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ABSTRACT

An audio recording is subject to a number of possible dis-
tortions and artifacts. For example, the persistence of sound,
due to multiple reflections from various surfaces in a room,
causes temporal and spectral smearing of the recorded sound.
This distortion is referred to as audio reverberation time.We
describe a technique to model and estimate the amount of re-
verberation in an audio recording. Because reverberation de-
pends on the shape and composition of a room, differences
in the estimated reverberation can be used in a forensic and
ballistic setting.

Index Terms— Audio Forensics

1. INTRODUCTION

The past few years have seen significant advances in image
forensics [1]. At the same time, techniques for authenticat-
ing audio recordings are less developed. Notable exceptions
include a technique for classifying audio environments from
a set of low-level statistical features [2], a technique that em-
ploys spectral distances and phase shifts [3], and the electric
network frequency (ENF) criterion which verifies integrityby
comparing the extracted ENF with a reference frequency [4].

Here we exploit specific artifacts introduced at the time
of recording to authenticate an audio recording. Audio rever-
beration is caused by the persistence of sound after the source
has terminated. This persistence is due to the multiple reflec-
tions from various surfaces in a room. As such, differences
in a room’s geometry and composition will lead to different
amounts of reverberation time. There is a significant litera-
ture on modeling and estimating audio reverberation (see, for
example, [5]). We describe how to model and estimate au-
dio reverberation – this approach is a variant of that described
in [6]. We show that reverberation can be reliably estimated
and show its efficacy in simulated and recorded speech.
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Fig. 1. Shown from top to bottom are: a signalx(t); the
exponential decayd(t); and the resulting decayed signaly(t)
with additive noise.

2. METHODS

The decay of an audio signalx(t) is modeled with a multi-
plicative decay and additive noise (Fig. 1):

y(t) = d(t)x(t) + n(t), (1)

where,

d(t) = exp(−t/τ). (2)

The decay parameterτ embodies the extent of the reverbera-
tion, and can be estimated using a maximum likelihood esti-
mator.

We assume that the signalx(t) is a sequence ofN in-
dependently and identically-distributed (iid) zero mean and
normally distributed random variables. We also assume that
this signal is uncorrelated to the noisen(t) which is also a
sequence ofN iid zero mean and normally distributed ran-
dom variables with varianceσn. With these assumptions, the



observed signaly(t) is a random variable with a probability
density function given by:
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The log-likelihood function,ln(L(·)), is:
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The decay parameterτ is estimated by maximizing the
log-likelihood functionL(·) . This is achieved by setting the
partial derivatives ofL(·) equal to zero and solving for the
desiredτ .
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For the purpose of numerical stability, the maximization is
performed oñτ = exp(−1/τ). Althoughσ in Equation (7)
can be solved for analytically,̃τ in Equation (8) cannot. As
such, an iterative non-linear minimization is required. This
minimization consists of two primary steps, one to estimate
σ and one to estimatẽτ . In the first stepσ is estimated by
setting the partial derivative in Equation (7) equal to zeroand
solving forσ, to yield:
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This solution requires an estimate ofσn, which is estimated
from the noise floor following the decayed signal. This solu-
tion also requires an estimate ofτ̃ which is initially estimated
using Schroeder’s integration method [9]. In the second step,
τ̃ is estimated by maximizing the log-likelihood functionL(·)
in Equation (6). This is performed using a standard gradi-
ent descent optimization, where the derivative of the objec-
tive function is given by Equation (8). These two steps are

Fig. 2. Estimation results for synthetically generated signals
with no noise (top) and with26dB of additive noise (bottom).

iteratively executed until the differences between consecutive
estimates ofσ and τ̃ are less than a specified threshold. In
practice, this optimization is quite efficient, convergingafter
only a few iterations.

3. RESULTS

Shown in the top panel of Fig. 1 is a signalx(t) generated
according to ouriid zero mean and normally distributed as-
sumption withN = 1024 and with an assumed sampling rate
of 512 samples/seconds. Shown in the central panel is the ex-
ponential decayd(t) = exp(−t/τ) with τ = 0.29 seconds,
and shown in the bottom panel is the resulting decayed sig-
nal y(t) with additive noise as specified by Equation (1). We



generated1000 random signals according to this model with
values ofτ ∈ [0.29, 0.88] seconds, and either with no noise
(σn = 0), or with a σn to yield an average signal-to-noise
ratio of26dB. As described in the previous section, the decay
parameterτ was estimated from these signals. Shown in the
top panel of Fig. 2 are the actual values ofτ as a function of
the estimated values (τest) for the no noise case. The average
estimation error is0.01 seconds with a standard deviation of
0.01. Shown in the bottom panel of Fig. 2 are the estimation
results for the additive noise case. The average estimationer-
ror is 0.04 seconds with a standard deviation of0.03. The
handful of outliers have small values ofτ (i.e., rapid decay)
which leads to a signal where the noise dominates, thus lead-
ing to occasionally unreliable estimates.

In our second experiment we generated audio record-
ings with different amounts of reverberation using the model
of [10]. Each recording was9 seconds in length, and with
a reverberation time of eitherτ = 0.3 or τ = 0.6 seconds.
Each recording was corrupted with additive white noise with
a signal to noise ratio of35dB. We then created hybrid record-
ings with the first half having one reverberation time and the
second having another. Because the underlying audio record-
ings were identical, there was no audible splice where the
recordings were combined. As described above, the rever-
beration was estimated from eight positions, each of which
were manually selected on the basis that the speech at these
positions decayed to the noise floor. In the first example,
the reverberation in the first half of the audio was0.3 sec-
onds, and in the second half it was0.6 seconds. The mean
(and standard deviation) estimate for the decay parameterτ
for the first half is0.062 (0.013) and for the second half is
0.083 (0.005). In the second example, the reverberation in
the first half of the audio was0.6 seconds, and in the second
half it was0.3 seconds. The mean (and standard deviation)
estimate for the decay parameterτ for the first half is0.088
(0.011) and for the second half is0.052 (0.011). In each
case, there was a significant difference in the estimated decay
parameters, which could subsequently be used as evidence of
manipulation.

In our third experiment, we recorded human speech in
four different environments: (1) outdoors; (2) small office
(7’ × 11’ × 9’); (3) large office (15’× 11’ × 9’); and (4)
stairwell. In each case, the same speaker read the opening
paragraph of Charles Dickens’Tale of Two Cities. The au-
dio was recorded using a commercial-grade microphone. As
described above, the reverberation was estimated from four-
teen positions in each of the recorded audio segments. These
were manually selected on the basis that the speech at these
positions decayed to the noise floor, Fig. 4. Because there
was considerable background noise in these recordings, each
recording was initially pre-processed with a speech enhance-
ment filter [11]. The mean (and standard deviation) estimate
for the decay parameterτ , in seconds, is: (1) outdoors: 0.049
(0.013); (2) small office: 0.062 (0.017); (3) large office: 0.083

Fig. 3. Shown in the top panel is an audio signal whose left
and right halves have different amounts of reverberation. The
reverberation time was estimated from eight positions (shaded
areas). Shown below are two sample segments from the left
and right halves of the signal.

(0.012); and (4) stairwell 0.203 (0.064). This difference is
significant as confirmed by a one-way ANOVA (F (3, 40) =
39.93, p ≤ 0.000001). Although individual estimates ofτ
are not sufficiently reliable to fully characterize a speaker’s
environment, the running averages over even a short length
of audio shows significant differences in the estimated decay
parameter.

4. DISCUSSION

We have described how audio reverberation can be modeled,
estimated, and used in a forensic setting. We have shown
the efficacy of this approach on synthetically generated and
recorded audio. We expect this approach to be a useful foren-
sic tool when used in conjunction with other techniques that



Fig. 4. Shown in the top panel is an audio signal recorded in a
large office. The reverberation time was estimated from four-
teen positions (shaded areas), each manually selected such
that the speech decayed to the noise floor. Shown below are
three sample segments revealing the form of the audio decay
due to reverberation.

measure microphone characteristics, background noise, and
compression artifacts.
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