlate the patient’s surface anatomy with the pre-

operatively obtained image data set; (b) these fiducials are localized in the OR prior

to surgery. (c) After patient registration, three-dimensional reconstruction, sagittal,

axial, and trajectory views demonstrate a left parieto-occipital tumor. This display

aids surgical planning.
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Figure 1.2: Stereoscopic operating microscope ceiling-mounted on a robotic platform.
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an accurate correspondence between the surgeon’s view through the operating micro-

scope and the pre-operative 3-D MR data. The registration between preoperative data

and the real-time microscope image allows the surgeon to access a surgical locus deep

in the brain parenchyma. Projections calculated from 3-D pre-operative data can be

overlaid with corresponding microscope views. Such image overlays ensure the surgeon

a more accurate surgical trajectory.

In as early as 1985, Roberts et al. used an ultrasonic ranger-finder to track the

operating microscope and displayed CT image data with the co-registered surgical scene

in the correct perspective without requiring a stereotactic frame [71]. In their work on

microscope-assisted guided interventions (MAGI), Edwards et al. carefully calibrated

the imaging parameters of the microscope optics and experimented with injecting the

projection of anatomical landmarks from the preoperative scans to both eyepieces [18].

The details of the implementation of this system will be discussed further in Chapter 2.

So far, the neuro-navigational systems discussed here are based on rigid registration,

where any two coordinate systems are related to each other through a rotation and a

translation. With rigid registration between the preoperative images, the patient coor-

dinate system, and even the 2-D surgical scene under the microscope, the preoperative

images help the surgeon plan the surgical trajectory, evaluate the extent of a lesion, and

avoid critical brain structures. However, it is well recognized that brain tissue deforms

non-rigidly during surgery. Neuro-navigational systems based solely on rigid registration

are subject to errors due to brain deformation.

1.2 Brain Deformation

There are several factors that cause the brain to deform during open-cranial surgery.

Parenchymal deformation can take place from the drainage of cerebrospinal fluid (CSF)

which reduces the buoyancy forces acting on the brain. Hyperosmotic drugs such as

7



Figure 1.3: The cortical surface of the same patient viewed through the operating

microscope immediately after the opening of the dura (left) and during the tissue

retraction (right). Note the significant tissue deformation induced by the retractor

blade.

mannitol can also cause shift by pulling fluid from the parenchyma and thus reducing

brain volume. Brain motion can also result from tissue retraction and resection or the

drainage of a cystic lesion. An example of brain deformation during neurosurgery is

shown in Figure 1.3.

Many groups have investigated brain shift and the resulting compromise in accuracy

of registration between patient and guidance system [85, 10, 38, 67, 36, 72, 57, 76, 35, 32].

Here, a few examples of these studies are given to show the general magnitude of these

tissue motions. Let us begin at the cortical surface. Hill et al. employed intraoper-

ative functional mapping to measure the post dura-removal location of approximately

60 cortical points in 21 cases, and compared them to their position in the preopera-

tive images, reporting mean displacements of 4.4-5.6mm in the direction corresponding

to gravity [36]. Through tracking the cortical vasculature using the focal point of the

operating microscope, Roberts et al. measured a 1cm mean surface displacement, also

dominantly in the direction of gravity [72]. Subsurface shift has been quantified in a

study of ten cases by Dickhaus et al. [15] using an open MRI (0.2 Tesla). They measured

a 6-7mm displacement for internal structures, namely the interhemispheric fissure and

ventricles, as well as up to 2cm shift on the brain surface. Maurer et al. [57] completed

8



a qualitative study of intraoperative deformation in six cases using interventional MR

(1.5 Tesla), noting that changes in ventricular volume greater than 1ml can indicate

the occurrence of deformation. From these studies, we can see that brain shift causes

significant changes in a patient’s anatomy during open-cranial surgery. These changes

may result in an error up to a few centimeters in registration between the patient’s brain

in the OR and its pMR images. This error in misregistration is incongruent with the

goal of image-guided neurosurgery, i.e., to accurately target the surgical focus and at

the same time avoid any critical brain structure. To compensate for brain shift, the

preoperative images, which are static and cannot reflect tissue changes during surgery,

need to be updated.

1.3 Brain Shift Compensation

As stated in the previous section, in order to maintain the fidelity between the patient’s

dynamic anatomy and its image presentation, the static preoperative scan needs to

be updated. An attractive method for updating preoperative images is to image the

full brain volume using intraoperative MRI (iMRI) or intraoperative CT (iCT) [96,

87, 8, 37, 86, 31]. These imaging devices offer multiplanal, high resolution volume

data for accurate definition of most boundaries of tumor, vessels and heterogenic tissue

structures during surgery. They are also helpful in monitoring potential intraoperative

complications [8]. Despite these advantages, iMRI/iCT impose significant financial and

logistical constraints. In addition, updates can only be obtained a few times during a

case because the imaging process is lengthy and interrupts the surgery.

An alternative method for providing a full volume image update is to use computa-

tional models to predict brain deformation. The goal of brain modeling is to produce a

displacement field over the patient’s brain that accurately represents the current defor-

mation in the operating room (OR). This vector field provides a non-rigid transformation

that relates the preoperative image data with the patient anatomy during surgery, and
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hence, can be used to update the pMR volume. Typical brain deformation models com-

bine the bio-mechanical properties of the brain and boundary and volumetric conditions

to predict this displacement field. Proposed bio-mechanical models of the brain utilize

solid linear elastic [24, 75], solid nonlinear elastic [13], linear viscoelastic [62], or biphasic

elastic equations [64, 29, 17]. Boundary and volumetric conditions include the direction

of gravity, intracranial pressure, the location and size of the craniotomy, the level of

cerebral spinal fluids, and the constraint of the rigid skull.

Compared to iMRI/iCT, brain deformation models provide an inexpensive and sig-

nificantly less intrusive means to compensate for soft tissue deformation during image-

guided neurosurgery. But this approach to brain shift compensation faces several chal-

lenges. First, recent reports have indicted that the pattern of brain shift is complex.

Hartkens et al., using an iMRI, have determined that the direction of gravity alone is

unreliable in predicting brain shift [33]. The direction of shift is likely to be a result

of a complex interplay between gravity, the condition of the current surgical field (e.g.,

resected region), fluid pressure, and other forces. Given the complex tissue deformation

pattern, brain models that make use of very limited intraoperative information (e.g., just

the direction of gravity) are unlikely to accurately predict the full volume deformation.

Another challenge facing brain modeling lies in the uncertainties among model pa-

rameters. Model parameters include the mechanical properties of the brain and the

boundary and volumetric forcing conditions under which the model is deployed. Lim-

ited work has been done to test mechanical properties in vivo and quantified results

vary significantly [61, 4, 63, 92, 20]. The values we employed for our brain model are

based on reports in the literature, as well as those deduced through optimization in our

own experiments [61]. The brain material properties may in fact vary among patients

due to differences in age and tissue pathology and our parameters do not reflect this

variability. The uncertainty in the boundary and volumetric forcing conditions arise

from the difficulty in estimating these conditions in the OR. For example, although

point-based sensing devices are available to measure the intracranial pressure, accurate
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full-volume pressure data is difficult to obtain; The level of CSF inside the cranium is

usually assigned qualitatively based on the patient’s position in the OR.

The complexity of brain deformation patterns and uncertainty in model parameters

pose challenges for brain models to accurately predict the full volume displacement field.

Several groups have proposed that the accuracy of these models can be improved when

measurements of brain motion acquired during surgery are used to guide the model

estimates [1, 24, 75, 49, 80].

1.4 Intraoperative Data

Imaging modalities used for measuring brain deformation in the operating room (OR)

include iMRI [56, 7, 28, 30, 73, 96], iCT [52], and intraoperative ultrasound (iUS) [49,

12, 9, 41, 44, 90]. In an attempt to reduce the amount of intraoperative imaging, Ferrant

et al. have combined a linear elastic brain model with MR-estimated motions of cortical

surface and lateral ventricles to predict tissue motions at other parts of the brain [24].

Although iMRI offers rich intraoperative data, as stated earlier, its high cost and strin-

gent implementation requirements hinder its acceptance. Intraoperative ultrasound is

considerably less cumbersome in the OR and is gradually becoming accepted as an alter-

native to iMRI/iCT. Unsgaard et al. demonstrated that iUS was capable of successfully

localizing brain lesions in 112 out of 114 clinical cases [90]. By tracking 1mm metal

beads during their porcine studies [51], Lunn et al. showed that a co-registered iUS

has a mean target localization error of 1.5mm and a mean vector error for displacement

of 1.1mm. Despite these encouraging results, iUS still faces some challenges when em-

ployed to track structures in the brain. First, spatial and temporal variation in image

quality limits its ability to identify homologous features in the brain for tracking pur-

poses. Second, iUS requires tissue contact for imaging, which may induce further brain

deformation and hence compromise tracking accuracy.
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The underlying goal of these techniques is to acquire intraoperative data to guide

brain deformation models. Along these lines, but in contrast to these methods, several

groups have employed non-contacting techniques for estimating the 3-D cortical topol-

ogy. For example, in their phantom studies, Audette et al. [1] used a commercial 3-D

laser range sensor to scan the cortical surface and proposed to use surface motion to

guide a brain model. Miga et al. employed a similar scanner to digitize cortical features

which were used to register the patient in the OR with the pMR volume [60]. Accord-

ing to their experience, it took approximately 1.5 minutes to scan the exposed cortical

surface. Skrinjar et al. utilized a pair of stereo cameras to guide their bio-mechanical

brain model [77]. In order to avoid the stereo correspondence problem, they coupled

the topological reconstruction with their brain model. As a result, only estimates that

satisfied the model were produced. Because of a limited camera calibration and a re-

strictive Lambertian assumption, the accuracy of estimating the shape of the cortical

surface using their method has not been fully evaluated.

1.5 Proposed Solutions

So far, we have seen that the conventional neuro-navigational system based on rigid

registration is subject to inaccuracies caused by brain deformations. Factors that cause

such deformations include gravity, drug administration, loss of cerebrospinal fluid (CSF),

and tissue retraction and removal. As a result of these changes, image studies acquired

prior to surgery are no longer an accurate representation of the patient’s anatomy during

surgery. Strategies to update the static preoperative images include full-volume intra-

operative scanning techniques such as iMRI/iCT and computational brain models that

develop estimates of the full volume deformation. Using computational models to com-

pensate for brain shift is attractive because of its low cost and some initial success has

been reported by several groups using this strategy [13, 24, 29, 46, 61, 64, 91]. Although

brain deformation models offer an inexpensive alternative, but their accuracy warrants
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concerns due to the complexity of tissue motion and the uncertainty in model param-

eters. To contend with these challenges, we have designed and implemented a brain

shift compensation system that uses intraoperatively measured brain motions to guide

a brain model for updating the pMR image [81, 80, 83, 82]. Our goal is to create an

affordable and accurate solution to brain deformation compensation for incorporation

into neuro-navigational image-guidance system.

This system is based on both rigid and non-rigid registrations. Rigid registrations

provide transformations between all the coordinate systems, such as the pMR volume,

the patient in the OR, and the operating microscope field of view. Non-rigid registrations

consist of the estimation of the cortical motion, brain modeling and the pMR update.

Central to this system is the estimation of brain motion during surgery. Similarly to

the studies using laser range scanners and stereo vision, we have also designed a non-

contacting strategy that measures the 3-D cortical topology using stereo vision (SV).

Our SV system is incorporated into the standard stereoscopic operating microscope.

Our decision to utilize the stereoscopic operating microscope for the estimation of the

cortical motion is based on the following considerations:

1. The conventional operating microscope is readily available in most neurosurgical

suites, therefore, the system does not require a new imaging device.

2. The coordinate systems of the microscope and its image plane are registered with

the patient in the OR and the preoperative image volume (Section 1.1.2). This

registration offers convenience in surface tracking and data assimilation in the

brain model.

3. The microscope is equipped with binocular optics. By attaching a pair of CCD

cameras to the optics, we can perform stereopsis.

4. Stereopsis is an attractive strategy for estimating the shape of the cortical surface

because it requires no tissue contact and does not interrupt the surgery.
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1. camera 2. stereopsis 3. cortical
calibration tracking

5. pMR update 4. brain model

Figure 1.4: Flow diagram illustrating the steps in stereopsis-guided brain shift com-

pensation.

Based on estimates of the 3-D cortical shape over time, the system tracks the cortical

surface displacement. Under guidance from the cortical motion, a poroelastic brain

model predicts the full volume deformation, which is then used to update the pMR. We

have implemented and tested all of the proposed steps as a complete end-to-end system.

Next, we will give an overview of this system which consists of several steps leading

toward our goal of updating pMR during surgery. The methodology developed in this

thesis combines the rigid image-guided techniques, stereopsis, with a nonrigid brain

model to correct for intraoperative brain movement. We begin by presenting the steps

involved in stereopsis-guided brain shift compensation. As depicted in Figure 1.4, our

technique involves five basic steps:

1. perform the system calibration to register the preoperative image volume with the

patient in the OR and the 2-D microscope images,

2. estimate the shape of the 3-D cortical surface using stereopsis,
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3. estimate the displacement of the 3-D cortical surface over time,

4. incorporate the estimated motion of the cortical surface into a computational

model to produce a full volume description of brain deformations,

5. and finally, update the pMR images.

These five steps utilize both rigid and nonrigid registration strategies introduced in

the previous sections. Step 1 employs rigid registration to establish the conventional

image-guided neurosurgery. Steps 2 and 3 estimate intraoperative data through intra-

operative imaging. Steps 4-5 employ nonrigid registration to update the pMR volume.

As we will see later, the rigid registration step serves as the basis for non-rigid registra-

tion steps. In the next five chapters, each of the five steps will be discussed in detail.

In each chapter, methods utilized in the corresponding step are first presented and then

followed by the relevant results.
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Chapter 2

Rigid Registration

In this chapter, we describe the steps required to implement conventional Microscope-

based Image-guided Neurosurgery. Most of this work has been discussed in [79]. The im-

age guidance employed here is based solely on rigid registration. To establish Microscope-

based Image-guided Neurosurgery, the following three steps are required: a rigid-body

registration between the preoperative and OR spaces, calibration of the microscope op-

tics, and tracking the patient and microscope throughout the surgery. These three steps

establish a series of coordinate transformations as shown in Figure 2.1. In this figure the

common (world) coordinate system is given by the Polaris, an optical 3-D positioning

system 1. The final overall transformation from the preoperative data 2 to the real-

time microscope image is determined through a series of coordinate transformations:

(1) the transformation from 3-D microscope frame to 2-D microscope image is denoted

as ITM
3; (2) the transformation from world to 3-D microscope frame is denoted as

1Hybrid Polaris, Northern Digital, Waterloo, Ontario.
2Prior to surgery, a standard volumetric MRI (typically a 256× 256× 124 matrix with the voxel size

0.97× 0.97× 1.5mm3) is obtained for the patient using 1.5 Tesla GE MR scanner.
3In order to preserve the linearity of all transformations, we use only the pinhole perspective projec-

tion to describe the imaging process. The full camera model which includes the nonlinear lens distortion

compensation will be presented in the later section.
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Figure 2.1: Coordinate transformations from the 3-D pre-operative data to the real-

time 2-D microscope image.

MTW ; (3) the transformation from patient to world is denoted as WTP ; (4) and finally,

the pre-operative image to patient transformation is symbolized as PTD. The complete

transformation is simply a concatenation of individual transformations:

~q =
(

ITM
MTW

WTP
PTD

)

~Q, (2.1)

where ~Q is a point in the 3-D pre-operative coordinate space and ~q is the same point in

the 2-D real-time microscope image coordinate system. We next describe the procedure

of system calibration for obtaining each of the four transformations in Equation (2.1).

From left to right in this equation, our discussion begins with imaging parameters, ITM .
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2.1 Imaging Parameters: ITM and others

The calibration of imaging parameters is not only important for registering the preop-

erative data with the 2-D microscope image but also, as we will see later, crucial for the

implementation of stereopsis. The process of image formation corresponds a ray of points

in the scene to a pixel in the image plane. Prior to surgery, a pair of stereo cameras are

calibrated to obtain their intrinsic and extrinsic parameters using the method developed

by Tsai [89]. These parameters are used to relate the points in the scene to the pixels

in the image plane. Other calibration methods can also be employed. For example, the

orthocenter property and the calibration of the image center through vanishing points

by Caprile and Torre [11], direct calibration of the projection matrix described by serval

groups including Faugeras and Toscani [22], and a method for calibrating a stereo system

from arbitrary stereo images developed by Thacker and Mayhew [84]. We choose Tsai’s

method to calibrate the microscope optics due to its relatively simple camera model and

its accuracy in capturing the image formation process.

Shown in Figure 2.2 is our operating microscope with two CCD cameras 4 optically

coupled. The operating microscope is tracked throughout the surgery using infrared

emitting diodes (dashed arrow). We begin by presenting the camera model employed by

Tsai’s camera calibration strategy.

2.1.1 Camera Model

The schematic drawing of the pinhole camera model followed by lens distortion compen-

sation is shown in Figure 2.3. In order to determine the 2-D image coordinates of a point

specified by its 3-D position in a world coordinate system, a series of transformations

and projections must be performed:

1. rigid body transformation from world coordinates (X,Y, Z) to camera coordinates

4Sony DFW-x700, Resolution 1024(H)× 768(V ), Sony Corp., New York, NY, USA
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Figure 2.2: Two CCD cameras (solid arrows) have been attached to the binocular

optics of the operating microscope. The intrinsic and extrinsic camera parameters are

calibrated prior to surgery using the calibration target shown in the lower right. The

operating microscope is tracked throughout the surgery using infrared emitting diodes

(dashed arrow).

(Xc, Yc, Zc)

2. perspective projection from camera coordinates (Xc, Yc, Zc) to undistorted sensor

coordinates (x, y)

3. adjustment from undistorted sensor coordinates (x, y) to distorted sensor coordi-

nates (xd, xd)

4. unit conversion (mm to pixels) from distorted sensor coordinates (xd, xd) to image

coordinates (xf , yf )

The individual transformations and projections between each of these coordinate

systems are given below.
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Figure 2.3: Camera Model: perspective projection and lens distortion.

1. The transformation from world coordinates (X,Y, Z) to camera coordinates (Xc, Yc, Zc)

in homogeneous coordinates is:
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, (2.2)

where the rotation matrix, R, (generated from 3 Euler angles, roll, pitch, and yaw)

and the translation matrix, T , are given by:

R =








r1 r2 r3

r4 r5 r6

r7 r8 r9








and T =








tx

ty

tz







. (2.3)

The world coordinate frame for camera calibration can be arbitrarily defined. Dur-

ing a surgical procedure, the microscope is moving through a ceiling-mounted

robotic arm (Surgiscope, Elekta AB, Stockholm), as shown in Figure 1.2. In or-

der to avoid updating the camera parameters upon movement of the microscope,
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we choose a coordinate frame which is rigidly attached to the microscope as the

world coordinate frame for camera calibration. This coordinate system is defined

by an optical tracker consisting of infrared emitting diodes tracked by the Polaris

system, as indicated by the dotted arrow in Figure 2.2. Note that this world coor-

dinate system is not the same as the world coordinate frame in Figure 2.1, which

is defined by the Polaris.

2. Undistorted sensor coordinates (x, y) are computed from camera coordinates (Xc, Yc, Zc)

using the following equations:

x =
fXc

Zc

and y =
fYc

Zc

, (2.4)

where f is the camera focal length 5.

So far, steps 1 and 2 constitute the simple pinhole camera model. Under this

model, a point in the world coordinates, (X,Y, Z), is projected onto a point in the

2-D imaging plane, (x, y). Combining equations 2.2 and 2.4, we have :
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, (2.5)

where the projected image coordinates are (x, y) = (xs/s, ys/s). The intrinsic

camera parameters are the focal length, f , and the extrinsic parameters are the

3 × 3 rigid-body rotation matrix, R, and the 3 × 1 translation vector, T . All of

5The focal length of the lens is the distance from the lens where the image of an object that is

infinitely far away is focused.
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these parameters are embodied into the single 3 × 4 matrix P , referred to as the

perspective projection matrix (PPM). ITM in Equation (2.1) is a PPM.

Next, we apply the radial distortion model and then represent the process by which

digital images are actually formed (i.e., the conversion of the sensor coordinates

to the final image coordinates).

3. The conversion of undistorted sensor coordinates (x, y) to distorted sensor coordi-

nates (xd, yd) takes the form:

xd = x− xd(κ1r
2 + κ2r

4 + ...+ κnr
2n)

yd = y − yd(κ1r
2 + κ2r

4 + ...+ κnr
2n), (2.6)

where r =
√

x2
d + y2

d and (κ1, κ2, ..., κn) are the lens distortion parameters.

We have found that a first-order model is sufficient to compensate for lens distor-

tion in our case. Equation (2.6) is then simplified to:

xd = x− κxdr
2 and yd = y − κydr

2, (2.7)

where κ is the lens distortion coefficient and r =
√

x2
d + y2

d.

4. The conversion of distorted sensor coordinates (xd, yd) to image coordinates (xf , yf )

takes the form:

xf = Sx
Nfx

Ncxdx

xd + Cx

yf =
1

dy

xd + Cy, (2.8)

where Nfx is the number of pixels in a line sample by the computer; Ncx is the

number of sensor elements in the X direction; dx and dy are the center to center

distance between adjacent sensor elements in X and Y directions, respectively;

(these parameters may be obtained from the manufacturer supplied camera and

frame grabber specifications); Sx is a scale factor arising from digitizer-to-computer

memory translation and (Cx, Cy) is the image center.
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Table 2.1: Camera parameters to be calibrated
parameter description
intrinsic

f focal length
κ lens distortion coefficient
Sx non-square pixel scalar

Cx, Cy camera center
extrinsic

R(θx, θy, θz) rigid-body rotation
T (tx, ty, tz) rigid-body translation

Note that we now have a camera model that projects a point in the world to its image

coordinates, the next step is to determine (i.e., calibrate) several unknown parameters

among the equations presented above. In particular, the extrinsic camera parameters to

be calibrated are the rotation and translation matrices (R, T ) and the intrinsic param-

eters are the focal length (f), lens distortion coefficient κ, scale factor (Sx), and image

center (Cx, Cy). These parameters are listed in Table 2.1.

2.1.2 Camera Calibration

Principles

Equations (2.2) - (2.8) specify how to project from world to image coordinates assuming

perspective projection and a radial lens distortion model. As noted, the extrinsic and

intrinsic camera parameters need to be calibrated in order to perform such a projection.

Since the camera parameters consist of 11 unknowns (i.e., 3 rotation angles (θx, θy, θz), 3

translation components (tx, ty, tz), the focal length (f), the lens distortion parameter(κ1;

assuming a first-order approximation), the scale factor (Sx), and the 2 components of the

image center (Cx, Cy)), 11 equations with known world and image coordinates should

be sufficient to solve for the 11 camera parameters. The transformation from world to

image coordinates can be expressed, in homogeneous coordinates, as:
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where the projected image coordinates are (xf , yf ) = (xs/s, ys/s). Note that matrix

B is the rigid body transformation matrix (Equation (2.2)) and matrix A incorporates

the perspective projection from camera to sensor coordinates (Equation (2.4) and the

transformation from sensor to image coordinates (Equation (2.8)). For exposition, the

lens distortion parameters (κ1, κ2, ..., κn) are assumed to be zero. This restriction will be

relaxed later when the full calibration procedure is presented. The extrinsic and intrinsic

camera parameters can be solved for by setting up a set of at least 10 equations of the

form in Equation (2.9):
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Given the position of n points in the world (Xi, Yi, Zi), 1 ≤ i ≤ n) and in image

coordinates (xi, yi, 1 ≤ i ≤ n), the camera parameters can be determined within a

scale factor, using standard linear algebra. The scale factor is s in the left hand side

of Equation (2.9). This scale factor comes from the non-linear perspective projection

equations, x = fX
Z
, that is, for a fixed x image coordinate and a fixedX world coordinate,

there exist several solutions for f and Z which satisfy x = fX
Z
. This non-linearity

and the added non-linearity of a radial lens distortion model complicates the camera

calibration procedure. In particular, in addition to solving linear equations, a non-linear
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optimization (e.g., gradient descent) on the focal length f , translation component tz,

and lens distortion parameters, (κ1, κ2, ..., κn) is needed in order to recover the exact

camera parameters.

Procedure

In the previous section, we have shown that a set of at least 11 points with known

world and image coordinates is needed in order to determine a camera’s extrinsic and

intrinsic parameters. The points in world coordinates can be coplanar (i.e., lie in a single

plane) or non-coplanar (i.e., lie in several planes). Accordingly, as outlined by Tsai [89],

there are two forms of calibration. Since non-coplanar calibration yields considerably

more accurate results than coplanar calibration, we have decided to perform this form

of calibration.

In order to estimate the intrinsic and extrinsic parameters we first manufactured a 3-

D calibration target with 108 fiducial markers having known relative positions, as shown

in Figure 2.4. This target is placed in the microscope field of view, as shown in Figure 2.2,

and an image is digitized from each camera of the stereo pair. The centroid of each

calibration marker is automatically estimated and its spatial coordinates, (xf , yf ), along

with its known 3-D positions, (X,Y, Z) are recorded. These image and world coordinates

are then used to estimate each camera’s intrinsic and extrinsic parameters [95]. The

details of how to compute these parameters can be found in Appendix A.

Although each camera is independently calibrated, they are all rigidly attached and

calibrated to a common world coordinate system, therefore the camera positions are

known relative to one another. As we will see later, this pairwise calibration strategy is

important for computing stereo correspondence.

Having obtained ITM in Equation (2.1) and other necessary camera parameters, we

now describe the calibration of the next transformation matrix MTW .
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Figure 2.4: The calibration target with the attached infrared reflecting beads for

localization of the target in the world coordinate reference frame.

2.2 Microscope Tracking: MTW

As we have mentioned in the previous section, the microscope is moving through a

ceiling-mounted robotic arm to accommodate the surgical needs during a procedure.

Camera calibration is performed with respect to a coordinate system defined by an

optical tracker which is rigidly attached to the microscope. The optical tracker consists

of infrared emitting diodes (IRED), as indicated by arrows in Figure 2.5. Through

tracking these markers, the Polaris records the current position and orientation of the

microscope with respect to the true world coordinate system defined by the Polaris.

These data are used to construct the matrix MTW in Equation (2.1), which relates the

coordinate system of camera calibration with the true world coordinate system defined

by the Polaris.
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2.3 Patient Tracking and Registration: WTP and PTD

The final calibration step requires a link between the patient and world and also between

the patient and 3-D pre-operative data to be established. In studies conducted by other

groups (e.g., [18, 55, 94]), bone-implanted markers were used to register and/or re-

register the patient to the pre-operative data. As stated in Section 1.1, we attach small

fiducials to the patient’s scalp in order to minimize the invasiveness to the patient.

These points are localized in the preoperative data space and on the patient’s head prior

to surgery [25]. From these corresponding points, the transformation matrix PTD is

estimated using Equation (1.2) [34].

The position of the patient with respect to the world system is determined by tracking

(throughout the surgery) the location of IREDs rigidly attached to the patient’s head

clamp. A patient tracker consisting of 4 IREDs is shown in Figure 2.5. As with the

tracking of the microscope, the tracking of the patient’s head clamp provides the final

transformation matrix WTP .

This completes the estimations of all the transformations in Equation (2.1) needed

to facilitate the projection of a 3-D point in the preoperative image volume to the 2-

D microscope image plane. After the projection calculation, a lens distortion model

and a digital image conversion are applied to obtain the desired 2-D pixel coordinate.

These steps establish the non-invertible rigid registration between the 3-D preoperative

volumetric data and the 2-D microscope image plane. With this registration, useful

information from preoperative images can be presented to the surgeon. Next, we describe

some image display strategies.
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Figure 2.5: The tracking device which consists of infrared emitting diodes (IREDs,

arrows) has been rigidly attached to the microscope for monitoring its location and

orientation, and to the patient head clamp for updating the patient position with

respect to the world system.

2.4 Image Display

We employ two strategies to overlay the information from the preoperative image volume

with the current surgical scene.

1. Segmented Feature Overlay. Salient features such as cortical vessels and tumors

can be segmented from pMR volume. The 3-D coordinates of these features can

be projected onto the 2-D microscope images.

2. Plane Intersection Overlay. The second strategy avoids brain segmentation and

utilizes the focal plane of the operating microscope. As described earlier, we can

focus the microscope by aligning two laser beams projected through each of the
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Surgery Age (yr)/ Lesion/Pathology Location Procedure
No. Gender

1 27/F Ganglioglioneurocytoma Right Frontal Resection

2 55/F Metastatic carcinoma Left Frontal Resection

3 39/F Metastatic carcinoma Right Frontal Resection

Table 2.2: Patient Characteristics

binocular paths of the microscope and which converge at the focal point. This focal

point and one optical ray (there are two optical rays due to stereo) determines a

focal plane in the surgical field, which is perpendicular to the optical ray and passes

through the focal point. The same focal plane can be formed in the coregistered

pMR volume. All pMR voxels on this focal plane can be projected and overlaid

with the microscope image of the current surgical scene. Another plane parallel

with the focal plane but located deeper within the brain can be formed and all

voxels associated with this plane can again be projected and overlaid with the

microscope image. The overlay of a deeper brain structure with the current surgical

scene helps the surgeon evaluate the surgical trajectory.

2.5 Results

The system calibration establishes the rigid registration between the 3-D pMR volume

and 2-D microscope images. This system has been implemented by Rick et al. using the

Graphical User Interface (GUI) platform offered by MATLAB [68]. Three patient cases

are chosen to illustrate the accuracy of this rigid registration. The patient characteristics

are listed in Table 2.2. The microscope optics were calibrated before the patients’ arrival

in the OR. Figure 2.6 shows an example of the camera calibration results. In this figure,

an red point indicates the true position of a feature point and an blue open circle denotes

its estimated location by projecting a centroid in the world coordinates to the image
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Table 2.3: Camera Calibration Errors for Surgery 1, 2, and 3
Mean (pixel) Max (pixel) Min (pixel)

Surgery 1
left 0.53 0.97 0.14
right 0.45 0.88 0.16
Surgery 2
left 0.27 0.54 0.11
right 0.21 0.33 0.09
Surgery 3
left 0.36 0.78 0.13
right 0.37 0.82 0.18

plane using the camera parameters. To assess the accuracy of these calibrations, we

compared the 2-D image coordinates of the centroid of each calibration marker with the

estimated image coordinates. The RMS differences between the true image coordinates

of these centroids and their projected coordinates are given in Table 2.3. These error

values indicate that Tsai’s camera model captures, with sufficient accuracy, the image

formation process by the microscope optics.

After the patient was anesthetized in the OR, patient registration was performed.

Two metrics, Fiducial Registration Error and Target Registration Error, were used to

quantify the registration accuracy [26]. Results from these three cases are presented in

Table 2.4. The values of FRE and TRE 6 in these three cases are comparable to results

reported by other groups using scalp-attached fiducials for patient registration.

We employed the first image display strategy, Segmented Feature Overlay, to dis-

play the coregistered pMR volume with the current surgical scene under the microscope

during the first clinical case. Figure 2.7(a) shows the microscope image of the surgical

field. The cortical vasculature segmented from the patient’s magnetic resonance an-

giogram (MRA) and the tumor boundary segmented from the T-1 pMR volume were

projected on the microscope image plane, as shown in Figure 2.7(b) and (c), respec-

tively. Figure 2.7(d) contains a RGB image with the surgical scene, cortical vasculature,

6The target for computing TRE was generally defined in the vicinity of the surgical locus in the

brain. In all three cases reported here, the target was a point in the tumor region.
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Figure 2.6: Shown are the camera calibration results of both left (top) and right

(bottom) cameras prior to surgery 1; open circles denote the true positions of the

centroids of all circular markers in 2-D images, and dots denote estimated positions

by projecting the 3-D locations of centroids to the 2-D image planes using the camera

parameters.
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Table 2.4: Patient registration results for surgery 1, 2, 3
Num.ofF idus FRE (mm) TRE (mm)

Surgery 1 10 2.17 1.67
Surgery 2 8 1.97 1.54
Surgery 3 7 2.32 1.87

and segmented tumor boundary displayed through the red, green, and blue channels,

respectively.

We employed the second image display strategy, Plane Intersection Overlay, to dis-

play the projection of the coregistered pMR volume with the current surgical scene

during the second and third clinical cases. During the second surgery, an image of

the surgical scene under the microscope was acquired right after the dural opening, as

shown in Figure 2.8(a). Using the second image display technique, all the voxels in the

coregistered MR volume intersected by the focal plane were projected onto the image

plane, as shown in Figure 2.8(b) and overlaid with the current surgical scene, as shown

in Figure 2.8(c). Note that the curved cortical vessel aligned well in the overlay. With

the microscope in the same position, all the voxels in the MR volume intersected by a

plane parallel with the focal plane but 8mm deeper into the brain were projected onto

the image plane, as shown in Figure 2.8(e) and overlaid with the current surgical scene

, as presented in Figure 2.8(f). This overlay showed the relative position of the tumor

seen in the MR image with respect to the current surgical scene.

In the third surgery, an image of the surgical scene under the microscope was acquired

right after the dural opening, as shown in Figure 2.9(a). All voxels in the coregistered

MR volume intersected by the focal plane were again projected onto the image plane

(see Figure 2.9(b)) and overlaid with the current surgical scene (see Figure 2.9(c)). Note

that the bifurcating cortical vessel aligned well in the overlay. With the microscope in

the same position, all the voxels in the MR volume intersected by a plane parallel with

the focal plane but 16mm deeper into the brain were projected onto the image plane,

as shown in Figure 2.9(e), and overlaid with the current surgical scene, as presented in
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Figure 2.9(f). This overlay showed the relative position of the tumor seen in MR image

with respect to the current surgical scene. The three cases shown here demonstrated the

navigational value of the registration between the 3-D pMR volume and 2-D surgical

scene.

Finally, while the calibration of this system is relatively straightforward, a number

of factors conspire to corrupt the overall process. These factors include, for example,

motion of the microscope between calibration and surgery, the long duration of the

surgery (approximately 5 hours), or inadvertent jostling of the Polaris. An adaptive

procedure is needed to respond to accruing registration error [79]. We have developed a

real-time correction scheme to maintain the accuracy of the rigid registration throughout

surgery. Interested readers can refer to Appendix B for details.
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(a) (b)

(c) (d)

Figure 2.7: Salient structures segmented from co-registered MRA and MRI (surgery

1) were projected to microscope image planes: Image (a) is the surgical scene under the

microscope; image (b) is the projected image of the segmented brain surface vasculature

from a co-registered phase-contrast MR angiogram; image (c) is the projected image

of all tumor boundaries outlined in all slices in the co-registered pMR; the RGB image

(d) is the overlay of images (a), (b), and (c), in the red, green, and blue channels,

respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 2.8: Shown in the first row are (a) the surgical scene (surgery 2), (b) the

projected MR voxels intersected by the focal plane, and (c) the overlay of (a) and (b),

in green and red, respectively; in the second row are (d) the same surgical scene , (e) the

projected voxels intersected by a plane parallel with the focal plane but 8mm deeper

into the brain intersecting the tumor, and (f) the overlay of (d) and (e).
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(a) (b) (c)

(d) (e) (f)

Figure 2.9: Shown in the first row are (a) the surgical scene (surgery 3), (b) the

projected MR voxels intersected by the focal plane, and (c) the overlay of (a) and (b),

in green and red, respectively; in the second row are (d) the same surgical scene , (e) the

projected voxels intersected by a plane parallel with the focal plane but 16mm deeper

into the brain intersecting the tumor, and (f) the overlay of (d) and (e).
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Chapter 3

Stereopsis

So far, we have established the rigid registration between the 3-D pMR volume with the

2-D microscope images. This registration is soon subject to inaccuracy after craniotomy

due to soft tissue deformation. The next step is to use the stereoscopic microscope to

estimate the shape of the cortical surface during surgery, and in doing so prepare to

track the cortical motion.

We are primarily interested in the implementation of a passive depth estimation

method known as stereopsis. This technique enables us to infer information on the

3-D structure and distance of a scene from two or more images taken from different

viewpoints. This is a depth estimation method with which we are all familiar, and

one can learn a great deal regarding the basic principles of a stereo system through a

simple experiment. Hold one thumb at arm’s length and close the right and left eye

alternatively. What do you expect to see? With presumably little surprise you find that

the relative position of thumb and background appears to change, depending on which

eye is open or closed. It is precisely this difference in retinal location that is used by the

brain to reconstruct a 3-D representation of what we see.
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3.1 Non-Invertibility of Image Formation

Before we discuss the method of stereopsis, it is useful to explain why a pair of cameras

is needed for the depth estimation. As we have learned previously, image formation is

a 3-D (world coordinates) to 2-D transformation (image coordinates). Inherent to such

a transformation is a loss of information: the information lost is the distance to the

objects in the world, i.e., range. Specifically, under a perspective projection model all

points of the form (cX, cY, cZ), for any c ∈ R, are projected to the same point (x, y).

The projection is not one-to-one thus not invertible.

The non-invertibility of image formation can also be modeled via linear algebraic

equations. In particular, we have seen that the image formation equations may be

written in matrix form as, ~q = Mn×m
~Q, where n < m (Equations (2.5) and (2.10)).

Since the projection is from a higher dimensional space to a lower dimensional space,

the matrix M is not invertible and, thus, the projection is not invertible. Since image

formation is not an one-to-one transformation and thus not invertible, assuming no prior

information and a standard imaging system 1, the full 3-D structure of the world cannot

be recovered from a single 2-D image.

The information lost in a 3-D to 2-D transformation can be recovered, however,

using at least two images of the same scene taken from two different vantage points.

Theories on stereopsis can be found in [21, 88] and [14] provides a general survey of

some important technical implementations. Our goal is to use stereopsis to estimate the

shape of the cortical surface during neurosurgery. To facilitate this process, a stereo pair

is constructed using the stereoscopic operating microscope.

1There are many methods of recovering the lost information using one camera plus other cues, see [14]

for reviews.
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Figure 3.1: Two CCD cameras (black arrows) have been attached to the binocular op-

tics of the operating microscope. The resulting stereo vision system is used to estimate

the shape of the cortical surface during surgery.

3.2 The Stereo Pair

Shown in Figure 3.1 is an operating microscope to which two CCD cameras have been

attached in order to estimate the shape of the cortical surface. A beamspliter has been

added to the operating microscope to accommodate the two CCD cameras and to avoid

obstructing the surgical team’s visual access to the surgical field. Two optical couplers

with a c-mount 2, as shown in Figure 3.2, are used to connect the CCD cameras to the

left and right beamsplitter ports. The two cameras are controlled by a PC via a pair

2Microstereopsis, Ijamsville, Maryland, USA
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Figure 3.2: Shown are the CCD camera (left) and the optical coupler with c-mount

(right) used to connect the camera to the microscope beamsplitter port.

of firewire cables. Stereo image pairs are acquired at 15 frames per second. The stereo

images can be displayed on a computer monitor and fused using shuttered glasses to

provide a real-time 3-D view of the surgical scene, as illustrated in Figure 3.3.

3.3 Stereo Matching

Having constructed an intraoperative stereo vision (iSV) system by attaching two CCD

cameras to the stereoscopic operating microscope, the next task is to estimate the shape

of the cortical surface using stereo images. From the thumb experiment, we have learned

that our vivid 3-D perception of the world is due to the interpretation that the brain gives

of the computed difference in retinal position, named disparity, between corresponding

items. Following the wisdom of Nature, the basic concept of stereo vision is illustrated in

the left panel of Figure 3.4: a point (X,Y, Z) in the world reference frame is projected,

through two pinhole cameras centered at Cl and Cr, onto the image sensors at locations
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Figure 3.3: The surgical team can view the operating scene in 3-D through the shut-

tered glasses.

(xl, yl) and (xr, yr). Given these image coordinates, the goal is to estimate the location

of the point (X,Y, Z). Beginning with an image projection onto, say, the left image,

(xl, yl), we must first compute the corresponding projection onto the right image (xr, yr).

This is the first step in stereopsis, which is often referred to as stereo matching. The

displacement between the corresponding points, (xl, yl) and (xr, yr), is termed disparity.

Combining the camera calibration (described above) with the established correspondence

yields the desired 3-D coordinates. This is the second step in stereopsis, which is called

triangulation.

It turns out that the first step of stereopsis is more difficult because the correspon-

dence problem is ambiguous. Given a point (xl, yl) in the left image, it may a priori be

put in correspondence with any point in the right image. To overcome this difficulty, we

must constrain the number of potential matches for any given point. Literature regard-

ing stereo matching is immense. Two classic matching algorithms have been presented

by Marr and Poggio [53, 54]. Examples of some other significant matching strategies can
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Figure 3.4: The 3-D vision problem and the epipolar constraint: shown on the left are

two pinhole cameras, with centers Cl and Cr, forming the image of a single point. The

projection onto the left image, (xl, yl), has a corresponding match in the right image,

(xr, yr), lying on the epipolar line er. Shown on the right is the rectified image so that

the epipolar lines are coincident with image scan lines (solid lines).

be found in [3, 42, 47, 58]. Building on this literature, we have implemented a number

of matching constraints tailored to the estimation of the shape of the cortical surface.

1. Epipolar Constraint

This constraint is derived from the fact that the stereo camera pair is calibrated

with respect to a common coordinate system and therefore the camera positions

are known relative to one another. As a result, the corresponding point (xr, yr)

of the point (xl, yl) is constrained to lie on the epipolar line. This line, er, is

defined to be the projection of the optical ray 〈(xl, yl), Cl〉 through the camera

center Cr, as shown in Figure 3.4. The epipolar constraint is symmetric and hence

the corresponding point (xl, yl) of the point (xr, yr) is constrained to lie on the

epipolar line, el, which is constructed similarly. This epipolar constraint restricts

correspondence to a single line rather than an entire image.

The epipolar line is often oblique, and it is more convenient to rectify the images

so that the epipolar lines are coincident with image raster lines (as shown in the

right panel of Figure 3.4) – the rectified image coordinates are denoted as (x̃l, ỹl)
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and (x̃r, ỹr).

The basic idea of rectification is straightforward: if the left and right image planes

are coplanar and the horizontal axes are collinear (no rotation about the optical

axes), then the image rows are epipolar lines and stereo correspondences can be

found by searching for matches along corresponding rows. Rectification is discussed

by Ayache [2], Hartley et al. [33], and Faugeras [21]. Camera parameters are not

required for rectification [69], but the use of calibrated stereo pairs gives rise to a

simpler technique.

Given a pair of stereo images and a calibrated stereo pair, rectification determines

a transformation of each image plane such that pairs of epipolar lines become

collinear and parallel to one of the image axes, as seen in Figure 3.4 (right). For

each camera, this transformation takes the form:

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


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





, (3.1)

where the coordinates in the rectified image are (x̃, ỹ = (x̃s/s, ỹs/s), and (x, y)

are the coordinates in the original image pair. When the two cameras are rigidly

attached to each other and are calibrated with respect to a common coordinate

frame, R is a 3× 3 matrix and:

R = PrP
−1, (3.2)

where P is the PPM of a camera in Equation (2.5) and is obtained via camera

calibration. Pr is a 3×4 matrix similar to P . Since it projects a point in the world

coordinate, (X,Y, Z), to a point in the rectified image plane, (x̃, ỹ):
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, (3.3)
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Pr is often referred to as the camera’s rectifying PPM.

Knowing P from camera calibration, we can determine Pr by applying several

constraints imposed by the characteristics of the desired rectification: (1) the

rectified image pair must share the same focal plane; (2) the camera centers of

the rectified perspective projections must be the same as those of the original

projections; and (3) all pairs of epipolar lines are parallel to one another and

parallel to one of the pixel rows (usually the horizontal one). The mathematical

derivation of P̃r can be found in Appendix C. With Pr and P , R can be computed

using Equation (3.2).

Given all the camera and rectification parameters, the rectification of the original

image pair consists of three steps. First, the projected images coordinates, (x, y),

are computed from the original (distorted) image coordinates, (xd, yd), using Equa-

tion (2.7). Secondly, the rectified image coordinates, (xr, yr), are computed from

the projected image coordinates, (x, y), using Equation (3.1). Finally, to create

the final rectified image pair, the rectified image coordinates, (xr, yr), are used to

linearly interpolate the same sampling lattice of the original image pair.

2. Intensity Correlation Constraint

Given the rectified stereo pair of images, an intensity-based correlation metric is

used to solve the correspondence problem. In the correlation-based matching strat-

egy, the elements matched are image windows of certain size, and the similarity

criterion is a measure of the correlation between windows in two images. The

corresponding element is given by the window that maximizes the similarity crite-

rion within a search region. Clearly, only those features which satisfy the epipolar

constraint are considered for matching.

Specifically, the horizontal displacement (or disparity) between corresponding points

(x̃l, ỹl) and (x̃r, ỹr) is given by a scalar value d (there is no vertical displacement

due to the rectification). In order to estimate this disparity, the following error
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function is minimized:

E(d) =
W∑

i=−W

W∑

j=−W

[Il(x̃l + i, ỹl + j)− Ir(x̃l + d+ i, ỹl + j)]2, (3.4)

where Il(·) and Ir(·) are the left and right images, and W is a parameter defining

the size of the correlation neighborhood. Kanade and Okutomi describe a method

for adapting the shape and size of the correlation neighborhood to accommodate

different parts of the same image [43]. Give the size of our rectified stereo pairs

(approximately 1400× 800), we use a square window size of W equal to 20 pixels.

This non-linear error function, E(d), is minimized by using a search strategy over

a fixed range of integer-valued disparities. The disparity is estimated with a sub-

pixel resolution by fitting E(d) with a second-order polynomial and analytically

computing the minimum. This entire process is repeated for all, or for a subset,

of the image pixels.

To reduce computational costs, we constrain the disparity search to a relatively

small region as follows. The disparities are computed for 50 equally spaced image

pixels in the left image – a large search region of 100 pixels is used. The search

region for the entire image is then constrained to consist of the pixel with the

median of these disparities plus its nearest 20 neighboring pixels on the epipolar

line, thus greatly reducing the computational effort.

3. Smoothness Constraint

In most craniotomy sites, the depths of scene points corresponding to nearby fea-

ture points are likely to be close to one another. We can impose a smoothness

constraint on our estimated disparities in order to exploit this heuristic. The dis-

parities of all image points are used to form a so-called disparity map, to which a

3× 3 median filter is applied to the estimated disparity map. The median filtering

has the effect of forcing pixels with distinct disparities to be more like their neigh-

bors, thus it helps to eliminate spurious disparities, and is generally reasonable

given the smoothly varying nature of cortical surfaces.

45



Given a pair of images of a surgical scene, we avoid computing the correspondence

between all pixels. Instead, only a subset of the image pixels were selected for matching.

Specifically, the boundary of the cortical surface was outlined, and approximately 1000

uniformly spaced pixels 3 within this region were chosen as matching tokens. This

strategy offers two advantages: first, since the craniotomy site is usually centered in

the microscope view and visible by both cameras, the matching algorithm need not

determine the image parts that should not be matched; second, computational cost is

greatly reduced with fewer matching tokens. One concern when estimating the shape

of the cortical surface from only a subset of pixels is that the resulting surface will be

spatially coarse. This concern will be addressed later with experimental data.

3.4 Triangulation

Given an estimated disparity map, triangulation is used to compute the 3-D coordinates,

(X,Y, Z), from each pair of matched image points, (x̃l, ỹl) and (x̃r, ỹr), as shown in

Figure 3.4. First, these image coordinates are transformed back into the original image

planes, (xl, yl) and (xr, yr). Then, these image coordinates and the camera centers,

Cl and Cr, are transformed from their 2-D image space to 3-D camera space using

the intrinsic camera parameters. The extrinsic parameters map these 3-D coordinates

into a common world coordinate system. The set of four 3-D coordinates, defining two

optical rays, are used to estimate the final 3-D coordinates. In the absence of noise, this

is performed by simply finding the intersection of the rays. In the presence of noise,

however, the rays may not intersect and therefore the estimated intersection is taken to

be the point of minimal and equal distance from both rays. Repeating this process for

each pair of matched coordinates yields an estimated 3-D cortical structure. It is worth

pointing out that it is not essential to have both the intrinsic and extrinsic parameters of

the stereo system for triangulation. With only the intrinsic parameters of the cameras,

3Smoothness constraint is applied to the downsampled disparity map.
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the 3-D coordinates of an object in the world can be reconstructed up to a scale factor. In

our case, the exact location of the cortical surface in the world coordinates is important

for registering this surface with the pMR volume, as we will see later.

Next, we present our experimental results in the estimation of the shape of the

cortical surface. We begin with a simulation probing the effect of the matching results

on the accuracy of the final reconstructed shape. Then, the reconstructed shapes of

the cortical surfaces from eleven clinical cases are given. Finally, to demonstrate the

accuracy of the estimated cortical shape, error analysis from both phantom and clinical

studies is presented.

3.5 Results

The previous section demonstrates that estimating the 3-D surface from a stereo pair

of images involves two main steps: (1) for each point in the left stereo image, the

corresponding point in the right image must be found (i.e., stereo matching), and (2)

from this correspondence, triangulation is then used to determine the 3-D coordinates

of the object.

3.5.1 Sensitivity to Matching

In order to quantify the performance of the first step of stereopsis, i.e., stereo matching,

a numerical simulation was designed and executed to probe the error in stereo range

estimation as a result of error in solving the correspondence problem. We used stereo

images of the camera calibration target, as shown in Figure 2.4, for the simulation.

The target was tracked, so that the 3-D location of the centroids of each marker was

known. At the beginning of the experiment, the camera was calibrated. The camera

calibration results and microscope tracking data were used to rectify the stereo image

pairs. The centroids of markers (n = 108) in both the left and right images were
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Figure 3.5: The 3-D coordinates of centroids of markers on the calibration target were

first computed based on the manually estimated matching results. Errors in either the

x (the directions along the epipolar line) or y (the directions perpendicular to the

epipolar line) image axis were subsequently added to this best case matching results.

RMS errors of range estimation based on matching with and without added errors

were computed by comparing the estimated 3-D coordinates with the locations of these

centroids recorded by the Polaris. The plot on the right is a subplot of the one on the

left. Note that a matching error in x is more significant in causing an error increase in

range estimation than the corresponding error in y.

estimated via segmentation, and each corresponding pair was matched manually. Then

the triangulation produced the 3-D coordinates of these centroids, and the RMS error

was estimated by comparing the results with the locations of these centroids recorded

by the Polaris system. Since the homologous points were estimated via segmentation

and matched manually, we consider that there is no matching error so far. This minimal

RMS error of range estimation (0.65mm) was determined solely by errors from camera

calibration and tracking. Next, we simulated matching error (in pixel) in either the x

(the directions along the epipolar line) or y (the directions perpendicular to the epipolar

line) image axis by altering the estimated locations of centroids in the right image. The

RMS error of the range estimation based on altered homologous pairs was computed.

Figure 3.5 shows the relationships between RMS errors in range estimation and simulated

matching errors. The plot on the left, based on simulations over a bigger range of

matching error values, depicts general quadratic relationships, and whereas the plot on

the right, a subplot of the plot of the left, shows more details in the neighborhood of
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the true correspondences.

These simulated results have revealed that a matching error in x is more significant

in causing an increase of error in range estimation than the same error in y. Our in-

terpretation of this result is that in order to achieve more accurate range estimation,

matching constraints must be able to solve correspondence with subpixel accuracy in the

x direction; while in the y direction, the performance of these constraints can be allowed

some tolerance. In order to achieve this requirement, two of the three matching con-

straints that were implemented, i.e., the intensity correlation constraint and smoothness

constraint, were designed to reinforce the matching accuracy in the x direction. Due to

the tolerance of the matching error in y, the search for a potential match was generally

widened to include the two lines of pixels immediately adjacent to the epipolar lines to

counter potential matching errors in the x direction that may be a result of inaccurate

rectification.

3.5.2 Clinical Cases

We next present the results of estimating the shape of the cortical surface using stereop-

sis. Most of these results have been discussed in a paper submitted to Neurosugery [83].

An exemplary image pair from a clinical case is used to illustrate both the incremental

results from different steps involved in this estimation and the final estimated shape

of the cortical surface. The final results from nine other clinical cases are then used to

demonstrate the success of the iSV system in capturing a variety of shapes of the cortical

surfaces. The characteristics of these ten patients are listed in Table 3.1.

Our exemplary clinic case involved a 48-year-old male patient with intractable epilepsy.

During surgery, craniotomy was performed at the left anterior temporal region of the

skull for the placement of electrode implants. The reconstruction of the surgical scene

following craniotomy began with the acquisition of a stereo pair, as shown in Fig-

ure 3.6(top). The RGB image pair was first converted to a grayscale image pair, and

49



Figure 3.6: Left and right images of a typical early surgical scene (top) and the

rectified image pair (bottom). Note that the homologous features from both left and

right images align with the same pixel row after rectification.

rectification was applied using the method described in Appendix C. As a result of

rectification, epipolar lines became collinear and parallel to the image row, as shown in

Figure 3.6(bottom).

On the left image of the rectified pair, the boundary of the craniotomy site was

manually outlined and about 1000 evenly spaced pixels within this region were selected

for matching. The corresponding points for these pixels were found by applying the

Intensity Correlation Constraint, our second matching constraint. The disparity maps

of these pixels are shown in the top row of Figure 3.7. A 5 × 5 median filter was then

applied to the disparity maps to eliminate spurious disparities, as shown in the bottom

row of Figure 3.7.

Combining the estimated correspondence with the camera parameters, triangulation
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Figure 3.7: Shown in the top row are the disparity maps in the x direction (left) and

y direction (right) before the smoothing using a median filter. The smoothed disparity

maps are shown in the bottom row.

yields the desired 3-D shape of the cortical surface. The estimated 3-D surface is shown

both in wire frame and in texture mapping 4 modes in Figure 3.8. On a 1.1 GHz PC, the

reconstruction of a surface for a stereo image pair using 1000 matching tokens requires

approximately 60 seconds of computation. The reconstructed cortical surfaces from nine

other surgical cases are shown in Figure 3.9, and the relevant patient information is given

in Table 3.1.

4For texture mapping, after interpolating the reconstructed surface onto the same sampling lattice

as the left image of the stereo pair, each reconstructed point was assigned with its corresponding pixel

intensity.
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Figure 3.8: The reconstructed 3-D cortical surface (surgery 1), shown in both wire

frame (left) and texture mapping mode (right) (units on axes are in millimeters; also

see Figure 3.9).

3.5.3 Reconstruction Accuracy I

In order to quantify the accuracy of our iSV system, the localization of points in 3-D

were compared to an optical stylus probe, a well quantified 3-D point digitizer. The

stylus, as shown in Figure 3.10, is tracked by the Polaris system, which defines the

world (OR) coordinates. The RMS tracking error of a single marker on a tool such

as the optical stylus is reported by the manufacturer to be 0.35mm in either active or

passive mode [66]. The accuracy of locating a known point using the stylus depends

on the number of the markers on the stylus and the geometry of the stylus. We have

tested the precision of our stylus. Our results show that, when returning repeatedly to

a certain set of coordinates in space, the device consistently displays the same set of

coordinates within 0.87mm.

In our first approach, we used the stylus probe to measure the 3-D location of several

micro-screws 5 placed on the bony rim of the cranial opening as fiducial markers. These

fiducials are denoted MS1,..., MS4 in Figure 3.11(left). The 3-D locations of the micro-

screws were estimated using stereopsis; the center of each micro-screw was manually

segmented in the microscope images and their 3-D positions were computed as the

5Leibinger E-Z Flap Plating System, Styker Cooperation, Kalamazoo, MI., USA
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Surgery 2 Surgery 3 Surgery 4

Surgery 5 Surgery 6 Surgery 7

Surgery 8 Surgery 9 Surgery 10

Figure 3.9: Initial cortical surface reconstructions with texture mapping from nine

other craniotomies (units on axes are in millimeters; also see Figure 3.8).
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Surgery Age (yr)/ Lesion/Pathology Location Procedure
No. Gender

1 39/F Intractable epilepsy Left anterior Electrode implant
temporal

2 63/F Hemangioma and Right temporal Resection
right MCA aneurysm

3 62/M Renal cell carcinoma Right posterior Resection
temporal

4 50/M Solitary metastasis Left frontal Resection

5 27/F Seizure Disorder Right medial Amygdala removal
temporal

6 39/M Cystic Hamartoma Left Temporal Resection

7 52/M Recurrent glioblastoma Right Temporal Resection

8 48/M Intractable epilepsy Left temporal Lobectomy

9 44/F Metastatic Left parietal Resection
carcinoma

10 50/F Meningioma extra-axial Resection
parasagittal

Table 3.1: Patient Characteristics

mean of the estimated 3-D coordinates of a small neighborhood of pixels (about 15

pixels) centered about this position. Stylus acquisitions were then compared to their

corresponding stereopsis estimates. During ten clinical cases, 38 fiducials were implanted

and digitized using both methods. Each case employed an average of 3.8 fiducials, with

a maximum of 5 and a minimum of 3. The RMS difference between these estimates with

respect to the number of matching tokens used to reconstruct the surgical scene is shown

in Figure 3.11(right). The absolute difference between these estimates decreases as the

number of matching tokens increases from 100 to 600, then it levels off at around 1mm

when the number of matching tokens is greater than 700. With 1000 matching tokens

applied, the difference is 1.02mm with a standard error of 0.07mm. The maximum error

is 1.35mm, with a minimum error of 0.61mm. This number of matching tokens is more

than sufficient to capture the details of different shapes of the surgical scene during the
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Figure 3.10: An optical stylus used to localize 3-D points during surgery.

course of surgery.

3.5.4 Reconstruction Accuracy II

One concern regarding the use of a micro-screw to simulate a point in 3-D is its finite

size. Although it is small (1mm in diameter), the finite size of each screw may introduce

uncertainty in whether the same point was digitized by both the stylus probe and the iSV

system. In order to better simulate a point in 3-D, we constructed a planar geometrical

pattern using a CAD drawing program and printed it on a 600 dpi laser printer, as

shown in Figure 3.12. Within this pattern, the location of each circle, line, and bounding

rectangle are analytically known. An optical stylus, tracked by the Polaris, was used

to determine the 3-D coordinates of the four corners of the bounding rectangle. For

each corner, the acquisition was repeated 100 times, and averaged to generate the 3-D

position of each corner point. The intersection between the various geometric shapes
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Figure 3.11: Shown on the left is a camera view of a craniotomy site with 4 im-

planted micro-screws (MS1,...,MS4) and the optical stylus used to digitize their loca-

tions. Shown on the right is the RMS difference between the measured positions of the

micro-screws using the optical stylus and our iSV system as a function of the number

of matching tokens involved in the stereoscopic surface reconstruction.

(lines and circles) were analytically determined from these coordinates.

The 3-D coordinates of these same intersections were also estimated using stereopsis.

All intersection points were located in the left stereo image by manually fitting lines and

circles to each geometric shape. The coordinates of each intersection in this image were

computed from these analytic fits. The stereo correspondences and 3-D coordinates for

each intersection were then estimated. From the 98 intersections, the RMS difference

between the stereopsis and stylus estimates was 0.93mm with a standard deviation of

0.41mm. The maximum error was 1.61mm, with a minimum error of 0.20mm. The

mean error of 0.93mm is close to our observed accuracy for the optical stylus of 0.87mm.

3.5.5 Reconstruction Accuracy III

So far, we have learned that the accuracy of our iSV system in localizing a point in 3-D

is comparable to the conventional optical 3-D point digitizer. Since we are primarily

interested in estimating the shape of the cortical surface, we need to probe the accuracy
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Figure 3.12: Pattern used to test the accuracy of the stereo reconstructions.

of our stereo system in shape estimation. In order to further confirm the viability of our

approach, we compared the accuracy of our iSV system against a CT reconstruction.

We first constructed a brain-shaped phantom from agar gel, as shown in Figure 3.13.

Copper wires were embedded into the gel and placed close to the surface to simulate

cortical vasculature. A CT scan of the phantom was then obtained, from which the

shape of the cortical surface was manually computed. The phantom was then brought

to the OR, and its surface estimated using stereopsis. Shown in Figure 3.14(a) are the

stereo pair, and shown in Figure 3.14(b) is the estimated surface. Figure 3.14(c) reports

the structure obtained from the CT scan whereas Figure 3.14(d) contains the difference

between the stereopsis- and CT-based estimates. 6 The mean distance between these

structures was 1.16mm with a maximum of 2.96mm and a minimum of 0.08mm.

6In order to compare the stereopsis- and CT-based estimates, we applied the ICP algorithm [5] to

bring these two surfaces, which were previously in different coordinates systems, into alignment.
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Figure 3.13: Shown is the brain phantom used to quantitatively evaluate the accuracy

of the iSV system in capturing the shape of the cortical surface. Electric wires were

embedded in the phantom to simulate cortical vasculature.

3.5.6 Reconstruction Accuracy IV

One concern regarding the estimation of the cortical surface from only a subset of pixels is

that the resulting surface will be spatially coarse. To address this concern, we measured

the density of the reconstructed surface by computing distances between all neighboring

pairs of matching tokens. Table 3.2 contains the measured distances between neighboring

pairs of matching tokens in ten reconstructed surfaces shown in both Figure 3.8 and

Figure 3.9. From these ten estimations, the point clouds representing the final estimated
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(a)

(b) (c)

(d)

Figure 3.14: Shown are (a) rectified stereo image pair of the phantom brain; (b)

the stereopsis-based estimate of the surface; (c) the CT-based estimate; (d) and the

difference between the stereopsis- and CT-based estimates. Units are in millimeters.
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Surgery Size of Mean Min Max
Point Cloud (mm) (mm) (mm)

1 1038 1.44 1.17 2.17
2 1073 0.76 0.56 1.29
3 1023 1.56 1.12 2.08
4 1123 0.98 0.67 1.37
5 1067 1.25 0.98 1.87
6 1231 0.56 0.34 0.86
7 1114 1.34 0.95 1.73
8 1056 1.35 1.09 2.11
9 1221 0.71 0.39 1.22
10 1038 1.01 0.76 1.25

mean 1098 1.10 0.80 1.60

Table 3.2: Measured Distances between neighboring pairs of matching tokens in re-

constructed surfaces

surfaces contained a mean of 1098 points. The mean distance between neighboring pairs

of matching tokens was 1.1mm. Based on these studies, we found that approximately

1000 matching tokens is sufficient to capture the topology of the cortical surface.

In summary, we have implemented an intraoperative stereo vision (iSV) system ca-

pable of capturing the 3-D shape of the cortical surface in a variety of clinical cases.

The final shape of the cortical surface is represented by a point cloud that consists of

approximately 1000 points. Compared to an optical stylus, our iSV system is capable

of localizing a point in 3-D with an average error of approximately 1mm. Compared to

CT, our system is capable of capturing the shape of the cortical surface with an average

error less than 1.2mm. Next, we show how to track the motion of the cortical surface in

the OR.
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Chapter 4

Cortical Tracking

As described in the previous chapter, the 3-D shape of the cortical surface can be es-

timated with sufficient accuracy using stereopsis during surgery. Our goal is to gain

intraoperative data on the cortical motion to guide brain deformation models to recover

the full volume description of tissue shift.

In our implementation, the tracking of the cortical surface can be divided into two

phases: (1), in order to establish the baseline motion of the cortical surface, the first

stereoscopically estimated cortical surface in the OR is compared to the cortical surface

in the pMR volume; and (2), the cortical surface is continuously tracked in the OR by

comparing the current shape of the cortical surface with the previously estimated shape.

4.1 Phase I: Cortical Motion Relative to pMR

In anticipation of using the cortical motion to guide a brain model for updating the pMR

volume, it is important to establish the baseline motion of the cortical surface relative

to the same surface in the pMR volume. In order to compare the cortical surface with

the pMR volume we must (1) generate a finite element mesh from the pMR volume; (2)

register the 2-D microscope image with the pMR mesh; (3) locate the exposed cortical
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surface in the pMR mesh; and (4) compute the displacement between the 3-D cortical

surface in the real-time surgical scene and the pMR volume.

Prior to surgery, a standard volumetric MRI (typically a 256 × 256 × 124 matrix

where the voxel size was 0.97 × 0.97 × 1.5mm3) is obtained for the patient using a 1.5

Tesla GE MR scanner. This MRI scan is then imported into the software ANALYZE 1

and a 3-D representation is constructed from the MR slices. The cranium is removed

through a semi-automatic segmentation strategy implemented in ANALYZE. Based on

segmented brain, a marching cubes algorithm [74] is used to generate a surface descrip-

tion of the brain consisting of triangular patches. To maintain an reasonable number

of patches, appropriate levels of surface decimation are applied. The segmented brain

is now rendered as a surface wire frame composed of surface nodes. A nodal averaging

scheme is usually applied to the initial wire frame to smooth the surface representation.

Based on the newly smoothed boundary description, a full 3-D tetrahedral volume mesh

can be generated with designated areas of refinement. Details on the mesh generation

are described by Sullivan et al. [78].

The coordinates of the finite element mesh (the preoperative space) are registered to

the 3-D operating room and then the 2-D operating microscope (intraoperative space).

This process requires a rigid-body transformation between the pMR volume and OR

space, calibration of the microscope optics, and tracking of the patient and microscope

throughout the surgery, details of which have been described in Chapter 2.

With the pMR mesh registered to the microscope image, we identify the portion of

the mesh that corresponds to the exposed cortical surface after craniotomy. To do so,

the surface nodes are first projected into the microscope image. To avoid the inherent

ambiguity resulting from this 3-D to 2-D projection, the surface nodes from only the

hemisphere closest to the craniotomy are projected. The boundary of the craniotomy

site is manually outlined in the microscope image. The surface nodes that fall within

1The software ANALYZE was provided by the Mayo Foundation, Rochester, MN, USA.
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this boundary are identified in the microscope image and hence in the original mesh -

we will refer to this subset of nodes as the craniotomy nodes.

Given the preoperative and intraoperative cortical surfaces, we next calculate the

displacement between these surfaces. The displacement would be easy to compute if the

correspondence between the surfaces were known. Lacking this information, however,

we employ the iterative closest point (ICP) algorithm [5] to simultaneously establish

this correspondence and estimate the displacement. Given the two surfaces, each repre-

sented by the point clouds, the ICP algorithm iteratively determines the correspondence

between point clouds and the registration matrix (rotation and translation) that yields

the best alignment (in terms of RMS Euclidean distance). The resulting displacement is

represented as a set of 3-D translation vectors between each craniotomy node from the

pMR volume and its corresponding point on the estimated cortical surface.

4.2 Phase II: Intraoperative Tracking

Having established the baseline cortical motion relative to the pMR volume, we are able

to continuously track the cortical motion in the OR by comparing the stereoscopically

estimated cortical shapes. During surgery, the cortical surface is re-estimated approxi-

mately every minute. Although the shape of the craniotomy site, including the cortical

surface and surrounding structures such as the bony skull, can be estimated using stere-

opsis, only the cortical surface itself is selected for tracking.

In order to quantify the amount of cortical motion over time, it is necessary to track

the estimated cortical structure between times t and t+∆t. This process involves first

estimating the cortical surface at time t and t+∆t. Then, for points on the surface at

time t, the iterative closest point algorithm is employed to find corresponding points on

the surface at time t + ∆t such that the overall Euclidean distances between the two

surfaces, represented as respective point clouds, is minimized. The displacement is the
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vector that connects the point being tracked to its corresponding point at the next time

increment.

In the case of missing cortical surface due to resection, surface tracking is then

performed in the reverse direction to avoid any erroneous tracking. Namely, for points

on the surface at time t + ∆t (a smaller cortical surface after resection), the iterative

closest point algorithm is used to find correspondence points on the surface at time t

(a larger cortical surface prior to the resection). The tracking can be executed with

as fine of a temporal resolution as desired (subject to image acquisition limits and the

computational load).

4.3 Results

The previous section explains that the tracking of the cortical surface is conducted in

two phases. In phase I, in order to establish its baseline motion, the stereoscopically

estimated shape of the cortical surface is compared with the same surface on the preop-

erative FE mesh. In phase II, the cortical motion is continuously tracked by comparing

the stereoscopically estimated cortical shape over time. In this section, we present re-

sults from tracking cortical surfaces during three clinical cases. The accuracy of our

tracking algorithm is then compared with that of tracking the features on the cortical

surface using an optical stylus.

4.3.1 Phase I

We have selected three neurosurgical procedures (surgeries 2, 3, and 4) from the ten

cases listed in Table 3.1 to illustrate the phase I cortical tracking. As we have stated

earlier, this stage of cortical tracking is performed by comparing the stereoscopically

estimated cortical surface to the cortical surface in the pMR volume.

The phase I tracking of the cortical surface in Surgery 2 began with the acquisition of
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Figure 4.1: Rectified stereo pair (top row) and the estimated cortical surface (bottom

row) presented in a wire frame view (left) and with texture mapping (right) – units are

millimeters.

the stereo pair shown in the top row of Figure 4.1. Stereopsis was then used to estimate

the shape of the cortical surface. Similar results for the third and fourth surgeries are

presented in Figure 4.2 and Figure 4.3, respectively. During all surgeries, the bony rims

of the craniotomy sites were also reconstructed to illustrate the motion of the cortical

surfaces after dural opening. Note the collapsing cortical surface of the second patient

and the distended surface of the third and fourth subjects.

The iSV-based estimates of the cortical surface, Figures 4.1, as shown in Figure 4.2,

and 4.3, were compared with the pMR volumes to obtain intraoperative displacements.

During each surgery, the coordinate space of the preoperative mesh was first rigidly

registered to the 3-D operating room using scalp-attached fiducials. In the second surgery

the fiducial and target registration errors (FRE/TRE) for 8 fiducials were 1.82mm and

1.45mm, respectively. For the third surgery, six fiducials had a FRE/TRE of 2.60mm and

1.92mm. For the fourth surgery, seven fiducials had a FRE/TRE of 2.14mm and 1.62mm.
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Table 4.1: Cortical tracking results for surgery 1 and 2
Motion Num. of max min mean

Nodes (mm) (mm) (mm)

Surgery 2
Distension 62 5.64 0.12 3.56
Collapsing 112 8.66 1.57 4.76

Surgery 3
Distension 44 9.03 2.95 6.29

Surgery 4
Distension 48 17.82 10.45 14.35

Shown in Figure 4.4 is the overlay of the preoperative mesh with the surgical scene after

registration – the craniotomy nodes are shown as asterisks, and their corresponding

region in the preoperative mesh is shown in gray.

Figure 4.5 contains the results of overlaying the estimated cortical surface with the

preoperative mesh. The result on the top left panel came from the second surgery – note

that the anterior portion of the exposed cortical surface collapsed, while the posterior

portion distended. Shown on the top right is the result from the third surgery, where the

entire surface distended. The results from the fourth surgery are shown in the second

row of the same figure. The intraoperative displacement was estimated using the ICP

algorithm. For the second surgery, of the 174 craniotomy nodes, 112 collapsed and 62

distended. The average displacement of collapsing nodes was 4.76mm, with a maximum

of 8.66mm and a minimum of 1.57mm. The average displacement of distending nodes

was 3.54mm, with a maximum of 5.64mm and a minimum of 0.12mm. For the third

surgery, all 44 craniotomy nodes distended. The average displacement was 6.29mm,

with a maximum of 9.03mm and a minimum of 2.95mm. For the fourth surgery, all

48 craniotomy nodes distended, with an average magnitude of 14.35mm, a maximum of

17.82mm and a minimum of 10.45mm. These results are also presented in Table 4.1.
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Figure 4.2: Rectified stereo pair (top row) and the estimated cortical surface (bottom

row) presented in a wire frame view (left) and with texture mapping (right) – units are

millimeters.

4.3.2 Phase II

We used one patient case (surgery 3 from Table 3.1) to illustrate how cortical surface

motion is tracked during surgery and then present the results for the remaining nine

cases. This surgical procedure involved a 62-year-old male with a cystic renal cell car-

cinoma metastasis in the right posterior temporal region of the brain. Stereo pairs of

the cortical surface were acquired at three stages of the surgery: before and after the

opening of the dura, and after partial cyst drainage. Three corresponding stereo pairs

are shown temporally from top to bottom in Figure 4.6. Locations of the cortical surface

were then estimated using stereopsis. Prior to surgery, a standard volumetric MRI was

acquired for each patient. Using the estimated rigid registration between the OR space

and the pMR volume, the reconstructed surfaces were overlaid with the pMR slices, as

shown in Figure 4.7. Three colored lines were created by calculating the intersections

between the reconstructed surfaces and MR slices. Green lines correspond to the surface
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Figure 4.3: Shown are the rectified stereo pair of the current surgical scene in surgery

2(top); and the reconstructed cortical surface in 3-D, both with (bottom right) and

without (bottom left) the surrounding bony skull. Units on axes are millimeters. Note

the bulging motion of the cortical surface relative to the skull.

before the opening of the dura, yellow lines to the surface after the opening of the dura,

and magenta lines to the surface after partial cyst drainage. To aid the visualization, the

portion of the skull at the site of craniotomy was removed from the pMR volume based

on the registered stereo view of the surgical opening. In Figure 4.7, prior to the removal

of the dura, brain deformation is minimal (green lines) and the tracked cortical surface is

well aligned with the rigidly registered pMR. The cortical surface (yellow lines) bulged

after dural opening, due to elevated intracranial pressure. When the surgeon opened

and partially drained the cyst cavity, the cortical surface (magenta lines) sagged from
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Figure 4.4: Shown on the left is the overlay of the preoperative mesh with the surgical

scene after rigid registration, with the craniotomy nodes shown as asterisks. Shown

on the right is the preoperative mesh with the craniotomy nodes highlighted. The

top, middle, and bottom row corresponds to the first, second, and third surgeries,

respectively.
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Figure 4.5: Relative position of the cortical surface to the preoperative mesh for the

first (top left), second (top right), and third (bottom) surgery.

its previous position (yellow lines). Note that in this figure, although the cortical surface

underwent a multiplicity of motions, the reconstructed bony edges of the craniotomy site

from the three stereo pairs remained fused with the skull in the pMR slices.

Approximately one thousand points from the reconstructed cortical surface (green)

prior to dura opening were selected for tracking. The iterative closest point algorithm

was employed to determine distances moved when the surface later bulged (yellow). The

average magnitude of the bulge among the points tracked was 5.00mm with a maximum

of 7.79mm and a minimum of 2.03mm. The iterative closest point algorithm was again

used to determine how these points moved from the bulged surface (yellow) to the sagged
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surface (magenta) after partial cyst drainage. Since a portion of the cortical surface was

resected to open the cyst cavity, the reversed iterative closest point algorithm was used

for tracking. The average magnitude of the sag was 5.77mm with a maximum of 8.60mm

and a minimum of 2.35mm.

By tracking these 3-D points, we estimated the cortical displacement with respect

to the cortical surface prior to any deformations. In most cases, the cortical surface

under the dura was regarded as the state of no deformations. When a stereo pair of

the cortical surface with dura intact is unavailable, the cortical surface segmented from

the co-registered pMR volume is used instead. Shown in Table 4.2, the topology of the

cortical surface was captured with approximately one thousand point elements during

each of the ten clinical cases. Minima, maxima and means of the estimated displacements

are listed. A negative value indicates a clasping motion, while a positive value indicates a

distending motion, relative to the closed cranium position. When the estimated motion

is a combination of bulge and sag, the minimum displacement represents the largest sag,

and the maximum displacement represents the largest bulge.

So far, we have seen that the ICP algorithm is capable of establishing the correspon-

dence between two estimated shapes of the cortical surface, from which the displacement

was then computed. Next, we compare our tracking strategies with the optical tracking

system.

4.4 Tracking Accuracy

To quantify the accuracy in tracking of the cortical surface, we again compare results

obtained through stereopsis with optical stylus measurements. This is done during

surgery 6 in Table 3.1. Shown in Figure 4.8 are three cortical features (CF1, CF2, and

CF3). Their locations were digitized using the stylus before and after cyst drainage.

These locations were compared to the positions of the same features on the estimated
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Figure 4.6: Stereo pairs acquired at different stages of the surgery for patient 3.

Shown, from top to bottom, are stereo pairs acquired before dural opening, after dural

opening, and after partial cyst drainage.
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Figure 4.7: Three cortical surfaces (color lines) reconstructed from the stereo pairs in

Figure 4.6 overlayed on the rigidly registered coronal pMR slices. Green, yellow, and

magenta lines correspond to surfaces before dural opening, after dural opening, and

after partial cyst drainage, respectively. Note that the cortical surface bulged when the

dura was opened, and then it sagged once the cyst was partially drained.
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Patient Surgical Number points Minimum Maximum Average
No. stage reconstructed disp. (mm) disp. (mm) disp. (mm)

1 After electrode 1057 2.15 5.92 3.30
implant

2 After dural 1023 -4.51 3.97 1.22
opening

3 After dural 1098 -3.22 4.30 0.73
opening

4 After dural 1002 6.82 14.97 9.06
opening

5 After dural 1004 2.03 7.79 5.00
opening

6 After cyst 1038 -3.43 -12.42 -9.53
drainage

7 After partial 1019 -3.43 -8.35 -6.45
resection

8 After partial 1011 -2.56 -6.52 -4.59
resection

9 After dural 1029 -11.15 8.64 -1.83
opening

10 After partial 1101 -1.10 -9.31 -6.17
resection

Table 4.2: Measured Cortical Displacements for Ten Individual Cases

cortical surface. When using stereopsis for tracking these cortical points, we manually

locate them on the reconstructed surface before cyst drainage. The displacement of each

feature was then calculated using ICP, as described in Section 4.2, and using a simple

gravitational sagging model (GS). Tracking using GS is performed by intersecting each

node of the surface at time t with the surface at time t+∆t along the direction of gravity.

The GS model, we believe, is a suitable way to establish the correspondence between two

shapes, when the motion is induced in the direction of gravity such as in the case of the

cyst drainage. Table 4.3 contains the estimated displacements for all three techniques.

Note that, in this case at least, the ICP approach under-estimates and the GS method

over-estimates the displacement measurements acquired from the stylus probe. While

the stylus probe defines the world (OR) coordinate system, which is regarded as “ground

truth,” it also contributes an error component although if well calibrated the probe error
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Figure 4.8: The cortical features (CF1, CF2, and CF3) were digitized using the optical

stylus before (left) and after (right) cyst drainage.

CF1 CF2 CF3
stylus 11.6 8.9 11.8
ICP 9.3 7.5 9.7
GS 13.3 9.8 12.1

Table 4.3: The estimated displacements (mm) of these features from the image-based

tracking methods (ICP and GS) relative to the stylus method.

is expected to be small. This error, however, may be exacerbated due to the inaccuracies

in locating precisely the same position on the cortical surface before and after cyst

drainage.

In summary, we have presented a method of tracking the cortical surface motion from

the stereoscopically estimated shapes. Our tracking method is divided into two phases.

During phase I, the baseline cortical motion is established by comparing the stereoscop-

ically estimated cortical surface with the surface in the pMR volume. During phase II,

the cortical surface is continuously tracked by comparing the current shape with the

previous estimation. We tested our method in ten clinical cases during which a variety
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of cortical motions have quantitatively estimated. Having obtained the intraoperative

data of cortical motion, we now conclude our discussion on stereopsis and move on with

a presentation of how to use the stereoscopically estimated intraoperative data to guide

brain models to compensate for brain shift.
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Chapter 5

Brain Modeling

Brain modeling offers a less expensive alternative to full-volume intraoperative imaging

techniques such as iMRI for the compensation of the brain shift. The goal of brain

modeling is to produce a displacement field over the patient’s brain that accurately

represents the current deformation in the OR . This vector field provides a non-rigid

transformation that relates the preoperative image data with the patient anatomy during

surgery, and hence can be used to update the pMR volume. Typical brain deformation

models combine the bio-mechanical properties of the brain and boundary and volumetric

forcing conditions to predict how tissue moves under these conditions [64, 29, 17, 24, 75,

13]. Due to the complexity of brain shift patterns [32] and uncertainties among forcing

conditions, several groups have suggested that the accuracy of these models can be

improved when measurements of brain motion acquired during sugery are used to guide

the model estimates [24, 75, 49, 80]. In previous chapters, we have employed stereopsis

to estimate the shape of the cortical surface and track its motion over time. In this

chapter, the intraoperative displacement is used to guide a brain model to estimate the

motion of other parts of the brain. We begin our discussion with a general description

of the brain model employed for this task.
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5.1 Dartmouth Brain Model

We have adopted a poroelastic model, using Biot’s consolidation formulation [6] to rep-

resent the brain as a deformable porous medium. Biot’s theory of consolidation describes

the continuum as biphasic in nature. More specifically, the brain volume contains a solid

matrix with the interstitial spaces filled with an incompressible fluids (such as CSF and

saline). The gravity and hydraulic body forces as well as surgical forces are included

in the model. The volumetric force due to gravity is based on the difference between

the density of the brain tissue and the surrounding fluid. The hydraulic body force is

created by the fluid in the interstitial space. This model implies that tissue deformation

is characterized by two distinct stages. When the brain is subjected to a load there is an

instantaneous deformation at the contact area followed by a second stage of additional

deformation from exiting interstitial fluid. Gradients of interstitial fluid pressure are

distributed volumetrically, hence, the net body force acting on a given volume is the

interstitial pressure gradient integrated spatially over that volume. The above concepts

can be described mathematically using Equation (5.1). Although the interstitial fluid

is incompressible, the interstitial space is not necessarily saturated with the fluid, i.e.,

gaseous voids may be present. This can be conceptualized as a net compressibility which

acts to delay the distribution of pressure and create a more diffusion-like behavior of the

pressure rather than the instantaneous propagation associated with incompressibility,

Equation (5.2):

∇ ·G∇u+∇
G

1− 2ν
∇ · u− α∇p+ (ρt − ρf )g = 0, (5.1)

α
∂

∂t
(∇ · u) +

1

S

∂p

∂t
−∇ · k∇p = Ψ. (5.2)

In these equations, the functions u and p are the displacement vector and pore fluid

pressure to be computed, and the remaining parameters are defined in Table 5.1. Finite

element treatment of equations 5.1 and 5.2 in the pore fluid pressure leads to a modi-

fication of the discrete matrix system for time advancement of the solution reported in

[64]. The solution to equations 5.1 and 5.2 is obtained by applying known boundary
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Table 5.1: Parameters used in the brain model equations
parameter description typical value

G shear modulus 2100Pa
ν Poisson’s ratio 0.46
ρt density of brain tissue 1000 kg

m3

ρf density of surrounding fluid 1000 kg
m3

k hydraulic conductivity 1× 10−7 m3s
kg

α ratio of fluid vol. extracted to change in solid vol. 1
1/S fluid that can be forced into the tissue 0

under constant vol.
Ψ pressure source strength 0Pa/s

and volumetric forcing conditions and solving for u and p. The material parameters in

this equation are based on values in the literature, as well as those deduced through

optimization in our own experiments [61].

These boundary and volumetric forcing conditions include fluid saturation in the

lower portion of the brain, the gravitational direction acquired during surgery, stress-

free conditions at the craniotomy and at the highest elevation of the brain, zero normal

displacement and zero tangential traction beneath the remainder of the cranium, free

flow of fluid at the craniotomy site, and no flow of fluid beneath the rest of the cra-

nium. With the constraints of these conditions, the brain model produces a prediction

of deformation over the entire patient’s brain.

The estimated intraoperative displacement is incorporated into the brain model as

follows. For each craniotomy node for which a displacement was estimated, the corre-

sponding finite element equations are precisely enforced by this displacement [75, 24].

The output of this brain model is a displacement field over the entire patient brain,

which is then used to update the entire pMR volume.
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5.2 Intraoperative Update

The brain model guided by the intraoperative data can now be used to update the

pMR volume to reflect the changes occurring during surgery. First, the bony skull

corresponding to the craniotomy site is removed from the pMR volume. This region is

identified by rigidly registering the estimated cortical surface in the OR space to the

pMR volume. Once overlayed, the estimated cortical surface defines the boundaries of

the region of the pMR volume to be removed. Second, the brain model displacement

field is applied to the entire brain in the pMR volume to update the internal tissue. The

updated MR (uMR) volume is a combination of the remodeled skull and the deformed

brain.

5.3 Results

In the previous chapter, three neurosurgical procedures (surgeries 2, 3, and 4 from

Table 3.1) were used to illustrate how the baseline cortical deformation was estimated.

In this chapter, we use these estimated intraoperative data to guide our poroelastic model

for recovering full brain deformations. Some of these results have appeared in [82]. Here

the patients’s characteristics and the estimated cortical motion relative to pMR volumes

are stated again. Surgery 2 in Table 3.1 involved a 63-year-old female with a right

temporal hemangioma and MCA aneurysm. Surgery 3 involved a 62-year-old male with

a renal cell carcinoma in the right posterior temporal region of the brain. Surgery 4

involved a 62-year-old male with renal cell carcinoma in the right posterior temporal

region of the brain. For surgery 2, of the 174 craniotomy nodes, 112 collapsed and 62

distended. The average displacement of collapsing nodes was 4.76mm, with a maximum

of 8.66mm and a minimum of 1.57mm. The average displacement of distending nodes

was 3.54mm, with a maximum of 5.64mm and a minimum of 0.12mm. For surgery

3, all 44 craniotomy nodes distended. The average displacement was 6.29mm, with a
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Figure 5.1: The intraoperative cortical surface (yellow) overlayed with two axial slices

and two coronal slices from the pMR volume (top row) and the same slices from uMR

volume (bottom row).

maximum of 9.03mm and a minimum of 2.95mm. For surgery 4, all 48 craniotomy

nodes distended, with an average magnitude of 14.35mm, a maximum of 17.82mm and

a minimum of 10.45mm. These results are also presented in Figure 4.5 and Table 4.1 in

the previous chapter.

5.3.1 Intraoperative Update

The estimated cortical displacement (previous chapter) was used to guide the bio-

mechanical model, as described in Section 5.1. This model generated a displacement

field which was then applied to the pMR volume. Figures 5.1, 5.2 and 5.3 present the

results from the three surgeries. The top row in each figure consists of the pMR slices

(two axial slices and two coronal slices) with the reconstructed cortical surface overlayed

in yellow. Note the misalignment between the intraoperative and preoperative surfaces.
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Figure 5.2: The intraoperative cortical surface (yellow) overlayed with two axial slices

and two coronal slices from the pMR volume (top row) and the same slices from uMR

volume (bottom row).

The bottom row displays the intraoperative surface overlayed with the updated MR

(uMR). Note that these surfaces are now in good alignment.

5.3.2 Validation Using Co-registered iUS

In the previous section we showed how the incorporation of measured cortical motion

into brain models can more accurately represent the surface of the brain. Here, we

demonstrate how this correction can more accurately compensate for tissue motions in

the interior regions of the brain as well.

Three MR volumes from both surgery 2 and surgery 3 were selected for comparison:

the pMR volumes, and the two uMR volumes generated by the brain model with and

without stereopsis guidance. In the model calculation guided by stereopsis, the boundary

condition at the craniotomy site was of type I, constraining the cortical surface to the
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Figure 5.3: The intraoperative cortical surface (yellow) overlayed with two axial slices

and two coronal slices from the pMR volume (top row) and the same slices from uMR

volume (bottom row).

observed deformation, whereas for the model without guidance, the boundary condition

on the exposed surface was a type II, stress free condition. All other forcing conditions

were identical for the two model calculations used to generate the uMR volumes. The

location of a sub-surface tumor was compared in all three of these MR volumes with

intraoperative ultrasound (iUS) 1. Prior to surgery, the iUS was calibrated and its 2-D

image plane was rigidly registered to the world frame defined by the Polaris System

and then to the pMR volume [49]. For each iUS image, a corresponding oblique image

slice from the MR volume was formed by computing the intersection between the co-

registered iUS image plane and 3-D MR volume. The sampling lattice of the oblique

1A 2-D iUS was employed (SONOLINE Sienna digital ultrasound, Siemens Medical Systems, Elm-

wood Park, NJ, USA) with a 5MHz curved array. A 6cm depth scale was used, and the iUS transducer

was rigidly attached with a 3-D spatial tracking device (Model TT002-C, Traxtal Technologies, Toronto,

Ontario, Canada).
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Figure 5.4: MR (red) and US (green) overlays from surgery 2. Three different iUS

images and their corresponding MR slices are shown in each column. The top row is

the pMR volume, the middle row is the uMR with stereopsis guidance, and the bottom

row is the uMR without stereopsis guidance.

MR image was chosen to be the same as the iUS image and a color image of the overlay

between the two was formed with the iUS image in green and the corresponding oblique

MR slice in red. Figures 5.4 and 5.5 are representative examples from the first and

second surgery, respectively.

Shown in each column of each of the two figures are three different iUS images with

their corresponding MR slices. The top row is the pMR volume, the middle row is

the uMR with stereopsis guidance, and shown in the bottom row is the uMR without
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Figure 5.5: MR (red) and US (green) overlays from surgery 3. Three different iUS

images and their corresponding MR slices are shown in each column. The top row is

the pMR volume, the middle row is the uMR with stereopsis guidance, and the bottom

row is the uMR without stereopsis guidance.

stereopsis guidance. Note that, in both Figures 5.4 and 5.5, the sub-surface tumors in

the iUS are in good alignment with the uMRs with stereopsis guidance, but are generally

in poor alignment in the other volumes. Note also, in both Figures 5.4 and 5.5, that

the surfaces of the iUS transducer in the middle rows are well aligned with the cortical

surfaces.

To quantify this improvement, we manually outlined the tumor in the pMR vol-

ume, in the stereopsis-guided uMR volume, in the non-guided uMR volume, and in the

corresponding iUS images from surgery 3. These contours were aligned using the ICP
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Table 5.2: Comparison of tumor alignment between MR volumes and co-registered

iUS

MR Volume max min mean
(mm) (mm) (mm)

pMR 8.7 1.9 5.2
stereo-guided uMR 5.3 0.4 2.8
non-guided uMR 10.5 2.6 6.5

algorithm, as described in Chapter 4. The alignment errors between these MR volumes

and iUS are presented in Table 5.2. The mean alignment error was reduced from 5.2mm

between pMR and iUS to 2.8mm between stereo-guided uMR and iUS. The same error,

however, increased from 5.2mm to 6.5mm when the brain model was not deployed under

stereo guidance. This was due to the fact that, without intraoperative data, the model

predicted a collapsing tissue motion in response to the craniotomy and dural opening.

The example illustrates that motion estimation at the surface is capable of improving

the accuracy of the entire updated image volume of the brain, including sub-surface

regions.

In summary, we have designed and implemented an intraoperative stereo vision (iSV)

system capable of estimating the 3-D shape of the surgical scene in near real-time. In

three clinical examples, we have estimated the deformation of the cortical surface upon

the opening of the dura. The intraoperative cortical displacement is then used to guide

a full brain deformation model, which updates the pMR volume. We have shown that

the estimated cortical shape and motion is able to guide a full brain deformation model,

allowing it to accurately compensate for significant shifts both at and below the cortical

surface. In an exemplary case, we report an average error reduction of 3.7mm relative to

the model estimate without using intraoperative data. In the next chapter, we extend

our modeling method to a different stage of a surgical procedure, where tissue retraction
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is modeled with the guidance of the stereoscopic data.
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Chapter 6

Tissue Retraction

During neurosurgery, the surgeon often employs retractors to intentionally deform the

tissue in order to gain access to deeper structures. Although the retraction of brain

parenchyma during surgery is common, detailed studies of the effects of retraction on

tissue are few [32]. Existing simulations are largely limited to qualitative descriptions

of the retraction process [45] and are not capable of producing an accurate estimate of

the mechanical effect on the parenchyma.

As we have seen in the previous chapter, computational brain models have proven to

be powerful in compensating for brain shift, but their success has been largely limited to

the initial tissue response to the craniotomy and dural opening. Miga et al. proposed a

strategy for digitizing the motion of the retractor and the volume of the resection cavity

in order to incorporate these changes into a brain model [59]. In their initial attempt, the

intraoperative data were only qualitatively estimated based on preoperative images due

to the difficulty in tracking surgical tools and the brain surface during surgery. Using

porcine subjects, Platenik et al. [65] demonstrated that their brain deformation model is

capable of capturing 75% - 80% of the tissue motion generated during interhemispheric

retraction.

In order to accurately model the retraction of a human brain, we employ the iSV
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system to capture the motion of a retractor and continuously monitor the cortical motion

during tissue retraction. The measured motion of the retractor is incorporated into

the brain model to produce full volume deformation estimates, which are then used to

update the pMR volume. Using this approach, we have modeled tissue changes both

during retraction and after the release of the retractor in a clinical case.

6.1 A Clinical Case

The modeling of tissue resection follows the same strategy as presented in the last section

of Chapter 1. A clinical case study is presented to illustrate how we use the motion of the

retractor to model the tissue retraction process. The patient was a 52-year-old female

with a right sphenoid wing meningioma. 1 Because of the location of the tumor, the

surgeon performed a craniotomy at the right temporal region of the skull and retracted

the brain tissue at the craniotomy site in order to gain access to the tumor. In order to

capture the motion of both brain and surgical tools, the iSV system was used to record

the surgical field every ten seconds during the entire procedure.

Prior to surgery, the iSV system was calibrated to obtain the intrinsic and the extrin-

sic camera parameters. After the patient was anesthetized in the OR, patient registra-

tion was performed using seven scalp-attached fiducials. FRE and TRE of the patient

registration were 1.98mm and 1.78mm respectively.

Prior to surgery, a standard volumetric MRI was obtained for the patient using

1.5 Tesla GE MR scanner, and the brain was segmented. A finite element mesh was

generated from the resulting segmented brain and registered to the real-time microscope

images acquired at the start of surgery, as shown in Figure 6.1(left and middle). The

surface nodes that correspond to regions of the craniotomy site (lighter gray) and the

tissue underneath the retractor (darker gray) are identified using the rigid registration

1This surgery is not listed in Table 3.1.
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Figure 6.1: Shown, from left to right, are (a) the results of projecting the mesh surface

nodes onto the surgical scene, where the nodes within the craniotomy boundary are

plotted as asterisks and the others as open circles; (b) a second projection of the mesh

surface nodes, where those corresponding to brain tissue underneath the retractor are

plotted as asterisks and the others as open circles; and (c) the mesh with the craniotomy

nodes colored in lighter gray and the retractor nodes colored in darker gray.
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between the microscope view and the pMR volume, as shown in Figure 6.1(right).

Shown in Figure 6.2(top) is a stereo pair of the retracted brain tissue. From these

images, shapes of the retractor and the cortical surface were computed. These shapes

were overlaid with the preoperative mesh to illustrate the tissue deformation, as shown in

Figure 6.2(bottom). As a result of tissue retraction, the anterior portion of the exposed

cortical surface collapsed and the posterior portion of the cortical surface distended.

From the retractor nodes in Figure 6.1 and the shape of the blade in Figure 6.2, the mo-

tion of the retractor was estimated using the ICP algorithm. Of the 13 retractor nodes,

8 collapsed and 5 distended. The average displacement of collapsing nodes was 9.23mm,

with a maximum of 12.34mm and a minimum of 4.34mm. The average displacement of

distending nodes was 5.42mm, with a maximum of 6.34mm and a minimum of 2.45mm.

The estimated retractor motion was used to guide the brain deformation model,

as described in Chapter 5. This model produced a displacement field which was then

applied to the pMR volume. Figure 6.3 presents the result from this update. The

images on the left are the axial slices in the pMR volume with the reconstructed cortical

surface (white curves) overlaid. Note the misalignment between the intraoperative and

preoperative surfaces. The images on the right display the intraoperative surface overlaid

with the updated MR (uMR). Note that these surfaces are now in better alignment.

6.2 Validation

In order to confirm the viability of our approach in modeling tissue retraction, we com-

pared the model-estimated cortical motion with the same motion captured via stereopsis.

Given the accuracy of the iSV system at approximately 1mm [82], we consider the latter

estimate as close to the ground truth. The cortical surface surrounding the retractor

was used as an independent evaluative landmark.

To begin, the retractor nodes were subtracted from the craniotomy nodes. The re-
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Figure 6.2: Shown are: the stereo pair of the retracted brain (top); relative position

of the retractor (black arrow) and the deformed cortical surface (dotted arrow) to the

preoperative mesh (bottom left) and a close-up view of the same figure (bottom right).

maining craniotomy nodes, corresponding to the cortical surface surrounding the retrac-

tor, were selected for comparison. This set of surface nodes was defined as the cortical

nodes. As described previously, the brain model had predicted a displacement for each

cortical node. From the stereo pair shown in Figure 6.2, the shape of the cortical surface

surrounding the retractor was estimated. Using the method described in Chapter 4, the

stereo-based estimate of the exposed cortical surface was compared with the correspond-

ing mesh surface, i.e., the cortical nodes, to obtain their displacement. Of 24 cortical

nodes, the stereo-based strategy estimated that, 15 of those nodes collapsed and 9 dis-

tended during retraction. The average displacement of collapsing nodes was 8.76mm,
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Figure 6.3: The retracted cortical surface (white curves) overlaid with axial slices

from the pMR volume (top) and the same slices from uMR volume (bottom).
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with a maximum of 10.65mm and a minimum of 2.46mm. The average displacement of

distending nodes was 4.64mm, with a maximum of 5.64mm and a minimum of 1.83mm.

We next computed, for each cortical node, the absolute difference between the stereo-

and model-estimated displacement. The relative difference was determined as the ab-

solute difference divided by the amount of displacement estimated via stereopsis. The

final error estimates were cast as the percent capture of tissue motion by subtracting

each relative difference from 100 percent. These error estimates were computed in all

Cartesian directions (X,Y, Z) and in overall magnitude, Table 6.1. In this particular

case, we have found that our model was capable of capturing approximately 75% of the

cortical motion.

In order to further confirm the viability of our approach, we have employed the same

strategy to model tissue changes after the release of the retractor. Thirty seconds af-

ter the stereo pair in Figure 6.2 was acquired, the iSV system recorded another stereo

pair shown in Figure 6.4 (top). The shape of the cortical surface was estimated using

stereopsis and overlaid with the uMR generated during tissue retraction, as shown in

Figure 6.4(bottom left). Note that the cortical surface did not fully recover from the

induced tissue deformation. The motion of the retractor nodes was tracked during the

recovery phase after blade removal. Of 13 cortical nodes, four collapsed and nine dis-

tended after the tissue was released. The average displacement of collapsing nodes was

2.43mm, with a maximum of 4.26mm and a minimum of 1.02mm. The average displace-

ment of distending nodes was 7.32mm, with a maximum of 9.18mm and a minimum

of 4.69mm. These retractor node displacements were used to guide the brain deforma-

tion model for updating the uMR generated during retraction. The images on the right

display the current cortical surface overlaid with the uMR generated after 30 seconds

during the recovery phase. Note that, compared to the images on the left, the alignment

between the intraoperative cortical surface and the surface in the uMR improved as a

result of this update. For this modeling step, we also compared the motion of the corti-

cal nodes predicted by the model with the stereo estimation. The model was capable of
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Table 6.1: Percent Capture

of Deformation During Re-

traction
mean max min

X 71.6 97.4 56.7
Y 66.3 89.9 44.3
Z 82.1 98.9 64.4

magnitude 74.8 97.2 53.1

Table 6.2: Percent Cap-

ture of Deformation After

Retraction
mean max min

X 69.2 94.3 49.2
Y 78.1 98.4 55.4
Z 65.3 92.1 45.1

magnitude 72.3 96.8 47.9

capturing approximately 72% of the cortical motion during the recovery phase, as shown

in Table 6.2.

In summary, we have presented a technique for modeling tissue retraction. By mon-

itoring changes in the surgical field every ten seconds, we have estimated the motion

of a retractor and its concomitant cortical surface movement. The retractor motion is

then used to drive brain deformation models for updating the pMR volume. Using the

cortical surface surrounding the retractor as an independent evaluative landmark, we

show that our approach can recover on average approximately 75% of the tissue defor-

mation. So far, we have completed our discussion on using stereoscopically estimated

intraoperative data to guide the brain model to compensate for brain shift. Next, we

present some other cortical motions captured by the iSV system during surgery.
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Figure 6.4: Stereo pair of the surgical scene taken 30 seconds after the retractor was

released (top); The intraoperative cortical surface (white curves) overlaid with axial

slices from the uMR volume generated during retraction (bottom left) and the same

slices from uMR volume generated after retraction (bottom right).
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Chapter 7

Other Types of Cortical Motion

Advantages of our iSV system include its fast acquisition rates, predominantly auto-

mated steps, and overall accuracy. As described below, these characteristics allow us

to capture other important cortical behavior that enhances image-guidance and overall

clinical decision-making during surgical procedures.

7.1 Resection Cavity

Tissue resection is the major objective in many neurosurgical procedures. Since the

pMR images cannot reflect brain deformations, there is a need to update the informa-

tion regarding the location of a target lesion. To date, intraoperative MRI/CT and

intraoperative US are the only modalities employed for intraoperative imaging. While

iMRI is costly, the void in the resection cavity poses challenge for ultrasound.

We have employed our iSV system to provide a real-time update of the tissue topol-

ogy at the craniotomy site referenced to the initially registered pMR. We use surgery 2 in

Table 3.1 as an example to illustrate how the shape of the resection cavity is captured.

This operation involved a 63-year-old female with a right temporal hemangioma and

MCA aneurysm. During surgery, the tumor in the right parietal region was resected

97



and a resection cavity was created. A stereo pair acquired at this stage is shown in

Figure 7.1. The shape of the cortical surface, including the resection cavity, was re-

constructed, as shown in Figure 7.1 (bottom) from two different vantage points. Using

the techniques described in the previous section, the reconstructed cortical surface and

resection cavity are presented as yellow lines in the pMR space, as shown in Figure 7.2.

The ability to provide surgical guidance was further enhanced through the illustration of

the progression of tissue deformation during surgery. Here, the cortical surface, after the

opening of the dura, was also plotted (green) in the preoperative image volume. Note

that the resection cavity extended into the tumor region in the pMR and the cortical

surface deformed significantly after tissue retraction and resection. Note that the resec-

tion cavity did not encompass the tumor. This is likely due to the subcortical tissue

deformation resulting from the resection.

Tissue retraction and resection can also be mathematically modeled for updating the

pMR images. Miga et al. proposed a strategy to model the effect of tissue retraction and

resection [59]. Their technique requires the identification of the resected tissue volume.

In their initial attempt, the resected tissue volume was identified manually based on the

pMR images of the expected tumor margin. Using the iSV system, we can perform this

task intraoperatively and obtain much more accurate results. Shown in Figure 7.3 are

the pMR images with the resected area painted in green. The resected area consists

of the resection cavity reconstructed using stereopsis and the tumor volume manually

segmented from the pMR volume. Our iSV system offers the ability to continuously and

intraoperatively monitor the shape of the cortical surface during resection. It is only

able to continuously estimate the shape of the cortical surface during resection. The

ICP algorithm is not suitable for tracking tissue motion resulting from resection due to

the complex and nonrigid tissue deformation pattern.
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Figure 7.1: Stereo pair of the surgical scene (top) after partial tumor resection and

reconstructed cortical surface (bottom, units on axes are in millimeters.) with the

resection cavity viewed from two different vantage points.
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Figure 7.2: Reconstructed cortical surface with the resection cavity (yellow) plotted

in registered pMR slices. Note that the cavity extends to the tumor region in the

preoperative volume. The cortical surface after dural opening is also shown (green)

for comparison. Note the significant tissue motion after tumor resection and that the

reconstructed bony edge of the craniotomy, as expected, remains fused with the skull

in these images.
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Figure 7.3: Shown are the pMR images with the resected tissue volume painted in

green.
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7.2 Brain Pulsation

In 1987, Feinberg et al. described what they believed to be the first observations and

measurements of human brain motion, which occurs in extensive internal regions (par-

ticularly the diencephalon and brainstem) and is synchronous with cardiac systole [23].

This physiologic motion of the brain reflects the response of the brain parenchyma,

spinal chord, and CSF to changes in arterial and venous pressures and volumes during

the cardiac cycle [27, 19]. The pulsatile motion can also be observed at the cortical

surface at the site of craniotomy, but the degree of these motions varies among patients.

To estimate the pulsation of the cortical surface, a video of the surgical scene is

acquired at 15 frames per second. Each frame consists of a stereo image pair. The

operating microscope is kept stationary during the image acquisition to minimize the

tracking error. From the first image pair in the video, several cortical features were

chosen to be tracked. As described earlier, the motions of these features were estimated

over the duration of several seconds.

Shown in Figure 7.4 are the cortical surfaces captured during surgery 2 and surgery

6 (left and right respectively). Surgery 2 involved a 63-year-old female with a right

temporal hemangioma and MCA aneurysm. Surgery 6 involved a 38-year-old male with

a cystic glioma in the left temporal lobe of the brain. Three points on each of the

cortical surfaces (indicated by a circle, an asterisk and a triangle) were selected for

tracking for a duration of approximately two cardiac cycles. The displacements of these

features were measured relative to their locations at the beginning of tracking. These

displacements are plotted with respect to time in Figure 7.4. The patient in surgery

6 shows a pulsation with a maximum amplitude of nearly 2mm, while the patient in

surgery 2 shows practically no motion (an absolute displacement smaller than 0.5mm

is likely due to noise in the reconstruction). The factors that influence the pulsation

of the brain may include patient’s sex, age, tissue pathology, cardiac output, and drug

administration. With the ability to track the cortical motion, we now can study the
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relationship between these factors and the pulsation of the brain. The variation in brain

pulsation may be correlated to the physiological characteristics; thus it may be valuable

to quantify this motion.
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Figure 7.4: Comparison of cortical pulsations between the patient from surgery 2

(upper left) and the patient from surgery 6 (upper right). Three points, indicated by

a circle, an asterisk, and a triangle, were tracked over a duration of approximately two

cardiac cycles. The pulsatile motion of the patient in surgery 6 (lower right) is much

more pronounced (approximately 2mm) than that of the patient in surgery 2 (lower

left).
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Chapter 8

Discussion

The work described in this thesis is motivated by the concern over the misregistration

between the preoperative image studies and the patient anatomy during surgery caused

by brain tissue deformation in an open cranium procedure. Due to this misregistration,

the preoperative image volume needs to be updated to reflect these changes. A promis-

ing strategy in compensating for brain shift combines biomechanical brain deformation

models with intraoperative data to predict the full-volume tissue motion. Aiming at

gaining the cortical displacement data, we have designed and implemented an intraoper-

ative stereo vision (iSV) system capable of estimating the 3-D shape of the surgical scene

in near real-time. In this chapter, we summarize the results from both phantom experi-

ments and clinical studies that support the conclusions that (1) stereopsis is an accurate

and effective way to estimate cortical motions and (2) stereopsis-driven deformation

models are an accurate and effective means of compensating for brain shift. Following

these conclusions, future works to improve the current system are also suggested.

104



8.1 Stereopsis

Central to the strategy of stereopsis-guided brain shift compensation is the estimation of

brain motion during surgery. Similar to other studies using laser range scanners [1, 60]

and stereopsis [77], we have also designed a non-contacting strategy that measures the

3-D cortical shape using stereopsis. Our stereo system is incorporated into the standard

stereoscopic operating microscope. This system acquires stereo images at 15 frames

per second without interrupting the surgical procedure. Given a stereo image pair, the

system automatically reconstructs the 3-D shape of the cortical surface every minute

(running on a 1.1GHz computer). The motion of the estimated cortical surface is then

tracked over time by comparing the different shapes of these surfaces. The estimated

cortical motion is used to guide a full brain deformation model, which updates the pMR

volume.

As compared to laser range scanners, our system is faster and requires no additional

imaging devices. As compared to iMRI or iCT, it is less expensive, much easier to

implement, and does not interrupt the surgery during acquisition. As compared to iUS,

it is more reliable in finding the same feature for tracking and does not require tissue

contact; hence, it does not introduce additional deformations.

To assess the accuracy of the iSV system, we compared the localization of points in

3-D with an optical stylus probe, a well quantified point digitizer. In our first approach,

we measured, using the stylus probe, the 3-D location of several micro-screws used as

fiducial markers placed on the bony rim of the cranial opening. During ten clinical cases,

38 fiducials were implanted and digitized using both methods. Each case employed an

average of 3.8 fiducials, with a maximum of 5 and a minimum of 3. With 1000 matching

tokens applied, the difference between the stereoscopically and stylus- estimated 3-D

locations of the markers was 1.02mm with a standard error of 0.07mm.

In our second approach, a planar geometrical pattern was constructed to better

simulate point objects. The 3-D coordinates of the intersection between the various

105



geometrical shapes on the pattern were estimated using both stereopsis and the optical

stylus. From the 98 intersections, the RMS difference between the stereopsis and stylus

estimates was 0.93mm with a standard deviation of 0.41mm. The maximum error was

1.61mm, with a minimum error of 0.20mm. The mean errors observed both in this exper-

iment and the experiments involving micro-screws (0.93mm and 1.02mm, respectively)

are close to the accuracy for the optical stylus of 0.87mm.

In order to confirm the viability of our system in estimating a 3-D shape, we compared

the accuracy of our stereo system against a CT reconstruction. A brain-shaped phantom

was constructed to facilitate this process. A CT scan of the phantom was then obtained,

from which the shape of the cortical surface was manually extracted. The phantom was

then brought to the OR, and its surface estimated using stereopsis. The mean difference

between the shape estimated using stereo and the one detected by the CT was 1.16mm

with a maximum of 2.96mm and a minimum of 0.08mm.

In order to address the concern using only a subset of matching tokens for the stereo

reconstruction, we measured the density of the reconstructed surface by computing the

distance between all neighboring pairs of matching tokens. From ten clinical cases, the

point clouds representing the final estimated surfaces contained a mean of 1098 points.

The mean distance between neighboring pairs of matching tokens was 1.1mm. Based on

these studies, we found that approximately 1000 matching tokens is sufficient to capture

the topology of the cortical surface.

From these series of experimental results, we conclude that our iSV system is accurate

to within approximately 1mm. This accuracy serves as a solid basis for the tracking of

cortical motion, which is performed by comparing the shape of the cortical surface over

time.
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8.2 Cortical Tracking

The tracking of the cortical surface involves two phases: (1) the first stereoscopically

estimated cortical surface in the OR is compared with the cortical surface in the pMR

volume to establish the baseline cortical motion; and then (2), the cortical surface is

continuously tracked in the OR by comparing the current shape of the cortical surface

with the previously estimated shape. In both phases of motion tracking, we employ the

iterative closest point (ICP) algorithm to simultaneously establish this correspondence

between different shapes of the cortical surface and estimate the displacement.

To quantify the accuracy in tracking of the cortical surface, we again compare results

obtained through stereopsis with optical stylus measurements. In a clinical case involving

a cyst drainage, three cortical features were digitized using the stylus before and after

the cortical deformation and the displacement vectors associated with these features

were then computed based on the digitization data. When using stereopsis for tracking

these cortical points, we manually located them on the reconstructed surface before cyst

drainage. The displacement of each feature was then calculated using ICP and using a

simple gravitational sagging model (GS). In this particular case, compared to the stylus

estimation, ICP underestimated the cortical displacement by approximately 1.9mm and

GS overestimated the cortical displacement by approximately 1.0mm. The quantification

of the tracking error is especially challenging because of the lack of ground truth [40].

While the stylus probe defines the world (OR) coordinate system, which is regarded as

“ground truth”, it also contributes an error component although if well calibrated the

probe error is expected to be small. This error, however, may be exacerbated due to the

inaccuracies in locating precisely the same position on the cortical surface before and

after cyst drainage.

We recognize that the error in tracking the cortical surface in the OR may be higher

than either that associated with localizing points in 3-D or that obtained during phan-

tom studies of the cortical shape. In particular, the correspondences between two recon-
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structed cortical shapes were established by minimizing the overall Euclidean distance

between the two shapes, i.e., the iterative closest point algorithm. The true charac-

teristics of tissue motion may in fact be more complex than that represented by this

assumption. For example, the tissue motion induced by resection, as shown in Fig-

ure 7.2, is largely non-rigid. Therefore, the ICP algorithm may not be suitable for

tracking tissue motion during resection.

8.3 Brain Shift Compensation

The most significant benefit of our system is that the estimated cortical shape and motion

is able to guide a full brain deformation model, allowing it to accurately compensate

for significant shifts both at and below the cortical surface. For each craniotomy node

for which a displacement was estimated, the corresponding finite element equations are

precisely enforced by this displacement. Under the guidance of the cortical displacement,

the poroelastic brain model generated a displacement field which was then applied to

the pMR volume.

In three clinical cases, we show that the model was able to accurately compensate for

significant shift at the cortical surface. In two of these clinical cases, intraoperative ultra-

sound was employed to demonstrate how this correction more accurately compensated

for tissue motions in the interior regions of the brain. To quantify this improvement, we

manually outlined the tumor in the pMR volume, in the stereopsis-guided uMR volume,

in the non-guided uMR volume, and in the corresponding iUS images of one surgery. The

mean alignment error of tumor margins between MR and iUS was reduced from 5.2mm

between pMR and iUS to 2.8mm between stereo-guided uMR and iUS. The same error,

however, increased from 5.2mm to 6.5mm when the brain model was not under stereo

guidance. In this particular case, an average error reduction of 3.7mm was observed

relative to the model estimate without using intraoperative data.
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We also applied the stereopsis-guided brain shift compensation strategy to the de-

formation induced by retraction. In another clinical example, by monitoring changes in

the surgical field every ten seconds, we have estimated the motion of a retractor and its

concomitant cortical surface movement. The retractor motion is then used to drive the

brain deformation model to update the pMR volume. Using the cortical surface sur-

rounding the retractor as independent evaluative landmarks, we show that our approach

can recover on average approximately 75% of the tissue deformation.

From these clinical examples, we conclude that cortical data driven deformation

models do hold promise as cost-effecitive and efficient means of providing updates to

the preoperative image volume so that the accuracy of an image-guided system can be

maintained during surgery.

8.4 Other Types of Cortical Motion

As we have seen from both phantom studies and clinical cases, advantages of our iSV

system include its fast acquisition rates, predominantly automated steps, and overall

accuracy. These characteristics allow us to capture other important cortical behavior

that enhances image-guidance and overall clinical decision-making during surgical pro-

cedures.

One of these important cortical changes is the resection cavity. We have employed

our iSV system to provide a real-time update of the tissue topology at the craniotomy

site referenced to the initially registered pMR. Although it is challenging to recover the

tissue motion in response to the resection, the estimated resected volume can be used

for the modeling of the tissue resection, a strategy proposed by Miga et al. [59]. Our

iSV system is capable of estimating the resected volume intraoperatively.

Another utility of the iSV system is its ability to measure brain pulsatility, whose

relationship to both normal and pathological patient conditions warrants further inves-
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tigation.

8.5 Future Works

In light of these successes, we are considering several extensions to the system. First,

we plan to expedite the process of stereoscopic reconstruction. With some refinement of

the code and a faster computer, the stereo reconstruction can be executed at essentially

the image acquisition rate of 15 frames per second. The current cortical surface tracking

also involves some manual steps, which we plan to eliminate.

There are two ways in which we would like to improve the cortical surface tracking.

First, during the first phase stage of cortical tracking, the preoperative mesh is used as

the starting point of tracking. The tracking result at this stage relies on the accuracy

of both the brain segmentation and registration between the pMR volume and the OR

space. Due to the limited MR image resolution and the uncertainty in brain segmenta-

tion, the finite element mesh surface may not correspond to the true cortical surface in

the pMR volume. Since the brain deformation is minimal prior to opening of the dura,

the shape of the cortical surface estimated via stereopsis may be used to improve the

tracking accuracy during Phase I. Second, the ICP algorithm is deployed to establish

the correspondences between the preoperative mesh and the estimated cortical surface.

This registration is constrained to a rigid transformation, and will not fully capture the

often non-rigid tissue motion. We are therefore investigating more sophisticated and

flexible tracking algorithms that allow us to correlate features in the microscope image

with the reconstructed cortical surface.

In the modeling step, the estimated cortical surface displacement is used directly as

type I boundary conditions to guide the brain model. This strategy offers a convenient

way of constraining the model estimation with intraoperative data and achieves a perfect

match between the data and the model prediction at the points of constraint. Studies
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conducted by Lunn et al. [50, 48], however, have shown that an exact fit to the displace-

ment data may come at the expense of introducing unrealistic forces at the measurement

sites. Furthermore, the inevitable presence of measurement error suggests that enforcing

an exact fit to the data may not lead to a correct full-volume displacement estimate. We

are evaluating several alternative means of incorporating intraoperative data into the

model in order to avoid these limitations. We also plan to combine estimated cortical

displacement data with interior brain motion obtained using iUS.

In the modeling of retraction, we plan to further validate our approach through

imaging subsurface regions of the brain using co-registered intraoperative ultrasound.

In addition, in order to improve the modeling results, we plan to test other more so-

phisticated boundary conditions at the retraction site, in order to produce more realistic

tissue motion such as traction along the retractor blade. Finally, we plan to investigate

the role of the material properties of the brain in the finite element model. The ability

to continuously monitor tissue behavior during the retraction process has the potential

of generating more realistic and patient-specific model parameters, which may improve

the accuracy of the model estimate.

We would like to model tissue resection by incorporating the stereoscopically esti-

mated resection volume into the brain model. Note that, in Figure 7.2, the resection

cavity (yellow) did not encompass the entire tumor. This is likely due to subcortical tis-

sue deformation in response to the resection, itself, which was not quantified in this case

and deserves more attention in the future. We are also working on the synchronization

of the brain pulsatile motion with the patient’s cardiac cycle and other physiological

parameters to investigate its relationship to both normal and pathological patient con-

ditions.

In summary, we have designed, implemented, and tested an end-to-end system for

measuring intraoperative cortical motion, and have shown that these measurements can
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be used to more accurately compensate for brain shift.
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Appendix A

Non-coplanar Calibration

Assuming the camera model described in Section 2.1.1, we need to estimate the camera

parameters consist of 11 unknowns (3 rotation angles (θx, θy, θz), 3 translation com-

ponents (tx, ty, tz), the focal length (f), the lens distortion parameter(κ1); assuming a

first-order approximation, the scale factor (Sx), and the 2 components of the image cen-

ter (Cx, Cy). A calibration target shown in Figure 2.4 is employed for the calibration.

This target is placed in the microscope field of view, as shown in Figure 2.2, and an

image is digitized from each camera of the stereo pair. The centroid of each calibration

marker is automatically estimated and its spatial coordinates, (xf , yf ), along with its

known 3-D positions, (X,Y, Z) are recorded. The calibration markers are located on

three different planes and hence require the non-coplanar calibration scheme. Below is

the ten-step non-coplanar calibration procedure developed by Tsai [89].

1. For each calibration point, i, with computer image coordinates (xfi, yfi), determine

the distorted sensor coordinates (xdi, ydi):

xdi =
Ncxdx

NfxSx

(xfi − Cx)

ydi = dy(yfi − Cy), (A.1)

letting, Sx = 1, and (Cx, Cy) be the center pixel of the computer image. These
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equations are obtained by solving for (xdi, ydi) in Equation (2.8) in Section 2.1.1.

2. For each calibration point, i, solve the set of linear equations:




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












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









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







= xdi (A.2)

Equation (A.2) is a set of linear equations with, seven unknowns (t−1
y Sxr1, t

−1
y Sxr2,

t−1
y Sxr3, t

−1
y Sxtx, t

−1
y r4, t

−1
y r5, t

−1
y r6). Given seven known points (Xi, Yi, Zi) and

(xdi, ydi), the set of linear equations may be solved by inverting the square 7 × 7

matrix on the left hand side and multiplying by the 7 × 1 matrix on the right

hand side. Given n calibration point (n > 7), the set of over-constrained linear

equations can be solved by multiplying the right hand side by the pseudo-inverse

of the n× 7 matrix.

3. Solve for the absolute value of ty:

|ty| = ((t−1
y r4)

2 + (t−1
y r5)

2 + (t−1
y r6)

2)−1/2 (A.3)

Equation (A.3) stems from the fact that R is a rotation matrix, as such the sum

of squares of each column or row is equal to 1 ([r4, r5, r6] constitute the second row

of the rotation matrix).

4. Determine the sign of ty:

(a) Select a calibration point with image coordinates (xfi, yfi) and world coordi-

nates (Xi, Yi, Zi) whose image coordinates are not near the center (Cx, Cy).
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(b) Let the sign of ty be +1.

(c) Calculate the values xt and yt as given in Equation (A.4).

(d) If xt and xfi have the same sign and yt and Yi have the same sign, then the

sign of ty is +1, otherwise, the sign of ty is −1.

xt = r1Xi + r2Yi + r3Zi + tx

yt = r4Xi + r5Yi + r6Zi + |ty|, (A.4)

where,

r1 = (t−1
y Sxr1)|ty|

r2 = (t−1
y Sxr2)|ty|

r3 = (t−1
y Sxr3)|ty|

r4 = (t−1
y r4)|ty|

r5 = (t−1
y r5)|ty|

r6 = (t−1
y r6)|ty|

tx = (t−1
y Sxtx)|ty|

5. Solve for Sx:

Sx =
√

(t−1
y Sxr1)2 + (t−1

y Sxr2)2 + (t−1
y Sxr3)2|ty| (A.5)

Note that once again, the sum of square of [r1, r2, r3] is equal to 1.

6. Solve for the rotation matrix R:

r1 = (t−1
y Sxr1)ty/Sx

r2 = (t−1
y Sxr2)ty/Sx

r3 = (t−1
y Sxr3)ty/Sx

r4 = (t−1
y r4)ty
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r5 = (t−1
y r5)ty

r6 = (t−1
y r6)ty (A.6)

These equations come directly from the unknown in the set of linear equations in

Equation (A.2), where, ty and Sx are given in Equations( A.3) and (A.5), respec-

tively. The elements r1 through r6 constitute the first tow rows of the rotation

matrix. Using the orthonormal property of R, the third row [r7, r8, r9] can be

computed as the cross product of the first two rows, [r1, r2, r3] and [r4, r5, r6]:

r7 = r2r6 − r3r5

r8 = r3r4 − r1r6

r9 = r1r5 − r2r4 (A.7)

7. Solve for tx:

tx = (t−1
y Sxtx)ty/Sx, (A.8)

where, ty and Sx are given in Equations (A.3) and (A.5), respectively.

8. Determine an approximation for f and tz:

(yti − dyxdi)




f

tz



 = widyydi, (A.9)

where,

yti = r4Xi + r5Yi + r6Zi + ty

wi = r7Xi + r8Yi + r9Zi

Equation (A.9) stems from the perspective projection equations, where lens dis-

tortion (κ) is assumed to be zero. Similar to Equation (A.2) is a set of linear

equations with, two unknowns (f, Tz). Given two known points (Xi, Yi, Zi) and

(xdi, ydi), the set of linear equations may be solved by inverting the square 2 × 2

matrix on the left hand side and multiplying by the 2 × 1 matrix on the right
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hand side. Given n calibration points (n > 2), the set of over-constrained linear

equations can be solved by multiplying the right hand side by the pseudo-inverse

of the n× 2 matrix.

9. Compute exact solution for f, Tz, and κ1: Using the approximation of f and Tz

from the previous step, and κ1 = 0 as initial values, minimize the following error

function, over n calibration points, using a gradient descent optimization:

∑

i = 1n(x1i − x2i)
2 + (y1i − y2i)

2, (A.10)

where, (x1i, y1i) are calculated using the inverse transformation: image to distorted

sensor and distorted sensor to undistorted sensor; (x2i, y2i) are calculated using the

transformations: world to camera and camera to undistorted sensor.

10. Compute image center (Cx, Cy): Using the approximation of image center as the

center pixel of the computer image, minimize the error function given by Equa-

tion (A.10).
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Appendix B

Real-time Correction Scheme

In Chapter 2, we described in detail the calibration steps for establishing the rigid

registration between the 3-D pMR volume and the 2-D microscope view. It might

appear that the calibration required for the registration is strictly an off-line process.

This system, however, is inherently dynamic in nature. We have found that, a one-time

calibration is simply insufficient to provide the necessary accuracy over the duration of

a surgery. Shown in Table B.1 is a comparison of the registration errors from a phantom

and clinical study. The phantom study consists of a mannequin head with 20 metal beads

implanted on its surface. A CT scan of this phantom is first obtained. The phantom

is then brought into the surgical room where the position of the beads are determined

with the Polaris. A real-time 2-D image is then acquired through the microscope and

the position of each bead is measured by hand. Shown in column one of Table B.1 is the

average error in camera calibration. Shown in column two is the average error between

the 2-D position of the metal beads and the result of passing the 3-D points in patient

space through the transformation ITM
MTW

WTP . Shown in column three is a similar

error, but where the points from the 3-D pre-operative space are passed through the

transformation ITM
MTW

WTP
PTD. The clinical study consists of a similar procedure

but with a patient undergoing surgery. The degradation in accuracy in the clinical case
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Study Camera Calibration Registration with World Registration with 3D data
RMS Error (pixels) RMS Error (mm) RMS Error (mm)

Phantom 0.023±0.005 0.39±0.15 1.37±1.31
Clinical 0.035±0.012 1.767±0.366 4.56±2.17

Table B.1: Registration errors for phantom and clinical studies.

post camera calibration is evident in Table B.1.

Sample images from a phantom and a clinical study are presented in Figure B.1. In

this figure, an asterisk indicates the true position of a feature point and the open circle

denotes the estimated location. Figure B.1(a) shows the camera calibration results for a

phantom study. Figure B.1(b) shows the overlay of the true position of the metal beads

with the result of passing the 3-D points in patient space through the transformation

ITM
MTW

WTP . Figure B.1(c) shows the camera calibration outcomes for a clinical

case. Figure B.1(d) shows the corresponding overlay of the true position of surface

feature points and the result of passing the 3-D points in patient space through the

same 3-D to 2-D transformation. Note that while the camera calibration errors between

the phantom and clinical studies are comparable, the clinical registration errors are

significantly larger. This increase is due to a number of factors, for example, motion

of the microscope between calibration and surgery, the longer duration of the surgery

(approximately 5 hours), or inadvertent jostling of the Polaris. In order to contend

with this system drift in the calibration we have developed an adaptive procedure to

re-estimate, in real-time, the overall system calibration.

We have developed an adaptive procedure to contend with the calibration errors

that accrue during a long surgical procedure. To begin, a few 1mm micro-screws are

Study Bone Markers Cortical Features TRE
RMS Error (mm) RMS Error (mm) (mm)

Before Correction 1.767±0.366 1.823±0.655 3.223±0.989
After Correction 0.146±0.072 0.513±0.224 0.623±0.264

Table B.2: Comparison of errors before and after correction scheme. All the

errors are from the registration between the patient space and the real-time

image.
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Figure B.1: Comparison between phantom (a)-(b) and clinical (c)-(d) studies. As-

terisks denote the true position of feature points, and open circles denote estimated

positions. Note that while the calibration errors are small for both the phantom and

clinical study, (a) and (c), the registration errors are significantly higher in the clinical

compared to the phantom study, (d) and (b), respectively.

implanted on the bony rim of the craniotomy site. These screws act as fiducial markers

that are always in the microscope view. We note that since brain tissue undergoes

significant deformation during surgery, cortical surface features are typically unreliable

fiducial markers for rigid registration.

The 3-D position of the markers are continuously and automatically tracked with

the Polaris and their 2-D position in the real-time microscope image is determined

manually. The matrix MTW is updated by minimizing the RMS error between the

projected position of the 3-D markers and their measured image location. This update

is performed several times throughout the course of the surgery. As we are interested
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in minimizing the system drift, we assume that we can correct all parts of the system

by updating the single matrix MTW . The minimization of this matrix is inherently non-

linear, and a standard gradient descent minimization is employed. At the end of surgery,

the implanted micro-screws are easily removed from the patient’s skull.

Several cortical features on the surface of the brain, usually junctions of cortical

veins, are chosen to test the performance of the correction scheme. The location of

these cortical features are determined and tracked (in world coordinates) using the Po-

laris [34]. These points are then passed through the entire system transformation with

and without the dynamically updated calibration. Shown in Table B.2 is a comparison

between the registration errors before and after correction. In this table the errors for

the fiducial markers and cortical features are compared separately. There is an average

RMS reduction of 92% (from 1.767 to 0.146 mm) for the markers, and 72% (from 1.823

to 0.513 mm) for the cortical features. Also shown in this table is the target registration

error (TRE) [26]. This metric is used here to show that the RMS error for cortical

features is smaller than the calculated TRE with respect to the fiducials. Namely, the

improvement in accuracy after correction is better than our least expectation. Shown in

Figure B.2 are two sample microscope images with several virtual points overlayed. In

this figure, asterisks denote the true position of feature points, triangles the estimated

position before correction, and circles the estimated position after correction. After

correction, the positions are nearly in perfect alignment.

It is worth pointing out that our goal is not to obtain an accurate physical account

of the overall system drift. Rather, it is to reduce the final registration error and in-

crease the robustness of microscope-guided neurosurgery. To this end, we account for

overall system drift through the single transformation matrix MTW (specifically, the

extrinsic camera calibration portion of this matrix). This matrix is updated periodi-

cally throughout surgery by minimizing the positioning error of known fiducial markers.

This straight-forward approach has proven quite effective in several lengthy surgeries,

as illustrated in Figure B.2 and Table B.2.

121



Figure B.2: Sample microscope views with an overlay of virtual points. Asterisks

denote the true position of feature points, triangles the estimated position before cor-

rection, and circles the estimated position after correction.
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In addition to providing more accurate registration, this technique has applications in

evaluating non-rigid brain tissue deformation. Clinical conditions (gravity, loss of CSF,

etc.) can cause significant non-rigid shifts in the brain [16]. For example, gravitational

shifts alone can account for an average of 10mm of intraoperative displacement [70].

This tissue deformation compromises the alignment accuracy of microscope-guided neu-

rosurgery systems. Edwards et al. [18] have shown that when studies move from phan-

toms to patients, registration errors increase from 0.3-0.5 mm to 3-4 mm. Although

intraoperative tissue movement probably contributes to this increase, it is almost cer-

tainly not the only component of the increase in error account for. To model non-rigid

deformation, it is essential to have an accurate rigid calibration. Since this calibra-

tion drift can be substantial, it is critical to update, in real-time, the initial system

parameters.
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Appendix C

Rectification

The goal of rectification of a stereo pair is to warp the stereo images so that the epipolar

lines correspond to one of the image axes, typically image rows. The importance of

rectification is that the identification of the epipolar lines becomes a trivial task after

the image pair are rectified. An image pair can be rectified without knowing the camera

parameters, but the calibration of a stereo pair leads a more straight forward solution

to the rectification. In our case, the stereo pair is calibrated with respect to a common

coordinate frame, therefore the camera positions are known relative to one another.

Let us first review the formation of the original image pair. As shown in Fig-

ure C.1(left), a point (X,Y, Z) in the world reference frame is projected, through two

pinhole cameras centered at Cl and Cr, onto the image sensors at locations (xl, yl) and

(xr, yr). The image formation of both left an right camera can be described by two per-

spective projection matrices (PPMs), Pl and Pr, respectively. It is important to point

out that the nonlinear portion of the camera model including the radial lens distortion

and the unit conversion of image axes is not relevant to the discussion of the rectifica-

tion. This is due to the fact that the epipolar geometry is solely based on the pinhole

projection model. As a result of this assumption, the projected images coordinates,

(x, y), are computed from the original (distorted) image coordinates, (xd, yd) before the
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Figure C.1: The 3-D vision problem and the epipolar constraint: shown on the left

are two pinhole cameras, with centers Cl and Cr, forming the image of a single point.

The projection onto the left image, (xl, yl), has a corresponding match in the right

image, (xr, yr), lying on the epipolar line er. Shown on the right is the rectified image

so that the epipolar lines are coincident with image scan lines (solid lines).

rectification takes place. After rectification, the epipolar lines, el and er, are aligned

with the image raster lines, as shown in Figure C.1(right). The goal of rectification is to

compute two new PPMs, Plr and Prr, that describes the the formation of the rectified

image pair, and hence, these new PPMs are often referred to as the rectifying PPMs.

Knowing Pl and Pr from camera calibration, we can determine the rectifying PPM

Plr and Prr by applying several constraints imposed by the characteristics of the final

rectified image pair. Before we delve into the derivation of the rectifying PPMs, let us

first use the original PPM of an pinhole camera to depict its imaging geometry. This

portion of our discussion is applicable to both left and right cameras, and hence we

omit the subscription which indicates either the left or right camera. As described in

Section 2.1.1, the PPM of a pinhole camera, P , is a 3× 4 matrix:

P =








p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34








(C.1)

Using P , we can derive the mathematical expressions of imaging geometry associated

with this camera. For example, any point (X,Y, Z) on the focal plane must satisfy the
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following equation:

( p31 p32 p33 p34 )












X

Y

Z

1












= 0, (C.2)

since a point on the focal plane is projected to infinity (s = 0). The optical center

C, (Xc, Yc, Zc), is the intersection of three planes: the focal plane, the two planes that

intersect the image plane in the vertical (x = 0) and horizontal (y = 0) axis of the image

coordinates, respectively; therefore,

P












Xc

Yc

Zc

1












= 0, (C.3)

and







Xc

Yc

Zc








= −








p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34








−1






p14

p24

p34







. (C.4)

The optical ray associated to an image point (x, y) is the line 〈C, (x, y)〉. Any point on

this ray, (X,Y, Z) must satisfy the following:








X

Y

Z








=








Xc

Yc

Zc







+ λP−1








x

y

1







, (C.5)

where λ is an arbitrary real number. With these expressions, we next derive the epipolar

geometry.

To do so, we return to the stereo pair. The PPMs of the left and the right cameras

are denoted as Pl and Pr, respectively and,

Pl =








l11 l12 l13 l14

l21 l22 l23 l24

l31 l32 l33 l34







,
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Pr =








r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34







. (C.6)

The optical center Cl and Cr are:








Xcl

Ycl

Zcl








= −








l11 l12 l13 l14

l21 l22 l23 l24

l31 l32 l33 l34








−1






l14

l24

l34















Xcr

Ycr

Zcr








= −








r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34








−1






r14

r24

r34







, (C.7)

respectively. For an image point (xl, yl) in the left image, its associated optical ray,

〈Cl, (xl, yl)〉, can be expressed as:







X

Y

Z








=








Xcl

Ycl

Zcl







+ λP−1








xl

yl

1







, (C.8)

where λ is an arbitrary real number. Similarly, the optical ray, 〈Cr, (xr, yr)〉, can be

expressed as:







X

Y

Z








=








Xcr

Ycr

Zcr







+ λP−1








xr

yr

1







, (C.9)

where λ is another arbitrary real number. The two optical rays are used to define

epipolar lines.

As shown in Figure 3.4, the corresponding point (xr, yr) of the point (xl, yl) is con-

strained to lie on the epipolar line. This line, 〈er, (xr, yr)〉, is defined to be the projection

of the optical ray 〈(xl, yl), Cl〉 through the camera center Cr. Its conjugate epipolar line,

〈el, (xl, yl)〉, is the projection of the optical ray 〈(xr, yr), Cr〉 through the camera center

Cl.

Furthermore, all the epipolar lines in one image plane (e.g., in the right image) pass

through a common point called the epipole (er), which is the projection of the conjugate
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optical center (the projection of Cl through Cr). Mathematically,








sxer

syer

s








= Pr












Xcl

Ycl

Zcl

1












,








sxel

syel

s








= Pl












Xcr

Ycr

Zcr

1












. (C.10)

The coordinates of the two camera centers, (Xcl, Ycl, Zcl) and (Xcr, Ycr, Zcr), are given by

Equation (C.4). For a point in the left image, (xl, yl), knowing its optical ray, 〈(xl, yl), Cl〉

(Equation (C.8)), and the epipole on the right image, er (Equation (C.10)), we can write

the parametric equation of its epiploar line, 〈er, (xr, yr)〉, as follows:







xs

ys

s








=








xer

yer

1







+ λPrP

−1
l








xl

yl

1







. (C.11)

Similarly, the conjugate epiploar line, 〈el, (xl, yl)〉, can be expressed as follows:







xs

ys

s








=








xel

yel

1







+ λPlP

−1
r








xr

yr

1







. (C.12)

Next, we will compute the rectifying PPMs, Plr and Prr as the solutions of a system

of equations, which express the constraints arising from rectifying requirements plus

other constraints necessary to ensure a unique solution. Let

Plr =








lr11 lr12 lr13 lr14

lr21 lr22 lr23 lr24

lr31 lr32 lr33 lr34







,

Prr =








rr11 rr12 rr13 rr14

rr21 rr22 rr23 rr24

rr31 rr32 rr33 rr34







. (C.13)
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They will be computed by applying the following requirements and constraints:

1. Common Focal plane. If cameras share the same focal plane, the common retinal

plane is constrained to be parallel to the baseline and epipolar lines are parallel.

The two rectifying PPM have the same focal plane if only if:

lr31 = rr31

lr32 = rr32

lr33 = rr33

lr34 = rr34 (C.14)

2. Position of the optical centers. The optical centers of the rectifying perspective

projections must be the same as those of the original projections:

Plr












Xcl

Ycl

Zcl

1












= 0 and Prr












Xcr

Ycr

Zcr

1












= 0, (C.15)

Combining the equation above with Equation (C.7) and (C.13) yields six linear

constraints:

lr11Xcl + lr12Ycl + lr13Zcl + lr14 = 0

lr21Xcl + lr22Ycl + lr23Zcl + lr24 = 0

lr31Xcl + lr32Ycl + lr33Zcl + lr34 = 0

rr11Xcr + rr12Ycr + rr13Zcr + rr14 = 0

rr21Xcr + rr22Ycr + rr23Zcr + rr24 = 0

rr31Xcr + rr32Ycr + rr33Zcr + rr34 = 0 (C.16)

3. Alignment of conjugate epipolar lines. The vertical coordinate of the projection of

a 3-D point onto the rectified image plane must be the same in both image:

lr21X + lr22Y + lr23Z + lr24

lr31X + lr32Y + lr33Z + lr34

=
rr21X + rr22Y + rr23Z + rr24

rr31X + rr32Y + rr33Z + rr34

. (C.17)
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Combining the equation above with the constraints in Equation (C.14) yields:

lr21 = rr21

lr22 = rr22

lr23 = rr23

lr24 = rr24 (C.18)

The equations written to this point are sufficient to guarantee rectification, but the

orientation of the rectified image plane has still one degree of freedom. In other words,

the constraints written up to now are not enough to obtain a unique set of PPMs. Next,

we will introduce several other arbitrary but reasonable constraints to ensure a unique

solution:

1. Orientation of the rectified image plane. We choose the rectifying focal planes to

be parallel to be intersection of the two original focal planes, i.e.,

( lr31 lr32 lr33 )




( l31 l32 l33 )

> × ( r31 r32 r33 )
>




 = 0, (C.19)

where ( l31 l32 l33 ) and ( r31 r32 r33 ) are the third rows of Pl and Pr respec-

tively. Notice that the corresponding equation,

( rr31 rr32 rr33 )




( l31 l32 l33 )

> × ( r31 r32 r33 )
>




 = 0,

is redundant because of Equation (C.14).

2. Orthogonality of the rectifying reference frames. The intersections of the image

plane with the planes:

( lr11 lr12 lr13 lr14 )












X

Y

Z

1












= 0 and ( lr21 lr22 lr23 lr24 )












X

Y

Z

1












= 0,

(C.20)
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correspond to the two image axis of the rectified image plane. In order for this

reference frame to be orthogonal, the planes must be perpendicular to each other.

With equations in C.18, we have,

( lr11 lr12 lr13 lr14 )












lr21

lr22

lr23

lr24












= 0 and ( rr11 rr12 rr13 rr14 )












lr21

lr22

lr23

lr24












= 0,

(C.21)

3. Image Centers. The image centers (x0, y0) is given by:

.x0 = ( lr11 lr12 lr13 )








lr31

lr32

lr33








and y0 = ( lr21 lr22 lr23 )








lr31

lr32

lr33







. (C.22)

We set the two image centers at (0, 0) and use Equations (C.14) and (C.18) to

obtain the constraints:

( lr11 lr12 lr13 )








lr31

lr32

lr33








= 0

( lr21 lr22 lr23 )








lr31

lr32

lr33








= 0

( rr11 rr12 rr13 )








lr31

lr32

lr33








= 0 (C.23)

4. Focal lengths in pixels. The horizontal and vertical focal lengths in pixels are given

by:

fx = ‖ ( lr11 lr12 lr13 )
> × ( lr31 lr32 lr33 )

> ‖

fy = ‖ ( lr21 lr22 lr23 )
> × ( lr31 lr32 lr33 )

> ‖. (C.24)
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By setting arbitrarily the values of fx and fy, we obtain the constraints:

‖ ( lr11 lr12 lr13 )
> × ( lr31 lr32 lr33 )

> ‖ = f 2
r

‖ ( lr21 lr22 lr23 )
> × ( lr31 lr32 lr33 )

> ‖ = f 2
r

‖ ( rr11 rr12 rr13 )
> × ( lr31 lr32 lr33 )

> ‖ = f 2
r . (C.25)

By definitions of vector norm and vector cross product and Equations (C.23), we

can rewrite the equation above as:

‖ ( lr11 lr12 lr13 ) ‖
2‖ ( lr31 lr32 lr33 ) ‖

2 = f 2
r

‖ ( lr21 lr22 lr23 ) ‖
2‖ ( lr31 lr32 lr33 ) ‖

2 = f 2
r

‖ ( rr11 rr12 rr13 ) ‖
2‖ ( lr31 lr32 lr33 ) ‖

2 = f 2
r . (C.26)

5. The scale factor. PPMs are defined up to a scale factor, and a common choice to

block the latter is to set

‖ ( lr31 lr32 lr33 ) ‖ = 1 and ‖ ( rr31 rr32 rr33 ) ‖ = 1 (C.27)

Now, we have established enough constraints that guarantee a unique solution for

each of the two rectifying PPMs. To capitulate, we organize the constraints introduced

here in the following four systems:






( lr31 lr32 lr33 lr34 )












Xcl

Ycl

Zcl

1












= 0

( lr31 lr32 lr33 lr34 )












Xcr

Ycr

Zcr

1












= 0

( lr31 lr32 lr33 )













l31

l32

l33








×








r31

r32

r33











 = 0

‖ ( lr31 lr32 lr33 ) ‖ = 1

(C.28)
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





( lr21 lr22 lr23 lr24 )












Xcl

Ycl

Zcl

1












= 0

( lr21 lr22 lr23 lr24 )












Xcr

Ycr

Zcr

1












= 0

( lr21 lr22 lr23 )








lr31

lr32

lr33








= 0

‖ ( lr31 lr32 lr33 ) ‖ = fr

(C.29)







( lr11 lr12 lr13 lr14 )












Xcl

Ycl

Zcl

1












= 0

( lr11 lr12 lr13 )








lr21

lr22

lr23








= 0

( lr11 lr12 lr13 )








lr31

lr32

lr33








= 0

‖ ( lr11 lr12 lr13 ) ‖ = fr

(C.30)
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





( rr11 rr12 rr13 rr14 )












Xcr

Ycr
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

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= 0

‖ ( rr11 rr12 rr13 ) ‖ = fr

(C.31)

plus






lr21 = rr21
lr22 = rr22
lr23 = rr23
lr24 = rr24
lr31 = rr31
lr32 = rr32
lr33 = rr33
lr34 = rr34.

(C.32)

The first four systems have all the same structure, each one being a 3 × 4 linear

homogeneous system subject to a quadratic constraint, that is,

{

Ax = 0
‖x′‖ = k, (C.33)

where x′ is a vector composed by the first three components of x, and k is a real

number. The four systems above are solved in sequence, top to bottom. The solution of

each system is obtained by first computing (e.g., by SVD factorization) a one-parameter

family of solutions to Ax = 0 of the form x = αx0, where x0 is a nontrivial solution and

α is an arbitrary real number, and then letting α equal to k
‖x′

0
‖
.
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Appendix D

Line Intersection in 3-D

In 3-D, two lines often do not intersect and are not parallel. Shown in Figure D.1 are two

lines in 3-D, 〈P1, P2〉 and 〈P3, P4〉, which are non-intersecting and non-parallel. In this

case, “the point of intersection” between these two lines is defined as the point at equal

and minimum distance to both lines. This point, P0, is found by: first, constructing

〈Pa, Pb〉 so that it intersects and is perpendicular to both 〈P1, P2〉 and 〈P3, P4〉; and

then, computing the middle point between Pa and PB. With known P1 and P2,

Pa = P1 + λa(P2 − P1), (C-1)

and similarly, with known P3 and P4,

Pb = P3 + λb(P4 − P3). (C-2)

To determine Pa and Pb, we only need to determine λa and λb, respectively. Since

〈Pa, Pb〉 is perpendicular to both 〈P1, P2〉 and 〈P3, P4〉, the points on these lines satisfy

the following equations:

(Pa − Pb) · (P2 − P1) = 0

(Pa − Pb) · (P3 − P4) = 0
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P1

Pb

Pa

P2

P3

P4

P0

Figure D.1: The two lines, 〈P1, P2〉 and 〈P3, P4〉, do not intersect and are not parallel.

The point of intersection between these two lines, P0, is defined as the point at equal

and minimum distance to both lines.

After substitute Pa and Pb with expression (C-1) and expression (C-2), respectively, the

two equations above become:

(P1 − P3 + λa(P2 − P1)− λb(P4 − P3)) · (P2 − P1) = 0

(P1 − P3 + λa(P2 − P1)− λb(P4 − P3)) · (P4 − P3) = 0

The two unknowns, λa and λb, can then be solved. With λa and λb, compute Pa and Pb

using expression (C-1) and expression (C-2). Finally, P0, the point of minimum distance

to two lines, 〈P1, P2〉 and 〈P3, P4〉, is then calculated by the following expression:

P0 =
Pa + Pb

2
.
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