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Abstract. The analysis of brain activations using functional magnetic
resonance imaging (fMRI) is an active area of neuropsychological re-
search. Standard techniques for analysis have traditionally focused on
finding the most significant areas of brain activation, and have only re-
cently begun to explore the importance of their spatial characteristics.
We compare fMRI contrast images and significance maps to training
sets of similar maps using the spatial distribution of activation values.
We demonstrate that a Fisher linear discriminant (FLD) classifier for
either type of map can differentiate patients from controls accurately

for Alzheimer’s disease, schizophrenia, and mild traumatic brain injury
(MTBI).

1 Introduction

There is evidence for different fMRI activation patterns in Alzheimer’s disease,
schizophrenia, and mild traumatic brain injury (MTBI), suggesting that diag-
nosis of these conditions may eventually be possible on the basis of brain ac-
tivations. We present an approach for classifying patients and healthy controls
for these three conditions based on fMRI brain activation maps generated using
the statistical parametric mapping (SPM) approach [5]. The use of individually
generated activation maps has two advantages: first, it allows for better scala-
bility to very large subject pools (e.g., hundreds or thousands of subjects), and
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second, it has the potential to integrate data at the activation map level that
would be technically difficult to combine at the raw data level (e.g., due to use
of different scanners).

There have been several demonstrations of differences in the brain activations
of Alzheimer’s patients compared to controls, including [15]. In schizophrenia,
differences in fMRI activation have been found in several brain regions, even
in the absence of measurable differences in task performance [14]. Finally, mild
traumatic brain injury (MTBI) has been shown to lead to detectable changes in
fMRI activation patterns [11].

Earlier studies have demonstrated the feasibility of doing post-analysis on
brain activation maps, thereby allowing comparison or combinations of acti-
vations between independently-analyzed subjects. For example, in the work of
Coulon et al. [4], a multi-scale approach is used to describe Positron Emission To-
mography (PET) activation maps for a simple motor task using a standardized
representation of their structure. Liow et al. [10] have demonstrated that a prin-
cipal component analysis (PCA)/Fisher’s linear discriminant (FLD) approach
can be used to classify PET scans of HIV positive patients and healthy controls.
That work used 75 scans from 30 HIV+ or AIDS patients and 41 healthy con-
trols, and employed an approach called the scaled subprofile model (SSM) [12]
to decompose activations in each voxel into global and subject-specific compo-
nents: vi; = gq(7i + 2zig + €iq), where vy, is the value of voxel 7 in subject ¢, g4 is
a scaling factor for subject g, r; is the mean value for voxel ¢ after removing g,
and z;q + €4 is the subject-specific component (plus noise). PCA is applied only
to the second component, and the resulting principal components are termed
subject scaling factors (SSFs). Note that PET differs from fMRI in recording
a positive activity level for each voxel under a single condition rather than a
positive or negative change in activity between two conditions.

There have been some reports in the fMRI literature about the difficulty
of reproducing voxel-level significance maps. For example, even the 2% most
significant voxels have been found to vary considerably across runs, subjects,
and analysis techniques [18]. However, reproducibility of fMRI activations at a
regional level has been found to be good across sites, subjects, and techniques
[2]. For these reasons it is likely to be more fruitful to compare patterns across
activation maps, rather than the location of significance peaks.

In the following sections, we present a method for using a training set of fMRI
activation maps to build classifiers for specific brain conditions. The classifiers
evaluate activation maps according to their degree of similarity to the maps in the
training set and assign them probabilities of being “patient” or “non-patient”.
The next section describes the fMRI activation data and methods used.

2 Materials and Methods

Three datasets were used for testing, one consisting of elderly patients diag-
nosed with early Alzheimer’s disease and associated elderly controls, a sec-
ond of schizophrenic patients and healthy controls, and a third of patients



who had suffered mild traumatic brain injury (MTBI) and associated controls.
The Alzheimer’s disease dataset consists of 9 Alzheimer’s disease patients and
9 elderly controls. The schizophrenia dataset comprises 15 schizophrenic pa-
tients and 10 controls. Finally, the MTBI dataset consists of 11 patients and 6
controls. Subjects were tested on the category-exemplar (catx) word pair task
(Alzheimer’s and schizophrenia datasets) or the n-back working memory task
(MTBI dataset) as described in [15], [16], and [11], respectively. Each subject’s
task-related activation (catx or 3-back) was analyzed individually versus a con-
trol condition (rest or 2-back, respectively), resulting in individual maps of fMRI
signal change at each voxel.

The Statistical Parametric Mapping (SPM) approach analyzes a time series
at each normalized, resampled voxel (in this work, 2 x 2 X 2 mm) independently
using a regression analysis, thus creating 3D maps of contrast and statistical
significance values for pairs of conditions. Contrast values are estimates of the
difference in activation between the conditions: a positive contrast value for a
voxel is interpreted as an increase in brain activation for the second condition
compared to the first, whereas a negative value is often assumed to reflect a
decrease [1,9]. The statistical test applied in this work is the t-test, which de-
termines the probability that the means of two sets of samples with Gaussian
distributions are different. Thresholding these values determines which voxels
are likely to have had significant changes between conditions, and with what
likelihood, assuming a null hypothesis of no changes between conditions.

Activation maps may be thought of as points in a high-dimensional space
where each voxel value is a single coordinate. Since an activation map may consist
of hundreds of thousands of in-brain voxels, the dimensionality of the space is
too high to use most classification methods directly. The work in this chapter
follows the approach of Liow et al. [10], in using a dimensionality reduction step
to represent essential features in a space of much lower dimensionality.

2.1 Dimensionality Reduction

Dimensionality reduction of high dimensional data is useful for three general
reasons: it reduces computational requirements for subsequent operations on the
data, it eliminates redundancies in the data, and, in cases with small numbers
of samples relative to variables, it reduces the number of dimensions needed
to model the available data. All three reasons apply here, and motivate the
use of principal components analysis (PCA), a standard method for creating
uncorrelated variables from best-fitting linear combinations of the variables in
the raw data. This approach is equivalent to finding an orthogonal basis such
that the projection onto each successive vector (or “principal component”) is of
maximal variance (and uncorrelated with each previous vector).

Since all activation maps are normalized to a template brain, they have voxels
in register. Let the number of subjects in a training set be n, and let the length
m column vectors v;, ¢ = 1,...,n, represent the activation maps. The matrix D
is defined as all the w;, i.e. a matrix with one subject per row and one voxel per
column. Let D be D with the mean of each column subtracted. The principal



components are then defined as the eigenvectors, e;, of the covariance matrix
C= DTﬁ; that is, C'e; = \;e;, where each eigenvalue \; is proportional to the
variance in the original data represented by the ith principal component e;. For
computational efficiency, an alternative formulation is preferable in cases like
this one where the number of rows (subjects) is far exceeded by the number
of columns (voxels). Since the inherent geometric dimensionality of n points of
dimension m must be less than n, one can define C' = DﬁT, and then relate the
eigenvectors v}, vh, ..., v, of C’ to those of C as follows: v; = % for1<i<n
(the eigenvalues are identical). This allows calculation of the eigénvectors of the
m X m covariance matrix C' to be replaced with calculation of the eigenvectors
of the smaller n x n matrix C’.

Typically, many principal components account for only small fractions of
the total variance. Dimensionality reduction in addition to the above can be
accomplished by sorting components by decreasing eigenvalue and then discard-
ing some of the trailing components (there can be at most min(m, n) non-zero
eigenvalues). The selected principal components form the columns of a matrix
P, which is a basis for representing activation data. Projection of the activation
matrix D onto this basis is carried out as D = DP. Following projection, the
reduced representations D can be used to build a classifier.

2.2 Classification

Fisher’s linear discriminant (FLD) is a multi-class linear pattern classification
method that is optimal for maximizing the separation of Gaussian populations
with a common covariance matrix [7]. FLD finds a linear projection of a training
set (consisting of ¢ classes) onto ¢ — 1 new dimensions such that a measure of
“discriminability” is maximized: the ratio of between-class and within-class vari-
ability. Since a simple medical diagnosis classification requires only two classes
(patients and controls), only a two-class FLD is described here. The number
of variables that can be considered in FLD is limited to at most N — ¢ for N
exemplars from c classes; thus, it is necessary to use dimensionality reduction or
feature extraction in many cases.

Denote as column vectors ;, ¢ = 1,...,n, and y;, j = 1,...,n, the exem-
plars from the two classes making up the training set, which are the transposed
rows of the matrix D derived in Section 2.1. The within class means g, and
py are defined as p, = % S xs and py, = n—ly Z?il y; for the n, and n,
members of the two classes in the training set. The global training set mean g is

defined as: p = —— <Z?_’1 @i+ Y5 yj>. The between-class scatter matrix
x y
is then defined as:
Sp = ng (e — 1) (e — )" + 1y (py — ) (py — )" (1)
The within-class scatter matrix is given by:

Sw = MyM] + MM, (2)



where the ith column of matrix M, contains the ith exemplar given by x; — ..
Similarly, the jth column of matrix M, contains y; — py.

For our two-class discrimination, the FLD basis is the generalized eigenvec-
tor for Sp and Sw (i.e., Spe = ASwe) with the maximum eigenvalue. Once an
FLD basis has been found, a novel map z, as represented by the reduced dimen-
sionality row vector Z = z P, can be projected onto the same basis: u = Ze. The
resulting scalar value u can then be compared to the projections of the training
set.

After creating FLD projections, a practical classifier needs a threshold in or-
der to assign class membership. Various strategies exist for selecting a threshold,
including selecting the midpoint between the training set projections or using a
Bayesian model to identify an optimal transition point based on assumed distri-
butions for the training set classes (e.g., Gaussian).

In order to avoid the assumption of Gaussianity, or similar assumptions nec-
essary to select any particular classification threshold, we use a threshold-free
receiver operating characteristic (ROC) approach that examines the effect of
setting the decision boundary at various points between the class means. This
overcomes the problem of bias in the threshold by examining classification re-
sults over many different threshold values, effectively trading off sensitivity (the
probability patients are correctly identified) for specificity (the probability con-
trols are correctly identified). Sensitivity and specificity are estimated at each
threshold as the fraction of these states occurring with the selected bound, and
are plotted with successive points connected by line segments [7]. The area un-
der the ROC curve (AUC) can then be used to compare overall discriminative
power, although this is best done cautiously since it does not reflect the shape
of the ROC curve [10]. The area can be interpreted as the probability that an
arbitrary patient will appear more “patient-like” than an arbitrary control [6].

Each trial uses an independent FLD classifier, and may assign different values
to its training set. In particular, while a two-class FLD typically remaps one class
to a positive mean and the other to a negative mean, the assignment of sign is
arbitrary. To account for this, when combining leave-one-out FLD test subject
projections the following procedure is used: first, the class means for each trial’s
training set are calculated and all projections for that trial are scaled so that
the difference between means is exactly 2. Second, all projections are shifted so
that the class means fall on -1 and 1. Finally, all projections are sign-flipped if
necessary so that the patient class’s mean is positive. Test subject projections
can then be combined, since they then correspond to identically aligned training
sets in the FLD space.

3 Results

In each case, results with varying numbers of principal components (always se-
lected in order of decreasing eigenvalue) were calculated. Because overtraining
can occur when the number of classification features is high, simply using all
the principal components is generally not advisable. In a practical classifier, a



heuristic selection of the number of principal components is generally used. Note
that the maximum number of components is equal to the number of subjects
minus three due to the use of FLD and a leave-one-out cross-validation approach.

Classification was tested using both contrast images and t-maps for each
dataset, after removing any voxels missing values in any map. Classification
accuracy was estimated with a jackknife using the average of IV jackknife trials
over the N subjects. In each trial, N — 1 of the original N exemplars were used
for training and the class assignment of the remaining subject was calculated,
resulting in an accuracy of 1 (correct) or 0 (incorrect). The jackknifed estimate
of accuracy is then simply the mean of the trial accuracies. Each dataset was
processed with PCA to reduce dimensionality as described in Section 2.1, after
which FLD was used to build a classifier for each training set as described above,
with scaling and if necessary sign-flipping.

In Figure 1, the AUC results for varying numbers of principal components
are shown for each dataset. Both maps appear to work fairly well for all the
datasets. The t-map might be expected to be superior since it accounts for voxel
variability, but it has been argued that basing activation comparisons on signal
changes rather than significances of changes better reflects underlying neural
activity [3].

4 Conclusions

We have described and demonstrated a straightforward technique for classify-
ing spatial patterns in brain activation maps. Our method consists of selecting
appropriate voxels, reducing the dimensionality of voxel values using PCA, and
creating a classifier using FLD and a training set of labeled activation maps.
This approach is promising, and can give fairly accurate predictions on the
datasets considered (although the exact levels of accuracy must, of course, be
interpreted cautiously due to the small dataset sizes [13,17]). The problem of
classifying subjects is very likely complicated by the existence of varying effects
of the clinical conditions in the patients, which in Alzheimer’s are known to in-
clude diffuse “compensatory activations” [15]. In the case of Alzheimer’s disease,
aging-related changes in fMRI response are another complicating factor, since in-
dividuals can be affected at a range of ages. Schizophrenia may involve different
groupings of symptoms, and thus might conceivably involve different changes in
brain activity in different patients. Both Alzheimer’s disease and schizophrenia
can vary in severity, resulting in possible individual differences, and effects of
MTRBI are likely to be idiosyncratic as well. As fMRI data has a low signal to
noise ratio, activation patterns may not be completely consistent even across the
healthy control subjects. Given these factors, the size of the datasets used here is
probably minimal, and better prediction will likely result with larger collections
of brain activation maps. This is especially important if this technique is to be
applied to detecting early signs of Alzheimer’s disease onset, which is more useful
but also quite likely more difficult than identifying clinical Alzheimer’s disease.
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Fig. 1. Discriminative power of FLD classification of activation maps for three datasets,
as measured by AUC. The area under the ROC curve (AUC) using leave-one-out FLD
classification is shown for varying numbers of principal components of contrast images
(left) or significance t-maps (right) for the Alzheimer’s/catx, schizophrenia/catx, and
MTBI/3back>2back datasets. The AUC can be interpreted as the probability that an
arbitrary patient will appear more “patient-like” than an arbitrary control.



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

G. Aguirre, E. Zarahn, and M. D’Esposito. The inferential impact of global signal
covariates in functional neuroimaging analyses. Neurolmage, 8(3):302-306, Oct.
1998.

B. Casey, J. Cohen, K. O’Craven, et al. Reproducibility of fMRI results across
four institutions using a spatial working memory task. NeurolImage, 8(3):249-261,
Oct. 1998.

M. Cohen and R. DuBois. Stability, repeatability, and the expression of signal
magnitude in functional magnetic resonance imaging. J Mag Res Imag, 10(1):33—
40, July 1999.

O. Coulon, J.-F. Mangin, J.-B. Poline, et al. Structural group analysis of functional
maps. In A. Kuba et al, ed., 16th Int. Conf. on Information Processing in Medical
Imaging, Lec Notes Comp Sci 1613, 448-53, Visegrad, Hungary, June 1999.

K. Friston, A. Holmes, K. Worsley, et al. Statistical parametric maps in functional
imaging: A general linear approach. Human Brain Mapping, 2:189-210, 1995.

J. Hanley and B. McNeil. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143:29-36, Apr. 1982.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Predictions. Springer, 2001.

G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Trans
Information Theory, IT-14(1):55-63, 1968.

M. Hutchinson, W. Schiffer, S. Joseffer, et al. Task-specific deactivation patterns
in functional magnetic resonance imaging. Mag Res Imag, 17(10):1427-36, Dec.
1999.

J. Liow, K. Rehm, S. Strother, et al. Comparison of voxel- and volume-of-interest-
based analyses in FDG PET scans of HIV positive and healthy individuals. J Nucl
Med, 41(4):612-621, Apr. 2000.

T. McAllister, A. Saykin, L. Flashman, et al. Brain activation during working
memory 1 month after mild traumatic brain injury: A functional MRI study. Neu-
rology, 53:1300-1308, 1999.

J. Moeller, S. Strother, J. Sidtis, and D. Rottenberg. Scaled subprofile model:
A statistical approach to the analysis of functional patterns in positron emission
tomographic data. J Cereb Blood Flow Metab, 7(5):649-658, Oct. 1987.

S. Raudys and A. Jain. Small sample size effects in statistical pattern recogni-
tion: Recommendations for practitioners. IFEE Trans Pattern Analysis Machine
Intelligence, 13(3), Mar. 1991.

K. Rubia, T. Russell, E. Bullmore, et al. An fMRI study of reduced left prefrontal
activation in schizophrenia during normal inhibitory function. Schiz Res, 52(1—
2):47-55, Oct. 2001.

A. Saykin, L. Flashman, S. Frutiger, et al. Neuroanatomic substrates of semantic
memory impairment in Alzheimer’s Disease: Patterns of functional MRI activation.
J Int Neuropsych Soc (JINS), 5:377-392, 1999.

A. Saykin, L. Flashman, T. McAllister, et al. Semantic, phonological and episodic
memory processing in schizophrenia: Functional MRI activation patterns indicate
a need for new models of dysfunction. Schiz Res, 36(1-3):233, 1999.

M. Skurichina and R. Duin. Stabilizing classifiers for very small sample sizes. In
Proc. 13th Int. Conf. on Pattern Recognition, vol. 2, 891-896, Vienna, Austria,
Aug. 1996.

C. Tegeler, S. Strother, J. Anderson, and S. Kim. Reproducibility of BOLD-based
functional MRI obtained at 4 T. Hum Brain Map, 7(4):267-283, 1999.



