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We propose a measure of clutter for real images that can be used to predict search times. This measure uses an efficient
segmentation algorithm (P. Felzenszwalb & D. Huttenlocher, 2004) to count the number of regions in an image. This number
is not uniquely defined, however, because it varies with the scale of segmentation. The relationship between the number of
regions and the scale of segmentation follows a power law, and the exponent of the power law is similar across images. We
fit power law functions to the multiple scale segmentations of 160 images. The power law exponent was set to the average
value for the set of images, and the constant of proportionality was used as a measure of image clutter. The same 160
images were also used as stimuli in a visual search experiment. This scale-invariant measure of clutter accounted for about

40% of the variance in the visual search times.
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Introduction

Visual search is a popular experimental paradigm that
has been employed in thousands of studies. Visual search
is also an everyday task familiar to anyone with car keys
or reading glasses. Despite the vast amount of research on
this topic, we are far from making quantitative predictions
about everyday search. The gap between research and
real-life exists in part because the stimuli used in research
bear little resemblance to real images. Visual search
research has generally used simple shapes arranged in a
regular array on a blank background, and it is unclear how
such stimuli relate to the complex and continuous images
encountered in real life. As a result, current search models
cannot account for such commonplace observations, as “I
can’t find my keys because of all this clutter on my desk.”
The models cannot address this observation because they
cannot yet quantify the clutter found in real images.

The goal of this study was to find a measure of clutter
that could be used to predict search times with real
images. To develop this measure, we sought a search task
that would produce a robust and a reliable effect of clutter.
Not all search tasks show such an effect: Even on a
cluttered desk, it is easy to find keys that are attached to a
bright red key fob or that are in a remembered location.
Previous research suggests that there are three conditions
that are important for observing an effect of clutter. First,
observers must be uncertain of the target’s color,
orientation, and other simple features. This uncertainty
prevents them from selectively attending to a particular
feature to guide their search (Wolfe, 1994). Second, the
images must be unstructured, so that observers cannot
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predict where the target is likely to appear (Torralba,
Oliva, Castelhano, & Henderson, 2006). And third, the
targets must be drawn from the same pool of objects as the
distractors, so that they are not especially salient (Itti &
Koch, 2000).

With these requirements in mind, we selected a task that
involved looking for common objects in the contents of
handbags. Our stimuli were photographs downloaded
from the “What’s in your bag?” group on the photo-
sharing Web site, http:/flickr.com (Figure 1). Although
the images had diverse arrangements, backgrounds, and
lighting conditions, their content was typically limited to a
small number of object categories. The task we gave our
observers was to search the set of images several times,
each time looking for an object from a different category.
Because the observers knew only the category to which
the target belonged, they were uncertain of its simple
features. Thus, the observers could not use selective
feature attention to exclude much of the clutter. And
similarly, because the images had an unpredictable
arrangement, observers were uncertain of the target’s
location. This prevented the observers from using selec-
tive spatial attention to exclude much of the clutter. And
finally, because the observers searched each image several
times for different targets, the targets were, on average, no
more salient than the distractors. This meant that the
targets did not reliably attract attention, and so observers
had to search through the clutter to find them.

In developing a measure of clutter, we began with the
assumption that when observers search an image for a
target, they evaluate the largest image chunks that are
likely to correspond to single objects. Ideally, these
chunks would correspond to whole objects, but the
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Figure 1. An example stimulus downloaded from the “What's in your bag?” group on http://flickr.com.

selection of whole objects can require the application of
top-down knowledge, and this is costly in terms of time
and processing resources. For this reason, we think it is
likely that the chunks for search are the regions defined by
bottom-up segmentation (Neisser, 1967). These regions
can be extracted without accessing object memory, but
they are still likely to arise from single objects (Brunswick
& Kamiya, 1953; Fine, MacLeod, & Boynton, 2003).
Although it is only a conjecture that the amount of clutter
is related to the number of image regions, we have
reported results that are consistent with this notion (Bravo
& Farid, 2004b). In this earlier experiment, we found that
search times are not simply related to the number of
objects in an image, they are also related to the number of
distinct object parts. In this earlier paper, we viewed the
number of object parts as a crude approximation of the
number of image regions. Later in this paper, we re-
examine these data using a direct measure of the number
of image regions.

A great practical advantage of defining clutter in terms
of regions rather than objects is that region extraction is a
much more tractable problem than object extraction.
There is a significant obstacle to counting either regions
or objects, however, and that is the problem of scale.
Scenes often have a hierarchical organization, and it is
possible to define objects at many levels in this hierarchy.
And so just as it is valid to label a bush as an object or its
leaves as objects, it is also valid to segment the image of a
bush into one big region or into many small regions. One

way to decide among the possible segmentations of an
image is to consider the information needed to perform a
particular task. Since observers engaged in visual search
are looking for a specific object, one might assume that it
is the size of this object that defines the appropriate scale
for segmentation. But this presupposes that observers
detect targets using information at the same scale as the
target itself. This may not be true, especially in cluttered
scenes. Clutter may camouflage the shape of a target and
force observers to rely on smaller-scale features for target
detection (Bravo & Farid, 2004a). So although we propose
that the amount of clutter in an image is related to the
number of regions produced by image segmentation, we
also acknowledge the difficulty of uniquely determining
this number. As we will describe in our Methods section,
the difficulty of determining the appropriate scale for
segmentation turns out to have a straightforward solution.

The segmentation algorithm

We used a segmentation algorithm developed by Pedro
Felzenszwalb and Daniel Huttenlocher to segment our
images. This algorithm is not a model of human image
segmentation: It was not designed to be biologically
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plausible, and it does not include all of the grouping rules
used by humans. Nonetheless, like many segmentation
algorithms, it produces results that are often consistent
with the organization we perceive. And unlike other
segmentation algorithms, it is extremely efficient, making
it suitable for testing on hundreds of large images.

A full description of the algorithm can be found in
Felzenszwalb and Huttenlocher (2004), and the source code
is available on the authors’ Web sites. In brief, the
algorithm works by representing an image as an undirected
graph with each vertex in the graph representing a pixel in
the image. Neighboring vertices are connected by an edge,
and the weight on the edge is proportional to the difference
between the corresponding pixels. Segmenting the image
into regions involves cutting edges in the graph to produce
subcomponents, which are disjoint sets of interconnected
vertices. The algorithm decides which edges to cut by
comparing the minimum weight connecting two subcom-
ponents with the maximum weight within the subcompo-
nents. (This description of the algorithm is highly
simplified; interested readers can find a more accurate
description in Felzenszwalb & Huttenlocher, 2004.)

If left unchecked, this operation can cut all edges in a
graph, producing regions that correspond to individual
pixels. To avoid over-segmenting the image, the algorithm
includes a penalty on cuts that produce small regions. The
size of small is defined by a scale parameter that has the
unit of pixels. When the scale parameter is set to 500, for
example, subcomponents with an area smaller than 500
pixels are penalized by an amount that is inversely
proportional to their area. This penalty does not impose
a fixed size limit; instead, it imposes a greater burden of
evidence for the segmentation of small regions. Figure 2A
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shows the segmentations of one of the bag stimuli with six
values of the scale parameter, and Figure 2C shows how
the number of segmented regions changes with the scale
parameter. Note that the relationship between the seg-
mentation scale and the number of regions is well
described by a power law.

We applied the segmentation algorithm to the bag
images and found that they were all generally well fit by a
power law with an exponent of —1.32 (o = 0.13). The
images differed, however, in the constant of proportion-
ality of the power law, with highly cluttered images
having larger constants. We used this constant as our
measure of clutter. By defining clutter in this way, we
avoid the issue of scale. The following sections describe a
test of whether this measure of clutter can be used to
predict observers’ search times.

Bag stimuli

Our stimuli were 160 photographs of the contents of
handbags downloaded from the “What’s in your bag?” group
on http://flickr.com. The targets for our search experiment
were eight objects that occurred frequently in the images:
cell phones, ipods, keys, writing implements, eyeglasses,
hair brushes, money, and blister packs. (A blister pack is a
type of packaging used for pills; the blister refers to a clear
plastic bubble backed with foil.) An image was down-
loaded only if it could be used in two target-present
conditions and two target-absent conditions. To be used in
a target-present condition, the image must have had only
one example of the target object, or, in the case of keys,
pens, or money, a single group of target objects.
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Figure 2. Along the top are six segmentations of image B. As the scale of segmentation increases, the number of segmented regions
decreases. This function is well fit by a power law with an exponent of —1.32 (C).
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Photographs were also selected based on image quality:
Photographs that were blurry or that contained obvious
quantization artifacts were not used. Also, a preference
was given to photographs that depicted a random arrange-
ment of objects. Many photographers laid out the contents
of their handbags in an organized way. Although we
included some of these images, our sample was biased
toward images showing a haphazard arrangement. The
rationale for this decision is explained later, but, in brief,
we assumed that observers might ignore some regions if
the image had an obvious orderly arrangement.

Many of the images were resized in Photoshop so that
similar objects would have similar sizes throughout the
experiment. This resizing involved matching the spatial
extent of one of the target objects to a preset value. This
resizing was crude in that it did not compensate for
projection effects such as foreshortening. We resized the
images because although our measure of clutter is
invariant to the scale of segmentation, this measure is
not invariant to the scale of the scene. Doubling the size of
an image would increase the number of regions at all
scales, and this would increase the measured clutter. But
although changing image size will change measured
clutter, we think it is unlikely that it will produce a
commensurate change in search times. We assume that
observers quickly apprehend the scale of a scene and
adjust their search strategy accordingly. Since our meas-
ure of clutter does not adjust to the scale of the scene, we
manually scaled the images. This rescaling could be
automated or eliminated in applications having cameras
at a known or fixed viewing distance.

Procedure

The observers were instructed to decide quickly but
accurately whether a particular target was present in each
image, and they were told to register their response using
one of two keys. The observers were also instructed that
when the target was present, it would be easily recogniz-
able: An object that was too small, too occluded, or too
dark to be identified was not the target.

The 50-min experiment was conducted on an Apple
PowerMac using MatLab and PsychToolbox routines
(Brainard, 1997; Pelli, 1997). There were eight blocks of
trials, one for each of the eight targets. The number of
trials in a block ranged from 68 to 108, with an average
of 83. (Ideally, each block would have had the same
number of trials, but we had limited control over these
stimuli, and we were more concerned that each image be
used with four different targets.) Each block was preceded
by 10 practice trials to allow the observers to adjust their
perceptual set to the new category. Auditory feedback was
given after incorrect trials. The observer initiated the first
trial in each block; all subsequent trials began 1 s after a
response.
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Observers

Thirty observers participated in this experiment. The
observers were recruited from the undergraduate subject
pool at Rutgers-Camden. All observers reported normal
color vision and normal or corrected-to-normal acuity.

Results and discussion

Figure 3A shows response times plotted against clutter
for each of the eight target categories. Each data point
shows the average time observers took to find a particular
target in a particular image. We expected considerable
scatter in these plots because the images differed in many
ways that are known to influence search (e.g., the location
and salience of the target). To isolate the effect of clutter,
it is necessary to average-out these other effects. To this
end, we had observers search each image for four different
targets, twice with the target present and twice with it
absent. Figure 3B shows, for each image, the averaged
response times for two present trials and two absent trails.
Figure 3C shows the normalized average response time
for all four trials. (To normalize the present and absent
data, we fit each data set with a line, subtracted off the
intercepts, and then transformed the present data so that its
line coincided with that of the absent data.) The clutter
measure accounts for 38% of the variance of the averaged,
normalized response times.

To understand why the clutter measure does not account
for more of the search time variance, we examined the
outliers in Figure 3C. Because a small change in the power
law exponent can cause a large change in the constant of
proportionality, we examined whether the outlier images
had best-fitting exponents that differed consistently from
the mean. We found no obvious relationship between the
deviation of the best-fitting exponent and the dispersion in
the search time data. We also visually inspected images
that had similar amounts of clutter but different response
times. For example, images A and B in Figure 4 are judged
as similarly cluttered, but the average search time for A is
much faster than that for B. A potentially relevant
difference between these images is that A contains several
patches of regular texture, and it is possible that observers
treated the regions comprising these textures as a single
chunk (Neider & Zelinsky, 2006). It is also instructive to
compare images that have similar response times but
different amounts of measured clutter. Image C is judged
to have more clutter than image B, but observers searched
these two images with similar ease. Again, we might
understand this discrepancy by noting that although the
textured background in C increases measured clutter,
observers may recognize it as a texture and ignore it
during search. A better measure of the clutter may require
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Figure 3. (A) Search times plotted against image clutter for the eight target categories. Each data point corresponds to the average
response time for one target and one image, N = 30. Red dots correspond to target-present trials, and blue dots correspond to target-
absent trials. (B) Each image was used with four target categories, twice with the target present and twice with the target absent. The
graph shows for each image the average response times for two present trials and two absent trails, respectively. Present data: slope =
0.27, intercept = 0.81, R? = .24; absent data: slope = 0.66, intercept = 1.37, R?> = .36. (C) The normalized, averaged response times for all

four trials, R? = .38.

a segmentation algorithm that groups regular textures into
a single region.

Although some of the scatter in the data is surely due
to the limitations of our clutter measure, some of the
scatter may be due to the limitations of our experimental
design. In the introduction, we described three task
requirements that are important for isolating the effect
of clutter. One requirement is that observers be uncertain
of the target’s features. We hoped the wide range of
exemplars comprising each target set would satisfy this
requirement. But although simple features like color or
orientation were not reliably associated with the targets,
there may have been more complex, category-specific
features that were. A second requirement is that the target
be no more salient than the distractors. We attempted to
satisfy this requirement by having observers search each

image for different targets and averaging the results.
Because only a subset of the image objects served as
targets, this requirement may also have been only
partially satisfied. The third requirement for isolating
the effect of clutter is that the stimuli be unstructured.
Most images had a haphazard arrangement of objects, but
some images had an orderly arrangement. If observers
perceived this order, they may have assumed that objects
were not piled on top of one another, and they may have
ignored small regions that were clearly embedded in
larger regions. So this requirement may also have been
only partially satisfied.

These potential shortcomings in the experiment arose
because we traded control over our stimuli for the
diversity and the naturalism of images downloaded from
the Internet. In a previously reported experiment, we made
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Figure 4. Three bag images and their segmentations (k = 1000). According to our measure, images A and B have similar amounts of
clutter, but observers search image A faster than image B. Conversely, image C is judged to have more clutter than image B, but

observers searched both images with similar speed.

the opposite trade-off. The next section describes the
application of the clutter measure to these less natural but
more controlled stimuli.

Ancillary test

As mentioned in the introduction, we had previously
tested the idea that search times are determined by the
number of objects in the image. As Figure 5 shows, our
stimuli were photo-collages of common objects. These
objects were classified as “simple” if they had uniform
color (Figure 5, top) and as ‘“compound” if they had
multiple parts with different colors (Figure 5, bottom).
The target was a food item. Displays consisted of 6, 12, or
24 items, and half of the displays contained a target. All of
the distractors in a display were of one type, either simple
or compound; the target was of either type.

If search times depend only on the number of objects in
the display, then one would expect similar search times
for displays composed of simple and compound distrac-
tors. Instead, we found that search times were longer for
displays composed of compound distractors (Figure 6).
We interpreted this result as suggesting that search times
depend on the number of regions defined by bottom-up
segmentation. That is, we assumed that simple objects
would often be segmented as a single region, whereas
compound objects would often be over-segmented into
multiple regions. Because displays composed of com-
pound objects contain more regions, observers should take
longer to search them.

This interpretation is only qualitative; we did not try to
count the number of regions in the compound and simple
displays. As a rough estimate, however, one could try to
estimate this number from the number of object parts:

Figure 5. Photo-collage stimuli from Bravo and Farid (2004b).
Both stimuli contain 24 objects, but the objects in the bottom
stimulus have more parts than the objects in the top stimulus.
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Since the compound objects had at least twice as many
parts as the simple objects, compound displays should
have twice as many regions as simple displays. By this
reasoning, the slope of the search functions for compound
displays should be twice that for simple displays. The
actual slope ratio was closer to 1.4 (Figure 6A). This
discrepancy might reflect a failure of our hypothesis, but it
also might reflect problems with the region estimate. One
potential problem is that because the objects were
randomly arranged, occlusions may have altered the
number of visible regions. That is, occlusions may have
completely hidden some of the compound object parts,
which were relatively small. At the same time, occlusions
may have fragmented some of the simple objects. A better
test of our hypothesis would involve a direct count of the
regions in the displays rather than a count of the object
parts used to make the displays.

To count the number of regions in the photo-collage
stimuli, we segmented these images at the same six scales
as the bag stimuli. We counted the regions produced by
each segmentation and again found a power law relation-
ship between this number and the segmentation scale. For
these artificial stimuli, the average exponent of the power
law was —1.13. We fixed the exponent of the power law
to this value and used the constant of proportionality as
our measure of clutter. We then calculated the average
clutter in each of the 12 types of photo-collage stimuli:
simple vs. compound distractors; 6, 12, or 24 objects; and
target present versus target absent. Finally, we replotted
the response time data using average clutter as the
independent variable. As Figure 6B shows, the clutter
measure brings into register the results for the simple and
the compound displays. Our clutter measure is clearly a
better predictor of search times than is the number of
objects.

General discussion

Vision is such complex problem that it seems most
amenable to a reductionist approach. The strength of this

approach is obvious: With simplified stimuli and tasks, it
is possible to formulate precise questions and to obtain
unambiguous answers. The weakness of this approach is
also obvious: Fractionating and simplifying a complex
problem can alter it in essential ways. Using isolated
objects as stimuli has allowed us to learn a great deal
about visual search, but it has also allowed us to neglect
some of the fundamental challenges posed by real
images. Only recently have researchers begun to consider
how image clutter might alter the process of visual
search (Rosenholtz, Li, & Nankano, 2007; Wolfe, Oliva,
Horowitz, Butcher, & Bompas, 2002), as well as other visual
processes, like object recognition (Rolls, Aggelopoulus, &
Zheng, 2003; Sheinberg & Logothetis, 2000).

To examine how image clutter affects visual search, it is
necessary to measure it. The goal of this study is to devise
a measure of clutter that is both intuitive and feasible. Our
measure is based on the idea that the chunks for visual
search are the regions formed by perceptual organization
(Neisser, 1967). Perceptual organization is assumed to
involve fast, bottom-up processes that exploit the stat-
istical regularities found within objects (Brunswick &
Kamiya, 1953). So although these processes do not access
object memory, they produce regions that likely corre-
spond to single objects (Elder & Goldberg, 2002; Fine
et al., 2003). The basic phenomena of human percep-
tual organization were described early last century
(Wertheimer, 1938), and subsequent research has revealed
much about the underlying processes. Still, there is
currently no fully integrated model of human perceptual
organization. To define the regions in our images, we
borrowed an image segmentation algorithm from the
computer vision community. As a model of human
perceptual organization, the segmentation algorithm is too
simplistic: It does not take into account symmetry,
collinearity, parallelism, and other grouping cues that
humans use. Also, the algorithm makes decisions based
only on local information, and so it may not always
produce the optimal global segmentation. But the sim-
plicity of this segmentation algorithm is also its strength;
the algorithm is extremely efficient, and this makes it
feasible to use on large sets of big, color images.
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The clutter measure we developed using this algorithm
has the very useful property of scale invariance. This
property is useful because it allows us to study how clutter
affects search even when we do not know the features that
are involved in this task. For example, we can study the
effect of clutter on search for a hairbrush, although we do
not know whether the observer searches for coarse-scale
features associated with the object’s shape, for fine-scale
feature associated with its bristly texture, or for both
features simultaneously. We can apply our clutter measure
to this task because it characterizes the clutter over a
range of scales.

In addition to being useful, the scale invariance we have
observed may reveal something about the structure of
natural images. Many image properties, including number
of regions, vary with scale as a power law (Field, 1987;
Martin, Fowlkes, Tai, & Malik, 2001; Ruderman, 1997).
The scale invariance that this implies has been explained
by the fractal-like structure of objects (Mumford & Gidas,
2001). An object may have several parts, and each of
these parts may have several more parts, and these parts
may have surface patterns due to the effects of lighting
and texture. If images of objects have structure at
arbitrarily small scales, then this could explain the power
law relationship we observed between the number of
image regions and the scale of segmentation. This could
also explain why the bag images all had similar power law
exponents. These stimuli differed primarily in the number
but not the types of objects they contained; if one image
contained more objects than another, it would likely
contain more structure at all scales.

When we applied the clutter measure to the photo-
collage stimuli from our 2004 experiment, we found that
these stimuli were also well fit by a power law, but the
average exponent differed from that of the bag images.
This is not entirely surprising given the artificial nature of
the photo-collage stimuli. But even natural images might
have different power law exponents depending on their
content. Images of landscapes, for example, often have
large expanses of water, grass, sand, or rock. These large
textured regions have much fine-scale structure but little
coarse-scale structure. Thus, the number of regions in a
landscape image might fall off very steeply with increas-
ing scale. To test this possibility, we applied the
segmentation algorithm to 60 images depicting man-made
objects (tools, cars, room interiors, and buildings) and
60 images depicting nature (plants and landscapes). The
average exponent for the images of artifacts (—1.31,
o = 0.14) was comparable to that for the bag stimuli
(—1.32, 0 =0.13), but the average exponent for the images
of nature was more negative (—1.51, o = 0.19). If different
types of images have different exponents, then our clutter
measure will work best for images with similar content.

A full model of visual search in natural images must
consider several variables besides clutter. We intention-
ally minimized the role of these other variables in our
task, but in many search tasks they dominate performance.
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For example, some search targets, such as stop signs or
exit signs, are designed to be easily found in background
clutter. The conditions that produce a salient target have
been well studied and extensively modeled (Itti & Koch,
2000; Nothdurft, 2002).

Recently, Rosenholtz et al. (2007) proposed a model of
clutter that focuses on target saliency. The model
measures the range of simple features in an image and
uses this range to predict whether a target added to the
image is likely to attract attention. If the image has a
limited range of features, then it is likely that an added
target will be salient; but if the image a wide range of
features, then it is likely that an added target will not be
salient. Note that the model predicts fast search times for
an image composed of many, very similar objects because
a target object added to such an image would be easy to
find. This prediction of fast search times is less likely to
apply, however, when the observer searches for one of the
objects already in the image. It is this type of search,
search for a nonsalient target, that requires a measure
based on image regions.

This paper proposes a measure of clutter that can
predict search times when the target is not salient and
when the target’s simple features and location are not
known. The measure is intuitive and feasible. And
because the measure is scale invariant, it can be applied
to tasks in which the nature of the relevant image
information is unknown. This makes the measure espe-
cially useful for studying search tasks that we know little
about, such as the search for real objects in real scenes.
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