
to appear: Journal of the Optical Society of America A, 2001.
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Virtually all imaging devices introduce some amount of geometric lens distortion. This paper
presents a technique for blindly removing these distortions in the absence of any calibration
information or explicit knowledge of the imaging device. The basic approach exploits the
fact that lens distortion introduces specific higher-order correlations in the frequency domain.
These correlations can be detected using tools from polyspectral analysis. The amount of dis-
tortion is then estimated by minimizing these correlations.
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1 Introduction

Virtually all medium- to low-grade imaging de-
vices introduce some amount of geometric dis-
tortion. These distortions are often described with
a one-parameter radially symmetric model [2, 8,
9]. Given an ideal undistorted image fu(x, y),
the distorted image is denoted as fd(x̃, ỹ), where
the distorted spatial parameters are given by:

x̃ = x(1 + κr2) and ỹ = y(1 + κr2), (1)

where r2 = x2 + y2, and κ controls the amount
of distortion. Shown in Figure 1 are the results
of distorting a rectilinear grid with positive and
negative values of κ.

While these distortions may be artistically in-
teresting it is often desirable to remove these ge-
ometric distortions for many applications in im-
age processing and computer vision (e.g., struc-
ture estimation, image mosaicing). The amount
of distortion is typically determined experimen-
tally by imaging a calibration target with known
fiducial points. The deviation of these points
from their original positions is used to estimate
the amount of distortion (e.g., [9]). But often
such calibration is not available or direct access
to the imaging device is not possible, for exam-
ple when down-loading an image from the web.
In addition, the distortion parameters can change
as other imaging parameters are varied (e.g., fo-
cal length or zoom), thus requiring repeated cali-
bration for all possible camera settings. An alter-
native calibration technique relies on the pres-
ence of straight lines in the scene (e.g., [1, 7]).
These lines, mapped to curves in the image due
to the distortion, are located or specified by the
user. The distortions are estimated by finding
the model parameters that map these curved lines
to straight lines. While this technique is more
flexible than those based on imaging a calibra-
tion target, it still relies on the scene containing
extended straight lines.

In this paper a technique is presented for es-
timating the amount of lens distortion in the ab-
sence of any calibration information or scene con-
tent. The basic approach exploits the fact that

κ < 0 κ = 0 κ > 0

Figure 1: One-parameter radially symmetric
lens distortion, Equation (1).

lens distortion introduces specific higher-order
correlations in the frequency domain. These cor-
relations can be detected using tools from polyspec-
tral analysis. The amount of distortion is then
determined by minimizing these correlations. These
basic principles were used in a related paper in
which we introduced a technique for the blind
removal of luminance non-linearities [3].

Insight is gained into the proposed technique
by first considering what effect a geometric dis-
tortion has on a one-dimensional signal. Con-
sider, for example, a pure sinusoid with ampli-
tude a and frequency b:

fu(x) = a cos(bx). (2)

For purposes of exposition, consider a simpli-
fied version of the lens distortion given in Equa-
tion (1), where the spatial parameter is squared:

fd(x) = a cos(bx2). (3)

This signal is composed of a multitude of har-
monics. This can be seen by considering its Fourier
transform:

Fd(ω) =

∫

∞

−∞

fd(x)e−iωxdx

= 2

∫

∞

0

a cos(bx2) cos(ωx)dx. (4)

Because the signal is symmetric (a cosine), the
Fourier integral may be expressed from 0 to ∞

and with respect to only the cosine basis (i.e., the
sine component of the complex exponential in-
tegrates to zero). This integral has a closed form
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solution [4] given by:

Fd(ω) = 2a

√

π

2b

[

cos

(

ω2

2b

)

+ sin

(

ω2

2b

)]

. (5)

Unlike the undistorted signal, with:

Fu(ω) =

{

1 |ω| = b

0 |ω| 6= b
(6)

the Fourier transform of the distorted signal con-
tains a multitude of harmonics. Moreover, the
amplitude and phase of these harmonics are cor-
related to the original signal. Here the phases
are trivially correlated as all frequencies are zero-
phase. Nevertheless, if the initial signal consisted
of multiple frequencies with non-zero phases, then
the resulting distorted signal would have simi-
lar amplitude correlations and non-trivial phase
correlations.

In what follows we will show that this obser-
vation is not limited to the specific choice of sig-
nal or distortion. We will also show empirically
that when an image is geometrically distorted,
higher-order correlations in the frequency domain
increase proportional to the amount of distor-
tion. As such, the amount of distortion can be
determined by simply minimizing these correla-
tions. We first show how tools from polyspectral
analysis can be used to measure these higher-
order correlations, and then show the efficacy of
this technique to the blind removal of lens dis-
tortion in synthetic and natural images.

2 Bispectral Analysis

Consider a stochastic one-dimensional signal f(x),
and its Fourier transform:

F (ω) =
∞
∑

k=−∞

f(k)e−iωk. (7)

It is common practice to use the power spectrum
to estimate second-order correlations:

P (ω) = E {F (ω)F ∗(ω)} , (8)

where E{·} is the expected value operator, and ∗

denotes complex conjugate. However the power
spectrum is blind to higher-order correlations of
the sort introduced by a non-linearity, Equation (1).
These correlations can however be estimated with
higher-order spectra (see [6] for a thorough sur-
vey). For example the bispectrum estimates third-
order correlations and is defined as:

B(ω1, ω2) = E {F (ω1)F (ω2)F
∗(ω1 + ω2)} . (9)

Note that unlike the power spectrum the bispec-
trum of a real signal is complex-valued.

The bispectrum reveals correlations between
harmonically related frequencies, for example,
[ω1, ω1, 2ω1] or [ω1, ω2, ω1 + ω2]. If it is assumed
that the signal f(x) is ergodic, then the bispec-
trum can be estimated by dividing f(x) into N
(possibly overlapping) segments, computing Fourier
transforms of each segment, and then averaging
the individual estimates:

B̂(ω1, ω2) =
1

N

N
∑

k=1

Fk(ω1)Fk(ω2)F
∗

k (ω1 + ω2), (10)

where Fk(·) denotes the Fourier transform of
the kth segment. This arithmetic average estima-
tor is unbiased and of minimum variance. How-
ever, it has the undesired property that its vari-
ance at each bi-frequency (ω1, ω2) depends on
P (ω1), P (ω2), and P (ω1 + ω2) (see e.g., [5]). We
desire an estimator whose variance is indepen-
dent of the bi-frequency. To this end, we employ
the bicoherence, a normalized bispectrum, de-
fined as:

b
2(ω1, ω2) =

|B(ω1, ω2)|
2

E{|F (ω1)F (ω2)|2}E{|F (ω1 + ω2)|2}
. (11)

It is straight-forward to show using the Schwartz
inequality that this quantity is guaranteed to have
values in the range [0, 1]. As with the bispec-
trum, the bicoherence can be estimated as:

b̂(ω1, ω2) =
| 1

N

∑

k
Fk(ω1)Fk(ω2)F

∗

k (ω1 + ω2)|
√

1

N

∑

k
|Fk(ω1)Fk(ω2)|2

1

N

∑

k
|Fk(ω1 + ω2)|2

.

(12)
Note that the bicoherence is now a real-valued

quantity.
Shown in Figure 2 is an example of the sen-

sitivity of the bicoherence to higher-order corre-
lations that are invisible to the power spectrum.
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Figure 2: Top: the normalized power spec-
trum and bicoherence for a signal with ran-
dom amplitudes and phases. Bottom: the
same signal with one frequency, ω3 = ω1+ω2,
whose amplitude and phase are correlated to
ω1 and ω2. The horizontal axis of the bicoher-
ence corresponds to ω1, and the vertical to ω2.
The origin is in the center, and the axis range
from [−π, π].

A signal of length 4096 with random amplitude
and phase is divided into N = 128 overlapping
segments of length 64 each. Shown in the top
row of Figure 2 is the estimated power spectrum
and the bicoherence estimated as specified in Equa-
tion (12). Shown below is the same signal where
ω3 = ω1 + ω2 has been coupled to ω1 and ω2.
That is, ω3 has amplitude a3 = a1 · a2 and
phase φ3 = φ1 + φ2. Note that the remain-
ing frequency content of the signal remains un-
changed, but that the bicoherence is significantly
more active (increasing from 0.08 to 0.20) at the
bi-frequency ω1, ω2, as seen by the peaks in Fig-
ure 2. The multiple peaks are due to the inherent
symmetries in the bicoherence.

As a measure of overall correlations, the bico-

herence can be averaged across all frequencies:

1

N2

N/2
∑

ω1=−N/2

N/2
∑

ω2=−N/2

b̂

(

2πω1

N
,
2πω2

N

)

. (13)

This quantity is employed throughout this pa-
per as a measure of higher-order correlations.

3 Lens Distortions and Correlations

Shown in Figure 3 is a 1-D signal fu(x), of length
4096, with a 1/ω power spectrum and random
phase. Also shown is the log of its normalized
power spectrum P (w) and its bicoherence b̂(ω1, ω2).
The bicoherence was estimated from 128 over-
lapping segments each of length 64 each. Also
shown in Figure 3 is the same signal passed through
a 1-D version of the lens distortion, fd(x), given
in Equation (1):

fd(x) = fu(x(1 + κx2)) (14)

where κ controls the amount of distortion. No-
tice that while the distortion leaves the power
spectrum largely unchanged there is a signifi-
cant increase in the bispectral response: the bi-
coherence averaged across all frequencies, Equa-
tion (13), nearly doubles from 0.08 to 0.14. This
example illustrates that when an arbitrary sig-
nal is exposed to a geometric non-linearity, cor-
relations between triples of harmonics are intro-
duced.

For our purposes, what remains to be shown
is that these correlations are proportional to the
amount of distortion, κ. To illustrate this rela-
tionship a 1-D signal fu(x) is subjected to a full
range of distortions as in Equation (14). Shown
in Figure 4 is the average bicoherence, Equation (13),
plotted as a function of the amount of distortion.
Notice that this function has a single minimum
at κ = 0, i.e., no distortion.

These observations lead to a simple algorithm
for blindly removing lens distortions. Beginning
with a distorted signal:

1. select a range of possible κ values,
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fu(x) fd(x)

Figure 3: Shown in the left column is a fractal
signal, the log of its normalized power spec-
trum and its bicoherence. Shown in the right
column is a distorted version of the signal.
While the distortion leaves the power spec-
trum largely unchanged there is a significant
increase in the average bispectral response.

2. for each value of κ apply the inverse dis-
tortion to fd yielding a provisional undis-
torted image fκ,

3. compute the bicoherence of fκ,

4. select the value of κ that minimizes the bi-
coherenece averaged across all frequencies.

5. remove the distortion according to the in-
verse distortion model

This basic algorithm extends naturally to 2-D
images. However in order to avoid the memory
and computational demands of computing an
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Figure 4: Shown is the bicoherence computed
for a range of lens distortion (κ). The bicoher-
ence is minimal when κ = 0, i.e., no distor-
tion.

image’s full 4-D bicoherence, we limit our analy-
sis to one-dimensional radial slices through the
center of the image. This is reasonable assum-
ing a radially symmetric distortion and that the
distortion emanates from the center of the im-
age. If the image center drifts, then a more com-
plex three-parameter minimization would be re-
quired to jointly determine the image center and
amount of distortion. The amount of distortion
for an image is then estimated by averaging over
the estimates from a subset of radial slices (e.g., ev-
ery 10 degrees), as described above.

In the results that follow in the next section,
we assume a one-parameter radially symmetric
distortion model. Denoting the desired undis-
torted image as fu(x, y), the distorted image is
denoted as fd(x̃, ỹ), where

x̃ = x(1 + κr2) and ỹ = y(1 + κr2), (15)

and r2 = x2 + y2, and κ controls the amount
of distortion. Given an estimate of the distor-
tion, the image is undistorted by solving Equa-
tion (15) for the original spatial coordinates x

and y, and warping the distorted image onto this
sampling lattice. Solving for the original spatial
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coordinates is done in polar coordinates where
the solution takes on a particularly simple form.
In polar coordinates the undistorted image is de-
noted as fu(r, θ), where

r =
√

x2 + y2 and θ = tan−1(y/x). (16)

Similarly, the distorted image fd(x̃, ỹ) in polar
coordinates is fd(r̃, θ̃), where

r̃ =
√

x̃2 + ỹ2 and θ̃ = tan−1(ỹ/x̃). (17)

Combining these parameters with Equations (15)
and (16) yields

r̃ = r(1 + κr2) and θ̃ = tan−1(y/x). (18)

Note that since the distortion model is radially
symmetric, only the radial component is effected.
The undistorted radial parameter r is determined
by solving the resulting cubic equation in Equa-
tion (18). These polar parameters are then con-
verted back to rectangular coordinates and the
distortion is inverted by warping the image fd(x̃, ỹ)
onto this new sampling lattice.

4 Results

In the results reported here, the bicoherence for
each 1-D radial image slice is computed by di-
viding the signal into overlapping segments of
length 64 with an overlap of 32. A 128-point DFT
(windowed with a symmetric Hanning window)
Fk(ω) is estimated for each zero-mean segment
from which the bicoherence is estimated as in
Equation (12). There is a natural tradeoff be-
tween segment length and the number of sam-
ples from which to average. We have empiri-
cally found that these parameters offer a good
compromise,their precise choice, however, is not
critical to the estimation results. Each equal length
radial slice is obtained by bicubic interpolation.
Running on a 933 MHz Pentium (under Linux),
a 512 × 512 image takes approximately 25 sec-
onds to apply the inverse distortion model for a
provisional estimate of the distortion, and com-
pute the mean bicoherence of 90 1-D signals (ev-
ery 2 degrees). The total runtime will depend on

κ = −0.4 κ = 0.0 κ = 0.2

Figure 5: Synthetic images with no distortion
(center), negative (left) and positive (right)
distortion.

the number of candidate distortion parameters
tried.

Presented next are results on the blind estima-
tion of lens distortion for synthetic and natural
images.

4.1 Synthetic Images

Fractal images were synthesized from a sum of
two-dimensional sinusoids with random orien-
tation, θn ∈ [−π, π], random phase, φn ∈ [−π, π],
amplitudes, an = 1/n, and frequencies, ωn = nπ:

fu(x, y) =

N
∑

n=1

an sin (ωn[cos(θn)x + sin(θn)y] + φn) , (19)

These images were N×N in size, with N = 512,
and the horizontal (x) and vertical (y) coordi-
nates normalized into the range [−1, 1]. The dis-
tortion of such an image by an amount κ was
simulated from a similar sum of “distorted” si-
nusoids with the same orientations, phases, am-
plitudes, and frequencies:

fd(x̃, ỹ) =

N
∑

n=1

an sin (ωn[cos(θn)x̃ + sin(θn)ỹ] + φn) , (20)

where, x̃ and ỹ are as in Equation (15). Shown
in Figure 5 are examples of these images. The
distorted images could have been synthesized
by simply warping the undistorted image. This
was not done in order to avoid any possible ar-
tifacts introduced by the required interpolation.

Shown in Figure 6 and summarized in Fig-
ure 7 are the results of blindly estimating the
amount of lens distortion κ. In these simulations

6



actual estimated κ
κ mean s.d. min max

-0.60 -0.62 0.07 -0.76 -0.52
-0.50 -0.45 0.03 -0.52 -0.41
-0.40 -0.40 0.07 -0.53 -0.27
-0.30 -0.32 0.08 -0.41 -0.18
-0.20 -0.22 0.05 -0.29 -0.15
-0.10 -0.08 0.03 -0.13 -0.03
0.00 -0.01 0.03 -0.06 0.04
0.10 0.07 0.03 0.01 0.12
0.20 0.21 0.02 0.18 0.24
0.30 0.32 0.01 0.29 0.34
0.40 0.38 0.01 0.37 0.40

Figure 6: Shown are the blindly estimated
distortion parameters (mean, standard devi-
ation, and minimum and maximum values)
averaged over ten independent synthetic im-
ages. On average, the correct value is esti-
mated within 8% of the actual value. See also
Figure 7.
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Figure 7: Shown are the blindly estimated
distortion parameters. Each data point corre-
sponds to the average from ten synthetic im-
ages. See also Figure 6.

the bicoherence was estimated as described above.
Values of κ from -0.8 to 0.6 in steps of 0.05 were
sampled. The estimates for each value of κ ∈
[−0.6, 0.4] are averaged over ten independently
generated images. On average, the correct value
is estimated within 8% of the actual value.

Because of the unavoidable non-linear inter-
polation step involved in the warping during the
model inversion, and extraction of 1-D radial slices,
correlations are artificially introduced that con-
found those introduced by the lens distortion.
As such, in all of our results the estimated dis-
tortion κ is related to the actual distortion κ′ by
the following empirically determined cubic rela-
tionship:

κ
′ = −1.5784κ

3 − 0.7752κ
2 + 1.6621κ − 0.0089 (21)

This relationship holds for all the results pre-
sented here, but is dependent on the image size.
That is, the image’s spatial sampling lattice should
be specified with respect to a 512 × 512 image
normalized into the range [−1, 1].

4.2 Natural Images

Shown in Figure 8 is a low-grade camera used
in our first experiment. The amount of distor-
tion was estimated by imaging a calibration tar-
get. Shown in Figure 8 is an image of the cali-
bration target before and after calibration. The
amount of distortion was manually estimated to
be κ = − 0.16. Although the correction is
not perfect, it does show that the one-parameter
model can reasonably approximate the lens dis-
tortion from this and similar cameras.

In the absence of this calibration information
the amount of distortion was blindly estimated
for each of the images in Figure 9. These im-
ages are 640 × 480 pixels in size. In these ex-
periments the bicoherence was estimated as de-
scribed above. Values of κ from -0.5 to 0.1 in
steps of 0.025 were sampled. The asymmetry
in the sampling range was for computational ef-
ficiency, and reasonable in these examples with
strictly negative lens distortions. The distortion,
averaged across the four images (360 1-D radial
slices, 90 per image) shown in Figure 9, is −0.15
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camera calibration target

distort undistort

Figure 8: Shown along the top is a small low-
grade camera, and a calibration target used to
manually calibrate the lens distortion. Shown
below is an image of the calibration target be-
fore (left) and after calibration (right).

with a variance of 0.08. The distortion in each
image was removed with this estimate.

Also shown in Figure 10 are results from im-
ages taken with a Nikon Coolpix 950 digital cam-
era. These images are 1600 × 1200 pixels in
size. In these examples the distortion was ex-
perimentally determined to be -0.005: a small,
but not insignificant amount of distortion. The
blindly estimated distortion averaged from the
four images shown in Figure 10 was −0.04 with
a variance of 0.03. With a distortion value close
to zero, the error in the estimate is visually negli-
gible, as can be seen in the resulting undistorted
images.

Because of the individual variations from im-
age to image, the blind estimation requires an
average across several images. In our examples,
we have found that as few as four images are
sufficient. Note that this variation is consistent
with the simulations shown in Figure 6, where,
for example, the estimated parameters for κ =

distort (-0.16) undistort (-0.15)

Figure 9: Shown are several distorted images
(left) and the results of blindly estimating and
removing the lens distortion (right).

0.0 ranged from −0.06 to 0.04.
As with the synthetic images, the estimated

distortion parameter is related to the actual value
as specified in Equation (21).

5 Discussion

Most imaging or recording devices introduce some
amount of geometric lens distortion. While at
times artistically pleasing, these distortions are
often undesirable for a variety of applications in
image processing and computer vision (e.g., struc-
ture from motion, image mosaicing).

The amount of lens distortion is typically de-
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distort (-0.005) undistort (-0.04)

Figure 10: Shown are several distorted im-
ages (left) and the results of blindly estimat-
ing and removing the lens distortion (right).

termined experimentally by imaging a calibra-
tion target with known fiducial points. The de-
viation of these points from their original posi-
tions is used to estimate the amount of distor-
tion. This approach is complicated by the fact
that the amount of distortion changes with vary-
ing camera settings (e.g., zoom or focal length).
In addition this procedure is impossible in the
absence of calibration information, for example,
when down-loading an image from the web.

In this paper we have presented a method for
the blind removal of lens distortions in the ab-
sence of any calibration information or explicit
knowledge of the imaging device. This method
is based on the observation that a lens-distorted
image contains specific higher-order correlations
in the frequency domain. These correlations are
detected using tools from polyspectral analysis.
The distortion is estimated and removed by min-
imizing these correlations. We have experimen-
tally verified this approach on a number of syn-
thetic and natural images.

The accuracy of blindly estimating lens dis-
tortion is by no means comparable to that based
on calibration. As such we don’t expect that this
approach will supplant other techniques in ar-
eas where a high degree of accuracy is required.
Rather, we expect this approach to be useful in
areas where only qualitative results are required.
One such area may be in the consumer develop-
ment of photographs taken with low-grade dig-
ital or disposable cameras. We are working to
generalize these results to be used with higher-
order lens distortion models. Such a system will
require a multi-dimensional minimization of the
same correlation measure over each of the model
parameters. Such an approach will surely re-
quire a more adaptive minimization than the brute-
force approach employed here. Finally, we are
also working to incorporate our earlier work [3]
on the blind removal of luminance non-linearities,
for what we hope will be a complete system for
the blind removal of image non-linearities.
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