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Abstract

We have developed a general-purpose registration algorithm for medical images
and volumes. The transformation between images is modeled as locally affine but
globally smooth, and explicitly accounts for local and global variations in image
intensities. An explicit model of missing data is also incorporated, allowing us to
simultaneously segment and register images with partial or missing data. The al-
gorithm is built upon a differential multiscale framework and incorporates the ex-
pectation maximization algorithm. We show that this approach is highly effective
in registering a range of synthetic and clinical medical images.

1 Introduction

The goal of image registration is to find a transformation that aligns one im-
age to another. Medical image registration has emerged from this broad area
of research as a particularly active field (see [1–6] for general surveys). This
activity is due in part to the many clinical applications including diagnosis,
longitudinal studies, and surgical planning, and to the need for registration
across different imaging modalities (e.g., MRI, CT, PET, X-RAY, etc.). Medi-
cal image registration, however, still presents many challenges. Several notable
difficulties are 1) the transformation between images can vary widely and be
highly non-rigid in nature; 2) images acquired from different modalities may
differ significantly in overall appearance and resolution; 3) there may not be
a one-to-one correspondence between the images (missing/partial data); and
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4) each imaging modality introduces its own unique challenges, making it
difficult to develop a single generic registration algorithm.

In estimating the transformation that aligns two images we must choose: 1) to
estimate the transformation between a small number of extracted features, or
between the complete unprocessed intensity images; 2) a model that describes
the geometric transformation; 3) whether to and how to explicitly model inten-
sity changes; 4) an error metric that incorporates the previous three choices;
and 5) a minimization technique for minimizing the error metric, yielding the
desired transformation.

Feature-based approaches extract a (typically small) number of corresponding
landmarks or features between the pair of images to be registered. The over-
all transformation is estimated from these features. Common features include
corresponding points [7–9], edges [10,11], contours [12,13] or surfaces [14–16].
These features may be specified manually or extracted automatically. Fiducial
markers may also be used as features; these markers are usually selected to
be visible in different modalities. Feature-based approaches have the advan-
tage of greatly reducing computational complexity. Depending on the feature
extraction process, these approaches may also be more robust to intensity
variations that arise during, for example, cross modality registration. Also,
features may be chosen to help reduce sensor noise. These approaches can be,
however, highly sensitive to the accuracy of the feature extraction. Intensity-
based approaches, on the other hand, estimate the transformation between the
entire intensity images. Such an approach is typically more computationally
demanding, but avoids the difficulties of a feature extraction stage.

Independent of the choice of a feature- or intensity-based technique, a model
describing the geometric transform is required. A common and straightfor-
ward choice is a model that embodies a single global transformation. The
problem of estimating a global translation and rotation parameter has been
studied in detail, and a closed form solution was proposed by Schönemann [7]
in 1966. Other closed-form solutions include methods based on singular value
decomposition (SVD) [17], eigenvalue-eigenvector decomposition [18] and unit
quaternions [19]. One idea for a global transformation model is to use poly-
nomials. For example, a zeroth-order polynomial limits the transformation to
simple translations, a first-order polynomial allows for an affine transforma-
tion, and, of course, higher-order polynomials can be employed yielding pro-
gressively more flexible transformations. For example, the registration package
Automated Image Registration (AIR) can employ (as an option) a fifth-order
polynomial consisting of 168 parameters (for 3-D registration) [20,21]. The
global approach has the advantage that the model consists of a relatively small
number of parameters to be estimated, and the global nature of the model en-
sures a consistent transformation across the entire image. The disadvantage
of this approach is that estimation of higher-order polynomials can lead to an
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unstable transformation, especially near the image boundaries. In addition, a
relatively small and local perturbation can cause disproportionate and unpre-
dictable changes in the overall transformation. An alternative to these global
approaches are techniques that model the global transformation as a piecewise
collection of local transformations. For example, the transformation between
each local region may be modeled with a low-order polynomial, and global
consistency is enforced via some form of a smoothness constraint. The ad-
vantage of such an approach is that it is capable of modeling highly nonlinear
transformations without the numerical instability of high-order global models.
The disadvantage is one of computational inefficiency due to the significantly
larger number of model parameters that need to be estimated, and the need
to guarantee global consistency. Low-order polynomials are, of course, only
one of many possible local models that may be employed. Other local mod-
els include B-splines [22–25], thin-plate splines [26,9], and a multitude of re-
lated techniques. The package Statistical Parametric Mapping (SPM) uses the
low-frequency discrete cosine basis functions [27,28], where a bending-energy
function is used to ensure global consistency. Physics-based techniques that
compute a local geometric transform include those based on the Navier-Stokes
equilibrium equations for linear elasticity [29–31] and those based on viscous
fluid approaches [31–33].

Under certain conditions a purely geometric transformation is sufficient to
model the transformation between a pair of images. Under many real-world
conditions, however, the images undergo changes in both geometry and in-
tensity (e.g., brightness and contrast). Many registration techniques attempt
to remove these intensity differences with a pre-processing stage, such as his-
togram matching [34,35] or homomorphic filtering [36]. The issues involved
with modeling intensity differences are similar to those involved in choosing
a geometric model. Because the simultaneous estimation of geometric and
intensity changes can be difficult, few techniques build explicit models of in-
tensity differences. A few notable exceptions include AIR [20,21], in which
global intensity differences are modeled with a single multiplicative contrast
term, and SPM [27,28] in which local intensity differences are modeled with a
basis function approach.

Having decided upon a transformation model, the task of estimating the model
parameters begins. As a first step, an error function in the model parameters
must be chosen. This error function should embody some notion of what is
meant for a pair of images to be registered. Perhaps the most common choice
is a mean square error (MSE), defined as the mean of the square of the differ-
ences (in either feature distance or intensity) between the pair of images. This
metric is easy to compute and often affords simple minimization techniques.
A variation of this metric is the unnormalized correlation coefficient applica-
ble to intensity-based techniques. This error metric is defined as the sum of
the point-wise products of the image intensities, and can be efficiently com-
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puted using Fourier techniques [37,38]. A disadvantage of these error metrics
is that images that would qualitatively be considered to be in good registra-
tion may still have large errors due to, for example, intensity variations, or
slight misalignments. Another error metric (included in AIR) is the ratio of
image uniformity (RIU) defined as the normalized standard deviation of the
ratio of image intensities. Such a metric is invariant to overall intensity scale
differences, but typically leads to nonlinear minimization schemes. Mutual
information [39–42], entropy [43,44] and the Pearson product moment cross
correlation [45] are just a few examples of other possible error functions. Such
error metrics are often adopted to deal with the lack of an explicit model of
intensity transformations [46].

In the final step of registration, the chosen error function is minimized yielding
the desired model parameters. In the most straightforward case, least-squares
estimation is used when the error function is linear in the unknown model
parameters. This closed-form solution is attractive as it avoids the pitfalls of
iterative minimization schemes such as gradient-descent or simulated anneal-
ing. Such nonlinear minimization schemes are, however, necessary due to an
often nonlinear error function. A reasonable compromise between these ap-
proaches is to begin with a linear error function, solve using least-squares,
and use this solution as a starting point for a nonlinear minimization.

In developing our general-purpose registration algorithm, we have tried to
find a compromise between a flexible and robust technique and computational
efficiency. To begin, we have chosen an intensity-based approach so as to avoid
the various pitfalls involved in feature selection. Geometrically, we model the
transformation with a local affine model and a global smoothness constraint.
Intensity variations are explicitly modeled with local changes in brightness
and contrast and a global smoothness constraint. These model parameters are
simultaneously estimated at each pixel in the image, allowing us to capture
nonlinear distortions (in both geometry and intensity). We employ a standard
MSE error metric on the intensity values. The minimization involves two steps.
First an error function that is linear in the model parameters is minimized
using least-squares. This error function is then augmented with a nonlinear
smoothness constraint, and the least-squares solution is used to bootstrap
an iterative nonlinear minimization. This entire procedure is built upon a
differential multiscale framework, allowing us to capture both large- and small-
scale transformations, see also [46–48] for related techniques.

In addition to this framework we describe an extension that allows us to ex-
plicitly contend with missing or partial data. Shown in Fig. 4 are examples
of the challenges posed by missing data. In these examples there are large
portions of the source image that have no corresponding match in the tar-
get image. Without an explicit segmentation or localization of these missing
regions, most registration algorithms are unlikely to correctly register these
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images. Of course, if the registration between these images were known, then
it would be straight-forward to perform the segmentation. Similarly, if the
segmentation were known, the registration could proceed. Without a known
segmentation or registration, however, we are faced with a bit of a chicken
and egg problem - which step should be performed first? In order to contend
with this problem we have employed the expectation maximization algorithm
that simultaneously segments and registers a pair of images or volumes (see
also [49]).

For purposes of completeness we will briefly review our previous registration
algorithm [50,51], and then describe the extension that allows us to contend
with missing data. We then show the efficacy of this approach on several
synthetic and clinical cases.

2 Registration

We formulate the problem of image registration within a differential (non
feature-based) framework. This formulation borrows from various areas of mo-
tion estimation (e.g., [52,53]). In order to contend with partial or missing data,
the expectation maximization algorithm [54] is incorporated into this frame-
work, allowing for simultaneous segmentation and registration. We first outline
the basic computational framework, and then discuss several implementation
details that are critical for a successful implementation.

2.1 Local affine

Denote f(x, y, t) and f(x̂, ŷ, t − 1) as the source and target images, respec-
tively. 1 We begin by assuming that the image intensities between images
are conserved (this assumption will be relaxed later), and that the geometric
transformation between images can be modeled locally by an affine transform:

f(x, y, t)= f(m1x + m2y + m5, m3x + m4y + m6, t − 1), (1)

where m1, m2, m3, m4 are the linear affine parameters, and m5, m6 are the
translation parameters. These parameters are estimated locally for each small
spatial neighborhood, but for notational convenience their spatial parameters

1 We adopt the slightly unconventional notation of denoting the source and tar-
get image with a temporal parameter t. This is done for consistency within our
differential formulation.
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are dropped. In order to estimate these parameters, we define the following
quadratic error function to be minimized:

E(~m) =
∑

x,y∈Ω

[f(x, y, t) − f(m1x + m2y + m5,m3x + m4y + m6, t − 1)]2 , (2)

where ~m = ( m1 . . . m6 )T , and Ω denotes a small spatial neighborhood.
Since this error function is nonlinear in its unknowns, it cannot be minimized
analytically. To simplify the minimization, we approximate this error function
using a first-order truncated Taylor series expansion:

E(~m)≈
∑

x,y∈Ω

[ft(x, y, t) − (m1x + m2y + m5 − x)fx(x, y, t)

−(m3x + m4y + m6 − y)fy(x, y, t)]2 , (3)

where fx(·), fy(·), ft(·) are the spatial/temporal derivatives of f(·). Note that
this quadratic error function is now linear in its unknowns, ~m. This error
function may be expressed more compactly in vector form as:

E(~m) =
∑

x,y∈Ω

[

k − ~cT ~m
]2

, (4)

where the scalar k and vector ~c are given as: k = ft + xfx + yfy and ~c =

( xfx yfx xfy yfy fx fy )T . This error function can now be minimized
analytically by differentiating with respect to the unknowns:

dE (~m)

d~m
=
∑

x,y∈Ω

−2~c
[

k − ~cT ~m
]

, (5)

setting the result equal to zero, and solving for ~m, yielding:

~m =





∑

x,y∈Ω

~c ~cT





−1 



∑

x,y∈Ω

~c k



 . (6)

This solution assumes that the first term, a 6×6 matrix, is invertible. This can
usually be guaranteed by integrating over a large enough spatial neighborhood
Ω with sufficient image content. When an estimate cannot be made, the local
parameters are interpolated from nearby regions. With this approach a dense
locally affine mapping can be found between a source and target image.
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2.2 Intensity variations

Inherent to the model outlined in the previous section is the assumption that
the image intensities between the source and target are unchanged (brightness
constancy). This assumption is likely to fail under a number of circumstances.
To account for intensity variations, we incorporate into our model an explicit
change of local contrast and brightness [55]. Specifically, our initial model,
Equation (1), now takes the form:

m7f(x, y, t) + m8 = f(m1x + m2y + m5, m3x + m4y + m6, t − 1), (7)

where m7 and m8 are two new (also spatially varying) parameters that embody
a change in contrast and brightness, respectively. Note that these parameters
have been introduced in a linear fashion. As before, the error function is ap-
proximated with a first-order truncated Taylor series expansion to yield:

E(~m) =
∑

x,y∈Ω

[

k − ~cT ~m
]2

, (8)

where the scalar k and vector ~c are now given as:

k = ft − f + xfx + yfy (9)

~c =( xfx yfx xfy yfy fx fy −f −1 )T . (10)

Minimizing this error function is accomplished as before by differentiating
E(~m), setting the result equal to zero and solving for ~m. The solution takes
the same form as in Equation (6), with k and ~c as defined in Equations (9)
and (10).

Intensity variations are typically a significant source of error in differential
motion estimation. The addition of the contrast and brightness terms allows
us to accurately register images in the presence of these variations.

2.3 Smoothness

Until now, we have assumed that the local affine and contrast/brightness
parameters are constant within a small spatial neighborhood, Equation (8).
There is a natural trade-off in choosing the size of this neighborhood. A larger
area makes it more likely that the matrix in Equation (6) will be invertible.
A smaller area, however, makes it more likely that the assumption of con-
stant motion will hold. We can avoid balancing these two issues by replacing
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the assumption of constancy with a smoothness assumption [52]. That is, it is
assumed that the model parameters ~m vary smoothly across space. A smooth-
ness constraint on the contrast/brightness parameters has the added benefit
of avoiding a degenerate solution where a pure intensity-based modulation is
used to describe the mapping between images.

We begin with an error function:

E(~m) = Es(~m) + Eb(~m), (11)

that combines a smoothness constraint, Es(~m), with the previous geometric
and intensity transformation constraint, Eb(~m). The term Eb(~m) is defined as
in Equation (8) without the summation:

Eb(~m) =
[

k − ~cT ~m
]2

, (12)

with k and ~c given by Equations (9) and (10). The new term Es(~m) embodies
a smoothness constraint:

Es(~m) =
8
∑

i=1

λi





(

∂mi

∂x

)2

+

(

∂mi

∂y

)2


 , (13)

where λi is a positive constant that controls the relative weight given to the
smoothness constraint on parameter mi. This error term penalizes solutions
proportional to the local change in each parameter across a small spatial neigh-
borhood. In so doing, we allow for a locally smooth, but globally non-rigid
transformation. The full error function E(~m) is minimized, as before, by dif-
ferentiating, setting the result equal to zero and solving for ~m. The derivative
of Eb(~m) is:

dEb (~m) /d~m = −2~c
[

k − ~cT ~m
]

. (14)

The derivative of Es(~m) is computed by first expressing the partials, ∂mi/∂x
and ∂mi/∂y with discrete approximations [52], and then differentiating, to
yield:

dEs (~m) /d~m = 2L(~m − ~m), (15)

where ~m is the component-wise average of ~m over a small spatial neighbor-
hood, and L is an 8 × 8 diagonal matrix with diagonal elements λi, and zero
off the diagonal. Setting dEb (~m) /d~m + dEs (~m) /d~m = 0, and solving for ~m

8



at each pixel location yields an enormous linear system which is intractable
to solve. Instead ~m is estimated in the following iterative manner [52]:

~m(j+1) =
(

~c ~cT + L
)

−1
(

~c k + L~m
(j)
)

. (16)

The initial estimate ~m(0) is determined from the closed-form solution of Sec-
tion 2.2. On the j +1st iteration ~m

(j)
is estimated from the previous estimate,

~m(j).

The use of a smoothness constraint has the benefit that it yields a dense locally
affine and smooth transformation. The drawback is that the minimization is no
longer analytic. We have found, nevertheless, that the iterative minimization
is quite stable and converges relatively quickly (see Section 2.5).

Shown in Fig. 1 are a source and target with both geometric and intensity
differences. Also shown in this figure is the registered source and the estimated
contrast, brightness, and geometric maps. Shown in Fig. 2 are several more
registration examples.

2.4 Partial Data

Inherent to the registration algorithm described above is the assumption that
each region in the source image has a corresponding match in the target image.
As illustrated in Fig. 4, this need not always be the case. Under such situations,
our registration algorithm typically fails. One way to contend with partial or
missing data is to employ a pre-processing segmentation step. We propose,
however, a more unified approach in which the registration and segmentation
are performed simultaneously.

We begin by assuming that each pixel in the source and target are either
related through the intensity and geometric model of Equation (7), denoted
as model M1, or cannot be explained by this transformation and therefore
belongs to an “outlier” model M2. Pixels belonging to the outlier model are
those that do not have a corresponding match between the source and target
images. Assuming that the pixels are spatially independent and identically
distributed (iid), the likelihood of observing a pair of images is given by:

L(~m)=
∏

x,y∈Ω

P (~q(x, y)), (17)

where, ~q(x, y) denotes the tuple of source, m7f(x, y, t) + m8, and target,
f(m1x + m2y + m5, m3x + m4y + m6, t − 1), image intensities, Equation (7).
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(a) source (b) target (c) registered source

(d) before registration (e) after registration

(f) estimated contrast (g) estimated brightness (h) estimated map

Fig. 1. Complete results for a pair of sagittal images from two different patients.
Shown along the top are the source, target and registered source. Shown in panels
(d) and (e) are the overlaid edges before and after registration. Shown in panels (f),
(g) and (h) are the estimated contrast, brightness and geometric maps.

To simplify the optimization of the likelihood function, we consider the log-
likelihood function:

log[L(~m)] = log





∏

x,y∈Ω

P (~q(x, y))





=
∑

x,y∈Ω

log [P (~q(x, y)|M1)P (M1) + P (~q(x, y)|M2)P (M2)] . (18)

Assuming that the priors on the models, P (M1) and P (M2), are equal, the
log-likelihood function simplifies to:
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source target registered source

Fig. 2. Shown are examples of registration in the presence of significant geometric
and intensity variations. Registration is also successful in the absence of high spatial
frequency features, as shown in the mammogram example (bottom row).

log[L(~m)] =
∑

x,y∈Ω

log [P (~q(x, y)|M1) + P (~q(x, y)|M2)] , (19)

where the factored additive constant is ignored for purposes of maximization.
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We assume next that the conditional probabilities take the following form:

log[L(~m)] =
∑

x,y∈Ω

log
[

e−r2(x,y)/σ2

+ e−c2
]

. (20)

For model M1 we assume a Gaussian distribution (with variance σ2), where
r(x, y) is the residual error between the source and target defined as:

r(x, y) = [m7f(x, y, t) + m8 − f(m1x + m2y + m5,m3x + m4y + m6, t − 1)]. (21)

For model M2 we assume a uniform distribution (i.e., c is a constant). The
log-likelihood function is maximized by differentiating, setting the result equal
to zero and solving for ~m:

d log[L(~m)]

d~m
=

∑

x,y∈Ω

dr2(x,y)
d~m

e−r2(x,y)/σ2

e−r2(x,y)/σ2 + e−c2
=

∑

x,y∈Ω

dr2(x, y)

d~m
w(x, y) = 0, (22)

where w(·) is defined to be the ratio of the exponential distributions. As in
the previous sections, the residual r(·) is linearized with respect to the model
parameters ~m. The derivative of the residual, dr2(x, y)/d~m, is then substituted
into the above to yield:

∑

x,y∈Ω

−2~c[k − ~cT ~m]w =0, (23)

with ~c and k given by Equations (9) and (10), and, as before, all spatial
parameters are dropped for notational convenience. Solving for the model
parameters then yields the maximum likelihood estimator:

~m =





∑

x,y∈Ω

(~c~cT )w





−1 



∑

x,y∈Ω

(~ck)w



 . (24)

Note that this solution is a weighted version of the earlier least-squares solu-
tion, Equation (6), where the weighting, w, is proportional to the likelihood
that each pixel belongs to model M1. As before, a smoothness constraint can
be imposed to yield the following iterative estimator:

~m(j+1) =
(

(~c ~cT )w + L
)

−1
(

(~c k)w + L~m
(j)
)

. (25)

This estimator for ~m, however, requires an estimate of the weight w which itself
requires an estimate of ~m. The expectation/maximization algorithm (EM) [54]
is used to resolve this circular estimator, and proceeds as follows:
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(1) E-step: compute the weights w (with an initial estimate of ~m from the
solution of Section 2.3).

(2) M-step: estimate the model parameters ~m, Equation (25).
(3) Repeat steps 1 and 2 until the difference between successive estimates of

~m is below a specified threshold.

The E-step is the segmentation stage, where pixels that do not have a corre-
sponding match between source and target images have a close to zero weight
w. These pixels are therefore given less consideration in the M-step which
estimates the registration parameters ~m. The EM algorithm allows for simul-
taneous segmentation and registration, and hence allows us to contend with
missing data.

2.5 Implementation details

While the formulation given in the previous sections is relatively straight-
forward there are a number of implementation details that are critical for a
successful implementation. First, in order to simplify the minimization, the
error function of Equation (8) was derived through a Taylor-series expansion.
A more accurate estimate of the actual error function can be determined using
a Newton-Raphson style iterative scheme [56]. In particular, on each iteration,
the estimated geometric transformation is applied to the source image, and a
new transformation is estimated between the newly warped source and target
image. As few as five iterations greatly improves the final estimate. Second,
calculation of the spatial/temporal derivatives in Equations (9) and (10) is
a crucial step. These derivatives are often computed using finite differences
which typically yield poor approximations. We employ a set of derivative fil-
ters, specifically designed for multi-dimensional differentiation [57], that sig-
nificantly improve the registration results. And third, a coarse-to-fine scheme
is adopted in order to contend with larger motions [58,59]. A Gaussian pyra-
mid is first built for both source and target images, and the full registration
is estimated at the coarsest level. This estimate is used to warp the source
image in the next level of the pyramid. A new estimate is computed at this
level, and the process repeated throughout each level of the pyramid. The
transformations at each level of the pyramid are accumulated yielding a single
final transformation.

The generalization of the algorithm from 2-D images to 3-D volumes is rela-
tively straight-forward. Briefly, to accommodate a 3-D affine transformation,
an additional six affine parameters are added to the geometric and intensity
transformation model of Equation (7). Linearization and minimization of this
constraint proceeds as in the 2-D case. The smoothness constraint of Equa-
tion (13) takes on an additional (∂mi/∂z)2 term, and the iterative estimator
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of Equation (16) is of the same form, with k and ~c accommodating a different
set of, now 3-D, spatial/temporal derivatives. The solution of Section (2.4)
proceeds in a similar manner, with the initial constraint of Equation (17) up-
dated to accommodate the 3-D geometric and intensity transformation model.
See [51] for more details.

In the current MatLab implementation, running on a 2.8 GHz Linux machine,
a pair of 256 × 256 images requires 4 minutes to register. A pair of 64 × 64
× 64 volumes requires 30 minutes.

3 Results

We have tested the efficacy of our registration technique on both synthetic
and clinical data in both 2-D and 3-D. Shown in each row of Fig. 3 are source
images where a region was removed or replaced with noise. Shown in Fig. 4
are three clinical examples of registration in the presence of varying amounts
of missing data. And, shown in Fig. 5 is a synthetic 3-D example. In all cases,
the registration is successful even with significant amounts of missing data.
This registration would have failed without an explicit model of missing data
incorporated directly into the registration algorithm. In all of these results,
all system parameters were held fixed. These results show qualitatively the
effectiveness of our technique. We next describe a series of results that quantify
the robustness and sensitivity of our registration algorithm.

3.1 Analysis

In this section we quantify the accuracy of our registration algorithm with
respect to the various design assumptions. Synthetic images and registra-
tion maps were used for all the simulations in this analysis. While these im-
ages/maps capture only certain aspects of medical images, they allow for a
large testbed, and avoid biasing the results towards specific images/maps. We
begin with a description of these synthetic images and registration maps. In
all of the subsequent simulations, we report the registration accuracy over
100 independently generated images and registration maps. The errors are
reported as the root mean square (RMS) error in intensity between the regis-
tered source and the target image, and as the RMS error (in pixels) between
the estimated and actual registration map.
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source target registered source

Fig. 3. Shown are synthetic examples of registration with missing data.

3.1.1 Synthetic Image

Consistent with a simple model for natural images [60], the images synthesized
for the simulations are fractal in nature and modeled with a (1/ω)α power
spectrum and random phase. The value of α is determined as follows. For
a set of sample images, the 2-D power spectrum is first computed. For each
discrete frequency ω in the 2-D power spectrum, the median value is computed,
thus reducing the 2-D spectrum to 1-D. This 1-D spectrum is then modeled
as (1/ω)α, and α is estimated using a simple least-squares estimation. Note
that in this process, directional information is lost (since we use the median
value at each frequency), along with the phase correlations (since the model
uses only the power spectrum). The estimated value of α is 1.4, averaged over
a set of ten clinical images (MRI, chest X-rays, mammograms, and CT).

Given the value of α, each synthetic image s (x, y) is generated in the Fourier
domain as follows. Let ={·} denote the Fourier operator, and =−1 {·} the
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source target registered source

Fig. 4. Shown are clinical examples of registration with missing data.

inverse Fourier operator. Then:

s (x, y) = =−1 {= {r (x, y)} · H (ωx, ωy)} , (26)

where r(x, y) is a random image of size 128 × 128, with pixel values chosen
from a normal distribution with zero mean and unit variance. The response
H (ωx, ωy) corresponds to the model of the desired power spectrum in 2-D,
given by:

H (ωx, ωy) =





1
√

ω2
x + ω2

y





α

. (27)

The intensity values of the image s (x, y) are scaled into the range [0, 1]. A
sample synthetic image is shown in Figure 6(a) – the fractal image is padded
with a black border to avoid edge artifacts.
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source target registered source

Fig. 5. Shown is an example of 3-D registration with partial data. The brighter
regions shown with the registered source are the portions of the target that are
missing in the source - these regions are superimposed to show the accuracy of the
registration.

3.1.2 Synthetic Registration Map

A registration map consists of a displacement vector ~v(x, y) = (vx(x, y), vy(x, y))
at each pixel location (x, y). The displacement fields vx (·) and vy (·) are mod-
eled independently as two Gaussian distributions, and are synthesized inde-
pendently as follows. All parameter values used were estimated from known
registration maps. First, two random images of size 32×32 are generated, with
pixel values drawn from a normal distribution with zero mean and a standard
deviation of 5.0 pixels. Each image is then up-sampled to a size of 128× 128,
after which a 3 × 3 low-pass filter with coefficients [1 2 1; 2 4 2; 1 2 1]/16 is re-
peatedly applied, until a smoothness value of approximately 0.3 is obtained.
Smoothness is computed as follows:

(

1

N2

)

(

√

∑

x,y∈Ω

(

(

∂vx

∂x

)2

+

(

∂vx

∂y

)2
)

+

√

∑

x,y∈Ω

(

(

∂vy

∂x

)2

+

(

∂vy

∂y

)2
)

)

, (28)

where Ω is the entire image, and N is the total number of pixels. Finally,
a global affine [m1 m2; m3 m4] and translation [m5; m6] map is applied to
each of the images. The affine parameters vary with a uniform distribution;
parameters m1 and m4 (the scale parameters) vary from 0.9 to 1.1, parameters
m2 and m3 (the shear parameters) vary from 0 to 0.2, and parameters m5 and
m6 (the translation parameters) vary from −10 to +10. A sample synthetic
registration map is shown in Figure 6(b).

3.1.3 Geometric Distortions

The ability of differential techniques to handle large distortions is generally
a concern. Therefore, the extent to which global translations, rotations and
scale changes can be recovered was analyzed. In these simulations, the target
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(a) (b) (c)

Fig. 6. (a) Sample random synthetic image; (b) sample random synthetic registration
map ; (c) result of applying the synthetic registration map to the synthetic image.

image consisted of a random synthetic image, while the source image consisted
of the target image with a random global distortion applied.

In the first simulation, a global distortion consisting of only translations, rang-
ing from 0 to 30 pixels in steps of 1 pixel was applied. The algorithm was suc-
cessful up to a translation of 24 pixels, with an average intensity RMS error
of 0.002, and an average registration RMS error of 0.18 pixels. In the second
set of simulations, the global distortions consisted of only rotations, applied
from 0 to 90 degrees in steps of 1 degree. The algorithm was successful up to
a rotation of 45 degrees, with an average intensity RMS error of 0.02, and an
average registration RMS error of 0.2 pixels. And, in the third set of simu-
lations, the global distortions consisted of only scale changes, varying from a
factor of 1.0 to 2.0 in steps of 0.1. The algorithm was successful up to a scale
factor of 1.6, with an average intensity RMS error of 0.04, and an average
registration RMS error of 0.3 pixels.

3.1.4 Intensity Distortions

In this simulation, the sensitivity of the registration algorithm to brightness
variations was analyzed. The source image consisted of a synthetic fractal im-
age (with intensities in the range [0, 1]), with a synthetic registration map
applied. The target image consisted of the same synthetic image used in the
source, with a random fractal brightness map added to it, so that the intensi-
ties ranged from [0, 1+ b]. The algorithm was successful with brightness value
up to a value of b = 0.5, with an average intensity RMS error of 0.05, and an
average registration RMS error of 0.5 pixels.

Sensitivity to contrast variations was also analyzed. The source image con-
sisted of a synthetic fractal image (with intensities in the range [0, 1]), with
a synthetic registration map applied. The target image consisted of the same
synthetic image used in the source, with a random fractal contrast map mul-
tiplied to it, so that the intensities ranged from [c, 1]. The algorithm was
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successful with contrast values c ≥ 0.5, with an average intensity RMS error
of 0.05, and an average registration RMS error of 0.5 pixels.

3.1.5 Geometric Smoothness

In this simulation, the ability of the registration algorithm to recover local
geometric distortions of varying smoothness was analyzed. The target image
consisted of a synthetic fractal image, while the source image consisted of
the target image, with a known synthetic geometric distortion applied to it.
The smoothness of this distortion field, Equation (28), was varied from 0.1 to
0.6 and was generated similar to the synthetic registration map, as described
above; the only two differences being that 1) there was no global distortion
applied to the registration map, and 2) the smoothness of the registration map
was varied. The algorithm was successful with smoothness values less than 0.3,
with an average intensity RMS error of 0.03, and an average registration RMS
error of 0.4 pixels.

3.1.6 Noise

In this simulation, the ability of the registration algorithm to perform in the
presence of additive uniform noise was analyzed. The target image consisted of
a synthetic fractal image, and the source image consisted of the target image
with uniformly distributed noise added to it. The intensity of the noise was
modulated within the range [0, n], where n varies from 0 (no noise) to 1.0
(100% noise). The algorithm was successful with a PSNR value greater than
3db with an average intensity RMS error of 0.05, and an average registration
RMS error of 0.4 pixels. We hypothesize that the registration is successful at
very low signal to noise ratios because the estimated contrast and brightness
terms absorb the additive noise. This hypothesis was tested by repeating the
simulation, estimating only the geometric terms in the registration map. In this
case, the average intensity RMS error was 0.13, and the average registration
RMS error was 8 pixels, thus confirming that the brightness and contrast
terms help contend with large amounts of additive noise.

3.1.7 Missing Data

In this simulation, the ability of the registration algorithm to recover a global
geometric distortion when a portion of the data is missing was analyzed. In
these simulations, the target image consisted of a random synthetic image,
while the source image consisted of the target image with a random global
distortion. The global distortion consisted of a translation in the range of 0 to
12 pixels, a rotation in the range 1 to 12 degrees and a scale change between 1
to 1.2. A square of varying size was removed from the source image at random
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positions, starting with a size of 16×16 pixels to a size of 128×128 pixels (the
entire image). The algorithm was able to successfully recover global distortions
with missing data as large as 96 × 96 pixels, with an average intensity RMS
error of 0.01, and an average registration RMS error of 0.2 pixels.

4 Discussion

We have presented a general-purpose registration algorithm. The geometric
transformation is modeled as locally affine but globally smooth, and explicitly
accounts for local and global variations in image intensities. An explicit model
of missing data is also incorporated, allowing us to simultaneously segment
and register images with partial or missing data. All of the components are
combined within an integrated framework yielding a robust and effective reg-
istration algorithm within and across different imaging modalities. We have
shown the efficacy of our algorithm on synthetic images/volumes and on clin-
ical images/volumes. We have analyzed the robustness and sensitivity of our
algorithm with respect to the various design assumptions. We find that ac-
curate registration is possible under a significant amount of geometric and
intensity variations, and missing data.

Our current implementation suffers from one primary shortcoming. On a 2.8
GHz Intel processor with 2 GB memory, the registration of a 256 × 256 im-
age requires approximately 4 minutes, and the registration of a 64 × 64 × 64
volume requires approximately 30 minutes. We hope that optimization of our
algorithm and a C-based implementation, of the current MatLab code, will
reduce this run-time.

In designing our registration algorithm we have tried to contend with what we
consider to be two of the major obstacles facing general-purpose registration
algorithms: intensity variations and missing data between the source and tar-
get images/volumes. By contending with these pressing issues within a unified
framework, we believe that our registration algorithm will prove useful in a
number of clinical settings.
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