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Abstract

We present new forensic tools that are capable of detecting traces of tampering in digital images

without the use of watermarks or specialized hardware. These tools operate under the assumption

that images contain natural properties from a variety of sources, including the world, the lens, and

the sensor. These properties may be disturbed by digital tampering and by measuring them we can

expose the forgery. In this context, we present the following forensic tools: (1) illuminant direction,

(2) specularity, (3) lighting environment, and (4) chromatic aberration. The common theme of these

tools is that they exploit lighting or optical properties of images. Although each tool is not applicable

to every image, they add to a growing set of image forensic tools that together will complicate the

process of making a convincing forgery.
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Chapter 1

Introduction

Digital images are everywhere: on the covers of magazines, in newspapers, in courtrooms, and all

over the internet. We are exposed to them throughout the day and most of the time, we trust what

we see. But given the ease with which images can be manipulated, we need to be aware that seeing

is not always believing.

In recent years, tampered images have affected science, law, politics, the media, and business.

Some cases have made national and international headlines, tarnishing the public’s perception of

images. While forgeries are not a new problem, the tools for making forgeries, such as digital

cameras, computers, and software, have increased in sophistication, bringing the ability to make

forgeries out of the hands of specialists to anyone. The tools for detecting forgeries, on the other

hand, are only beginning to be developed. There is a clear need for these tools if the public is to

regain trust in published images.

1.1 Forgeries

The art of making an image forgery is as old as photography itself. In its early years, photography

quickly became the chosen method for making portraits, and portrait photographers learned that they

could improve sales by retouching their photographs to please the sitter [5]. During the Civil War,

many photos were retouched with additional details for dramatic effect. The photographers of the

era also experimented with compositing, i.e., combining multiple images into one. An early example

of compositing appears in the top panel of Figure 1.1. The general on the far right, General Francis

P. Blair, was not present in the original photograph (left), but is present in a version available from

the Library of Congress (right). There are many more examples from the early years of photography,

and in most cases, the forgeries were made either to enhance insufficient details or for humorous

effects; they were not designed to deceive. By the early to mid 20th century, however, photographers

found that image forgeries could be powerful tools for changing public perception and even history.

Nazi Germany is famous for its propaganda and there are many examples of image manipulation

with the deliberate intention to deceive. In the bottom panel of Figure 1.1, is an image forgery

(right) where Joseph Goebbels, Hitler’s propaganda minister, was removed from the original image
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Figure 1.1: Top: A forgery showing General Sherman posing with his generals before (left) and after (right)
manipulation—General Blair was added to the original photograph. Bottom: A forgery showing Hitler with
several people before (left) and after (right) manipulation—Joseph Goebbels, Hitler’s minister of propaganda,
was removed from the original photograph.

(left) [28]. There are similar examples from Soviet Russia and the United States where unfavorable

people were removed from images, or where people were added to images for political reasons.

Despite countless examples from history to the contrary, many still believe the old adage “the camera

never lies.”

More recently, there have been numerous examples of tampered images in newspapers and

on magazine covers. Figure 1.2, for example, shows covers from three popular magazines where

the images have been manipulated. The first example, from New York magazine, is perhaps the

least believable and to its credit the following disclaimer appears on the cover: “Note: This is a

manipulated image. They’re not actually crazy enough to pose for a picture like this.” The next

two images were more controversial for two reasons: the images were more believable and the

disclaimer was found not on the cover, but on a page within the magazine.1 To make matters worse,

Newsweek is considered by many to be a trustworthy source of news and the public was shocked

to learn they were using techniques similar to Star. While these images might tarnish the public

opinion of a celebrity, cases involving manipulated images with more serious implications have

1Newsweek refers to the image of Martha Stewart as a “photo illustration” and Star refers to the image of Brad Pitt
and Angelina Jolie as a “composite of two photographs.”
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Figure 1.2: Manipulated images appearing on the covers of popular magazines. From left to right: New York
from July 25, 2005; Newsweek from March 7, 2005; and Star from May 2005.

arisen in science and law.

In 2004, a team lead by Korean scientist Dr. Hwang Woo-Suk published groundbreaking results

in stem cell research in the journal Science. Their results showed the successful production of

stem cells from 11 patients, offering hope that new cures for diseases were around the corner. But

other researchers began to find flaws in their work and by late 2005, one of the co-authors of the

paper admitted that photographs in the paper had been doctored [26, 31, 56]. Hwang soon retracted

the Science paper and resigned from his position at Seoul National University. After this scandal,

other journals realized the importance of investigating images in submitted papers. The editors of

the Journal of Cell Biology have been testing images since 2002 and they estimate that 25 percent

of accepted manuscripts have images that are modified beyond their standards, while one percent

contain fraudulent images [8].

In law, the Child Pornography Prevention Act of 1996 (CPPA) outlawed virtual child pornogra-

phy, i.e., images that appear to depict minors engaged in sexual acts but were created by computer

or by other means. In 2002, the United States Supreme Court declared the CPPA to be in violation

of the First Amendment. Their decision was based on the fact that no children are directly harmed

in the production of virtual child pornography, and therefore, such images are protected under the

right to freedom of speech. An unfortunate side-effect of this ruling is that people accused of pro-

ducing child pornography can claim that the images are computer-generated; the burden of proving

the images are real, a non-trivial problem, is on the prosecution [13].

In all of these examples, the authenticity of images is in question. How are we to prove that im-

ages are authentic, or similarly, how can we prove that images have been modified or are computer-

generated? There is a need for technology to address this problem and current solutions typically

fall in one of two categories: watermarking or forensics.

3



1.2 Watermarking

One solution to image authentication problem is digital watermarking [9, 30]. The idea of digital

watermarking is to embed information into an image that can be extracted later to verify authenticity.

Watermarking requires specialized cameras, such as the Canon EOS-1D Mark II or the Nikon D2Xs.

Both cameras generate an image-specific digest and bundle it with the image at the time of recording.

The image can be authenticated at a later date by regenerating a digest and checking against the

original; a difference indicates that the image was modified since recording. While these cameras

could be useful in some settings, such as law enforcement, the limitations are significant. The most

obvious limitation is that currently only a few cameras, and typically the expensive models, have this

feature. But further, these systems do not allow modifications to an image, including modifications

that could improve the image, such as sharpening or enhancing contrast.

There are many other watermarking schemes, some designed to permit modifications and others

designed to reveal modifications if they have occurred [20, 32, 34, 61]. For example, semi-fragile

watermarks allow for simple modifications to an image, such as JPEG compression, while tell-tale

watermarks can be analyzed to reveal possible tampering. All watermarking schemes, however,

require specialized hardware or software to embed the watermark in the image and it is unlikely

that all camera manufacturers will agree to include watermarking technology in every camera they

make. Digital watermarking is therefore limited to problem domains where the make and model of

camera can be controlled.

1.3 Forensics

Over the last few years, there has been a growing body of work on tools for digital image forensics.

These tools are capable of detecting tampering in images from any camera, without relying on

watermarks or specialized hardware. Instead of watermarks, these tools assume that images possess

certain regularities that are disturbed by tampering. These regularities can come from a variety of

sources, including the world, the camera, or the image itself, Figure 1.3. The common approach

taken by these tools is to measure the regularities and detect differences in the measurements. Most

of the current forensic tools target specific types of tampering since a single manipulation may

disturb only some of the regularities. While there is no single tool that can detect all types of

tampering, the current tools can detect many common manipulations. These tools together are a

powerful way to detect forgeries.

One of the most basic image manipulations is copy-move or cloning. This manipulation is

necessary if a forger needs to cover part of an image and it can be successful if a homogeneous

texture is available (e.g., grass, sand, or water). Although different regions of a homogeneous texture

may look similar qualitatively, it is highly unlikely that they will be exactly the same numerically.

Two different forensic tools exploit this basic observation to detect cloning [19, 44].

Another basic image manipulation is splicing, otherwise known as photomontage. For this

manipulation, a forger combines regions from different images into a single image. One technique

4
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Figure 1.3: Sources of regularities in the imaging process and current forensic tools that exploit these regu-
larities. The tools printed in italics constitute this thesis.

for detecting splicing searches for the presence of abrupt discontinuities in the image [37]. Several

other techniques use estimates of the camera response function from different regions of an image

to detect splicing and possibly other manipulations [25, 35, 45].

Often, a forger may need to resize or rotate regions of an image. These manipulations generally

involve re-sampling the image data onto a new lattice. This process introduces statistical corre-

lations, which are detectable under certain conditions [46]. Another approach uses image quality

metrics detect re-sampling and other common image-processing operations [2]. In addition, if the

forger needs to save the forgery as a JPEG image and it was originally captured in JPEG format,

the resulting image will have been double-JPEG compressed. Double-JPEG compression also in-

troduces statistical correlations which can be detected for image forensics [45].

The sensor in a digital camera has been exploited to detect tampering. A typical sensor only

captures one of the three color channels at each pixel. To create RGB values for each pixel, the

missing color channels are interpolated from neighboring pixels using a demosaicing algorithm. As

with re-sampling and double-JPEG compression, demosaicing introduces statistical correlations,

which are detectable and useful for forensics [47]. The unique noise patterns of digital sensors are

also useful for forensics. These noise patterns are similar to a digital fingerprint for a particular

camera, and they can be estimated from a collection of images taken by the same camera [18, 36].

Once the noise has been estimated, it can be used for camera identification and forgery detection.

Finally, though typically used for robot navigation or 3-D modeling, geometric techniques can

be useful for image forensics. When known geometries are present in a scene (e.g., circles, lines,

rectangles), they can be used to make measurements under perspective projection [10, 29]. Two

example uses are measuring the height of a person in an image relative to an object of known length

or measuring the distance between objects on the same plane.

Most of the current forensic tools have focused on regularities from sources that are inherently

digital, e.g., the sensor and quantization. These sources occur on the right side of Figure 1.3. But,
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the imaging process introduces regularities from non-digital sources as well: the world and the lens.

Although these sources are rich with regularities, few computational tools exist for exploiting these

regularities for image forensics.

1.4 Contributions

In this thesis, we present four new tools for image forensics. These tools measure regularities in

images that arise from the world and the lens, i.e., sources on the left side of Figure 1.3. For each

tool, we describe the conditions under which it is applicable, give a physical model for the property

being analyzed, provide a method for estimating the property from a single image, and demonstrate

results on real images and forgeries. In this context, we present the following four tools:

1. Illuminant direction. When creating a digital composite of, for example, two people stand-

ing side-by-side, it is often difficult to match the lighting conditions from the individual pho-

tographs. Lighting inconsistencies can therefore be a useful tool for revealing traces of digital

tampering. The illuminant direction tool estimates the direction to the light source from sev-

eral objects in an image; widely varying estimates are evidence of tampering.

2. Specularity. Human eyes are reflective and provide information about the lighting environ-

ment under which a person was photographed. The specularity tool estimates a 3-D direction

to the light source from a specular highlight on the eye; strong inconsistencies in estimates

from different highlights across the image are evidence of tampering.

3. Lighting environment. Although the lighting of a scene can be arbitrarily complex, the

appearance of a diffuse object in any scene is well represented by a low-dimensional model.

The lighting environment tool estimates parameters of a low-dimensional model of lighting

and is applicable to more complex lighting environments than the illuminant direction or

specularity tools. As with the other lighting tools, inconsistencies in estimates across the

image are evidence of tampering.

4. Chromatic Aberration. Chromatic aberration results from the failure of an optical system

to perfectly focus light of different wavelengths. When tampering with an image, this aber-

ration is often disturbed and fails to be consistent across the image. Large inconsistencies in

estimates of chromatic aberration from different parts of an image are evidence of tampering.

Although tampering with images is not a new phenomenon, the availability of digital image

technology and image processing software makes it easy for anyone to make a forgery. From in-

ternet hoaxes, to fake magazine covers, to manipulated scientific results, these images can have a

profound effect on society. While each tool in this thesis targets a specific type of tampering, they

add to a growing set of image forensic tools that together will detect a wide variety of forgeries.
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Chapter 2

Illuminant direction

Consider the creation of a forgery showing two celebrities, rumored to be romantically involved,

walking down a sunset beach. Such an image might be created by splicing together individual im-

ages of each celebrity. In doing so, it is often difficult to match the lighting effects due to directional

lighting (e.g., the sun on a clear day). Therefore, differences in lighting can be a telltale sign of

digital tampering. Shown in Figure 2.1, for example, is a composite image where the two people

were originally photographed with the light in significantly different positions. While this particular

forgery is fairly obvious, more subtle differences in light direction may be harder to detect by simple

visual inspection [40, 52].

To the extent that the direction to the light source can be estimated from different objects or

people in an image, inconsistencies in these estimates can be used as evidence of digital tampering.

In this chapter, we describe a technique for estimating the light direction from a single image, and

show its efficacy in real-world settings.

2.1 Methods

The general problem of estimating the illuminant direction has been widely studied in the field

of computer vision (e.g., [7, 38, 41]). In this section, we define the general problem, review a

standard solution and then show how some additional simplifying assumptions make the problem

more tractable. We then extend this solution to provide for a more effective and broadly applicable

forensic tool.

2.1.1 Infinite light source (3-D)

The standard approaches for estimating light direction begin by making some simplifying assump-

tions about the surface of interest: (1) it is Lambertian (i.e., it reflects light isotropically); (2) it has

a constant reflectance value; (3) it is illuminated by a point light source infinitely far away; and (4)

the angle between the surface normal and the light direction1 is in the range 0◦ to 90◦. Under these

1The assumption that the angle between the surface and light is bounded between 0◦ to 90◦ can be relaxed by replacing
( EN (x, y) · EL) in Equation (2.1) with max( EN (x, y) · EL, 0), which is not used here to avoid the non-linear max operator.
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Figure 2.1: A digital composite of celebrities Cher and Brad Pitt. Note that Cher was originally photographed
with a diffuse non-directional light source, whereas Brad Pitt was photographed with a directional light
positioned to his left.

assumptions, the image intensity can be expressed as:

I (Ex) = R( EN (Ex) · EL) + A, (2.1)

where R is the constant reflectance value, EL is a 3-vector pointing towards the light source, EN (Ex) is a

3-vector representing the surface normal at the point Ex , and A is a constant ambient light term [17],

Figure 2.2(a). If we are only interested in the direction to the light source, then the reflectance

term R can be considered to have unit-value, understanding that the estimation of EL will only be

within an unknown scale factor. The resulting linear equation provides a single constraint in four

unknowns, the three components of EL and the ambient term A.

With at least four points with the same reflectance, R, and distinct surface normals, EN , the

light direction and ambient term can be estimated using least-squares. To begin, a quadratic error

function embodying the imaging model of Equation (2.1) is given by:

E( EL, A) =

∥∥∥∥∥∥∥∥∥∥
M


L x

L y

L z

A

−


I (Ex1)

I (Ex2)
...

I (Ex p)


∥∥∥∥∥∥∥∥∥∥

2

,

=

∥∥∥M Ev − Eb
∥∥∥2

, (2.2)
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Figure 2.2: Diagram of the imaging geometry for (a) an infinite light source (3-D); (b) an infinite light source
(2-D); and (c) a local light source (2-D). In the 2-D cases, the z-component of the surface normal EN is zero.
(c) For a local light source, the direction to the light source EL varies across the sphere’s surface.

where L x , L y , and L z denote the components of the light direction EL , and:

M =


Nx(Ex1) Ny(Ex1) Nz(Ex1) 1

Nx(Ex2) Ny(Ex2) Nz(Ex2) 1
...

...
...

...

Nx(Ex p) Ny(Ex p) Nz(Ex p) 1

 , (2.3)

where Nx(Exi ), Ny(Exi ), and Nz(Exi ) denote the components of the surface normal EN at the point Exi .

The quadratic error function in Equation (2.2) is minimized by differentiating with respect to the

unknown vector Ev, setting the result equal to zero, and solving for Ev to yield the least-squares

estimate:

Ev = (MT M)−1 MT Eb. (2.4)

Note that this solution requires knowledge of 3-D surface normals from at least four distinct points

on the surface of an object (p ≥ 4). With only a single image and no objects of known geometry

in the scene, it is unlikely that this will be possible. To overcome this problem, most approaches

acquire multiple images [43] or place an object of known geometry in the scene (e.g., a sphere) [6].

For forensic applications, these solutions are not practical.

2.1.2 Infinite light source (2-D)

In [38], the authors suggest a clever solution for estimating two components of the light direction

(L x and L y) from only a single image. While their approach clearly provides less information

regarding the light direction, it does make the problem tractable from a single image. The authors

note that, under an assumption of orthographic projection, the z-component of the surface normal

is zero, Nz = 0, along the occluding boundary of a surface. In addition, the x- and y-components

9



of the surface normal, Nx and Ny , can be estimated directly from the image, Figure 2.2(b).

With this assumption, the error function of Equation (2.2) takes the form:

E( EL, A) =

∥∥∥∥∥∥∥∥∥∥
M

 L x

L y

A

−


I (Ex1)

I (Ex2)
...

I (Ex p)


∥∥∥∥∥∥∥∥∥∥

2

,

=

∥∥∥M Ev − Eb
∥∥∥2

, (2.5)

where:

M =


Nx(Ex1) Ny(Ex1) 1

Nx(Ex2) Ny(Ex2) 1
...

...
...

Nx(Ex p) Ny(Ex p) 1

 . (2.6)

As before, this error function is minimized using standard least-squares to yield the same solution

as in Equation (2.4), but with the matrix M taking the form given in Equation (2.6). In this case,

the solution requires knowledge of 2-D surface normals from at least three distinct points (p ≥ 3)

along the boundary of an object with constant reflectance.

The intensity, I (Exi ), at a boundary point Exi cannot be directly measured from the image as the

surface is occluded. The authors in [38] note, however, that the intensity can be extrapolated by

considering the intensity profile along a ray coincident to the 2-D surface normal. They also found

that simply using the intensity close to the border of the surface is often sufficient (see section 2.2

for a more detailed description).

We extend this basic formulation in three ways. First, we estimate the two-dimensional light

direction from local patches along an object’s boundary (as opposed to along extended boundaries as

in [38]). This is done to relax the assumption that the reflectance across the entire surface is constant.

Next, we introduce a regularization (smoothness) term to better condition the final estimate of the

light direction. Finally, this formulation is extended to accommodate a local directional light source

(e.g., a desk lamp).

Relaxing the constant reflectance assumption

To relax the constant reflectance assumption, we assume that the reflectance for a local surface

patch is constant (as opposed to the entire surface). This requires us to estimate individual light

directions, EL i , for each patch along a surface. Because we have assumed an infinite light source,

these light direction estimates should be parallel, though their magnitudes may vary; recall that

the light direction estimate is only within a scale factor that depends on the reflectance value R,

Equation (2.1).

10



Consider a surface partitioned into n patches, and for notational simplicity, assume that each

patch contains p points. The new error function to be minimized is constructed by packing together,

for each patch, the 2-D version of the constraint of Equation (2.1):

E1( EL1, . . . , ELn, A) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

M



L1
x

L1
y
...

Ln
x

Ln
y

A


−



I (Ex1
1)

...

I (Ex1
p)

...

I (Exn
1 )

...

I (Exn
p)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

,

=

∥∥∥M Ev − Eb
∥∥∥2

, (2.7)

where:

M =



Nx(Ex1
1) Ny(Ex1

1) 0 0 1
...

... · · ·
...

...
...

Nx(Ex1
p) Ny(Ex1

p) 0 0 1
...

...
. . .

...
...

...

0 0 Nx(Exn
1 ) Ny(Exn

1 ) 1
...

... · · ·
...

...
...

0 0 Nx(Exn
p) Ny(Exn

p) 1


. (2.8)

As before, the above quadratic error function is minimized using least-squares with the solution

taking on the same form as in Equation (2.4). In this case, the solution provides n estimates of the

2-D light directions, EL1, . . ., ELn , and an ambient term A. Note that while individual light directions

are estimated for each surface patch, a single ambient term is assumed.

While the local estimation of light directions allows for the relaxation of the constant reflectance

assumption, it could potentially yield less stable results. Under the assumption of an infinite point

light source, the orientation of the n light directions should be equal. With the additional assumption

that the change in reflectance from patch to patch is relatively small (i.e., the change in the magnitude

of neighboring light direction estimates small), we can condition the individual estimates with the

following regularization term:

E2( EL1, . . . , ELn) =

n∑
i=2

∥∥∥ EL i
− EL i−1

∥∥∥2
. (2.9)

This additional error term penalizes neighboring estimates that are different from one another. The

quadratic error function E1(·), Equation (2.7), is conditioned by combining it with the regularization
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term E2(·), scaled by a factor λ, to yield the final error function:

E( EL1, . . . , ELn, A) = E1( EL1, . . . , ELn, A) + λE2( EL1, . . . , ELn). (2.10)

This combined error function can still be minimized using least-squares minimization. The error

function E2(·) is first written in a more compact and convenient form as:

E2(Ev) = ‖C Ev‖
2 , (2.11)

where Ev = ( L1
x L1

y L2
x L2

y . . . Ln
x Ln

y A )T and where the 2n − 2 × 2n + 1 matrix C is

given by:

C =



−1 0 1 0 · · · 0 0 0 0 0

0 −1 0 1 · · · 0 0 0 0 0
...

. . .
...

0 0 0 0 · · · −1 0 1 0 0

0 0 0 0 · · · 0 −1 0 1 0


. (2.12)

The error function of Equation (2.10) then takes the form:

E(Ev) = ‖M Ev − Eb‖
2
+ λ‖C Ev‖

2. (2.13)

Differentiating this error function yields:

∂ E(Ev)

∂ Ev
= 2MT M Ev − 2MT Eb + 2λCT C Ev

= 2(MT M + λCT C)Ev − 2MT Eb. (2.14)

Setting this result equal to zero and solving for Ev yields the least-squares estimate:

Ev = (MT M + λCT C)−1 MT Eb. (2.15)

The final light direction estimate is computed by averaging the n resulting light direction estimates

from EL1 to ELn .

2.1.3 Local light source (2-D)

Inherent to the formulation of the previous two sections was the assumption that the light source

was infinitely far away (i.e., EL does not depend on the image coordinates). With a local light source,

however, this assumption is no longer valid, Figure 2.2(c). The model for an infinite light source,

Equation (2.1), can be rewritten to accommodate a local light source as follows:

I (Ex) = R( EN (Ex) · EL(Ex)) + A. (2.16)
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Note that the light direction is now a function of the position Ex .

We begin by assuming that the light direction for a local surface patch is constant across the

patch. The light direction for each surface patch is then estimated using the solution of Equa-

tion (2.7). The previous section introduced a regularization term that encouraged neighboring es-

timates to be equal, Equation (2.9). In the case of a local light source, a different regularization

term is needed as neighboring directions are expected to converge to a single nearby point. This

regularization term takes the form:

E2( EL1, . . . , ELn) =

n∑
i=1

∥∥∥Ci EL i
∥∥∥2

, (2.17)

where the matrix Ci is derived below. As in the previous section, the final error function to be

minimized is given by:

E( EL1, . . . , ELn, A) = E1( EL1, . . . , ELn, A) + λE2( EL1, . . . , ELn), (2.18)

where E1(·) is given by Equation (2.7), and λ is a scaling factor. Unlike the previous section,

this error function cannot be minimized analytically, and is instead minimized using an iterative

conjugate gradient minimization. Although the functional form of the error function appears similar

to that of the previous section, the matrices Ci depend on the light direction estimate EL i , hence the

need for an iterative minimization.

Local light source regularization

The matrix Ci in Equation (2.17) is designed to penalize divergence in the light direction esti-

mate EL i . It is derived by first estimating a light position EL and then using this position to form a

projection matrix for each region of an object.

Consider the local light direction estimates from a pair of objects estimated by minimizing the

quadratic error function of Equation (2.7). Denote these estimates as EL1 and EL2, and denote Ec1

and Ec2 as the center pixel along each boundary. Assuming that these estimates are not parallel, the

intersection of the individual light directions is determined by solving:

Ec1 + α1 EL1 = Ec2 + α2 EL2, (2.19)

for the scalar values α1 and α2, using standard least-squares estimation. This intersection yields an

estimate of the position of the local light source, EL = Ec1 + α1 EL1.

Consider now the collection of individual estimates along each patch of an occluding boundary,
EL1, . . . , ELn . Under the model of a single local light source, each of these estimates should be in

the direction EL − Eci , where Eci is the center pixel of patch i . The regularization term, therefore,

penalizes each estimate EL i proportional to its deviation from this direction. Specifically, the penalty

is proportional to the difference between the initial estimate EL i and the projection of the estimate
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onto EL − Eci :

ERi = EL i
− E1i

(
E1T

i
EL i
)

,

=

(
I − E1i E1T

i

)
EL i ,

= Ci EL i , (2.20)

where I is the identity matrix and where:

E1i =

EL − Eci∥∥∥ EL − Eci

∥∥∥ . (2.21)

The penalty for EL i is then simply the magnitude of ERi , Equation (2.17). Note that EL , and hence the

matrix Ci , is re-estimated on each iteration of the conjugate gradient minimization [51].

Minimization

The error function of Equation (2.18) is composed of two terms:

E1(Ev) =

∥∥∥M Ev − Eb
∥∥∥2

, (2.22)

and the regularization term:

E2( EL1, . . . , ELn) =

n∑
i=1

∥∥∥Ci EL i
∥∥∥2

, (2.23)

where the matrix M is given by Equation (2.8), the vector Ev contains the individual light estimates
EL i and the ambient term A given in Equation (2.7), the vector Eb is given in Equation (2.7), and the

matrix Ci is given in Equation (2.20). The error function E2(·) may be written in a more compact

and convenient form as:

E2(Ev) = ‖C Ev‖
2 , (2.24)

where the block-diagonal matrix C is:

C =


C1 0

C2 0
. . .

...

Cn 0

 . (2.25)

The error function of Equation (2.18) then takes the form:

E(Ev) = ‖M Ev − Eb‖
2
+ λ‖C Ev‖

2, (2.26)
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and it can be minimized with the following approach, based on the conjugate gradient method.

The minimization begins at a point Ev0, and searches along a direction E1 for a point Ev1 such

that E(Ev1) < E(Ev0). This search direction is opposite the direction of the gradient of E(Ev) at Ev0.

At each iteration, the process is repeated with the search proceeding from the previous stopping

point. The process terminates when a maximum number of iterations, imax, has been reached, or if

on the i th iteration the gradient is below a tolerance ε. The initial point, Ev0, is determined from the

least-squares solution of E1(·), Equation (2.7). Described next is the computation of the required

gradient and Hessian.

The gradient is found by differentiating Equation (2.26) with respect to Ev:

∂ E(Ev)

∂ Ev
= 2MT M Ev − 2MT Eb + 2λCT C Ev, (2.27)

and the Hessian is found by differentiating twice with respect to Ev:

∂2 E(Ev)

∂ Ev2
= 2MT M + 2λCT C. (2.28)

Note that the matrix C is recomputed at every iteration of the minimization (i.e., it depends on the

estimate of each EL i at each iteration).

2.1.4 Multiple light sources

In the previous sections, it was assumed that a single directional light source was illuminating the

scene (plus a constant ambient term). This is a reasonable assumption for outdoor images where

the sun is typically the single source of illumination. For indoor images, however, this assumption

is less reasonable because multiple light sources may be present.

Light is linear. As such, a scene illuminated with two infinite light sources takes the form:

I (Ex) = R(( EN (Ex) · EL1) + ( EN (Ex) · EL2)) + A,

= R( EN (Ex) · ( EL1 + EL2)) + A,

= R( EN (Ex) · EL+) + A, (2.29)

where EL+ is the vector sum of the individual vectors EL1 and EL2. Note that this model reduces to

the same form as a single light source, Equation (2.1). Using the same approach as in the previous

sections will result in an estimate of a “virtual” light source, the vector sum of the individual light

sources. This relationship trivially extends to three or more individual light sources.

Although not terribly likely, it is possible that different combinations of light sources will sum

to the same “virtual” light source, in which case this approach would be unable to detect an incon-

sistency in the lighting.
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2.2 Results

We tested our technique on both synthetically generated images and natural photographs. The

synthetic images consisted of one or more spheres of constant reflectance rendered under either the

infinite or local imaging models of Equation (2.1) or (2.16). The natural photographs were taken

outdoors on a clear sunny day (approximating an infinite point light source), or in a controlled

lab setting with a single directional light source (approximating a local point light source). These

images were captured with a 6.3 megapixel Nikon D100 digital camera in uncompressed RAW

format.

The light direction estimation requires the localization of an occluding boundary. These bound-

aries are extracted by manually selecting points in the image along an occluding boundary. This

rough estimate of the position of the boundary is used to define its spatial extent. The boundary is

then partitioned into approximately eight small patches. Three points near the occluding boundary

are manually selected for each patch, and fit with a quadratic curve. The surface normals along each

patch are then estimated analytically from the resulting quadratic fit.

The intensity from the occluding boundary cannot be directly measured from the image as the

surface is occluded. The authors in [38] note, however, that simply using the intensity close to the

border is often sufficient. In this case, the intensity is measured at a fixed number of pixels from the

boundary in the direction opposite to the surface normal. More precisely, the intensity at a boundary

point Ex with surface normal EN is determined by evaluating the 1-D intensity profile:

P(t) = I (Ex + t EN ), (2.30)

at an offset of t = δ pixels, where δ > 0.

But, under certain conditions it is advantageous to extrapolate the intensity by considering the

intensity profile along a ray coincident to the 2-D surface normal. In the case of extrapolation, we

would like to evaluate P(t) at t = 0 (i.e., at a boundary point), but the intensity at the boundary

is unreliable due to the occlusion. This value can, however, be extrapolated from P(t) with values

t > 0. We assume that the intensity profile can be modeled with an exponential:

P(t) = αtβ . (2.31)

The model parameters, α and β, are determined using least-squares estimation2 on log(P(t)). In

our results, we consider P(t) for t = 1, . . . , 15, for this estimation. The intensity at the boundary,

P(0), is then simply determined by evaluating Equation (2.31) at t = 0. This entire process is

repeated for each point along the occluding boundary. For objects of constant reflectance across the

entire object, the extrapolation method is desirable, as it yields more accurate intensity estimates.

2The model parameters in Equation (2.31) are determined using least-squares estimation on log(P(t)). Specifically,
in the log domain we have log(P(t)) = log(α) + β log(t). A quadratic error function in the model unknowns then takes

the form E(Ev) =

∥∥∥M Ev − Eb
∥∥∥2

, where each row of the matrix M is
[
1 log(ti )

]
, each corresponding entry of the vector Eb

is log(P(ti )), and Ev = ( log(α) β )T . The least-squares estimate of this error function is Ev = (MT M)−1 MT Eb.
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In the results of section 2.2.1 (infinite light source), the method of simply measuring the intensity

near the boundary was employed—measurements were made 1 pixel from the boundary. In the

results of section 2.2.2 and 2.2.3 (local and multiple light source), the extrapolation technique was

employed. The reason for this difference is that the objects in our local and multiple light source

experiments consisted of spheres of constant reflectance, which lend themselves to the extrapolation

method. On the other hand, the objects in our infinite light source experiments did not have constant

reflectance across the entire object, making it unlikely that the extrapolation method would yield

accurate results.

In all cases, we converted the original color (RGB) image to grayscale (gray = 0.299R + 0.587G

+ 0.114B) from which the intensity measurements were made.

Finally, the values of λ in the error functions of Equation (2.10) and (2.18) were empirically

determined to be 10 (infinite light source), and 1 (local light source). These values were held fixed

for all examples given in the next four sections.

2.2.1 Infinite light source

Shown in Figure 2.3 are eight images of objects illuminated by the sun on a clear day. In order to

determine the accuracy of our approach, a calibration target, consisting of a flat surface with a rod

extending from the center, was placed in each scene. The target was approximately parallel to the

image plane, so that the shadow cast by the rod indicated the direction of the sun. Errors in the

estimated light direction are given relative to this orientation.

The average estimation error is 4.8◦ with a minimum and maximum error of 0.6◦ and 10.9◦. The

image returning the largest error, the parking meter, is shown in the bottom-left panel of Figure 2.3.

There are several reasons for this error, and for errors in general. First, the metallic surface violates

the Lambertian assumption. Second, the paint on the meter is worn in several spots causing the

reflectance to vary, at times, significantly from patch to patch. Finally, we did not calibrate the

camera so as to remove luminance non-linearities (e.g., gamma correction) in the image and gamma

can skew the estimate.

Shown in Figure 2.4 is an authentic, although perhaps unlikely, image of Richard Nixon and

Elvis Presley. The estimated light directions for each person are consistent, with Nixon at 98◦ and

Presley at 93◦. Also shown in Figure 2.4 is a forgery that was entered in the Worth1000 “Celebrity

Mini-Me” contest [58]. The light direction estimates are, not surprisingly, consistent: 147◦ for the

larger Superman and 148◦ for the smaller Superman. This example demonstrates that it is certainly

possible for a forgery to have consistent lighting. If the forger carefully selects the source images,

the illuminant direction tool will not be able to detect the tampering.

2.2.2 Local light source

Shown in Figure 2.5 (top) is a diagram of our experimental setup for testing the local light source

estimation. Shown in Figure 2.5 (bottom) are 2 of the 34 images from this experiment. The light
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Figure 2.3: Eight images with the extracted occluding boundaries (black), individual light direction estimates
(white), and the final average light direction (yellow arrow). In each image, the cast shadow on the calibration
target indicates the direction to the sun and has been darkened to enhance visibility.
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Figure 2.4: From left to right: an authentic image of Richard Nixon and Elvis Presley, and a forgery with
Superman and a miniature clone. The estimated directions are 98◦ and 93◦ for Nixon and Presley, and 147◦

and 148◦ for the Superman and the miniature clone. While the light direction estimates are expected to
consistent for authentic images, it is possible for forgeries to have consistent lighting as well.
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Figure 2.5: (Top) A schematic of the local light source experimental setup along with the actual (squares)
and estimated (triangles) light source positions. (Bottom) Two spheres illuminated by a local light source
with the extracted boundaries (black), individual light direction estimates (white), and the final average light
source direction (yellow arrow) for each sphere.

19



Figure 2.6: From left to right: a sphere illuminated with a single light source positioned at −20◦ and +20◦

from vertical, and with two light sources positioned at ±20◦. Note that in the latter case, the estimate of the
light direction (yellow arrow) corresponds to the vector sum of the individual light directions.

consisted of a lamp with an exposed bulb, and the room was otherwise devoid of any light. With

the pair of spheres being placed on either side of the origin of a world coordinate system, the light

was placed at 93 cm or 124 cm from the origin along the y-axis, and moved from −123 to +123

cm along the x-axis, in 17 steps. In Figure 2.5 (top), the squares represent the actual light positions

(squares) and the triangles represent the estimated light positions. On average, the position of the

light source is estimated within 11.2 cm, with a minimum and maximum error of 0.7 and 22.3 cm.

These values correspond to an average, minimum, and maximum error of 9.0%, 0.4%, and 18%

as a percentage of the distance from the light source to the origin. With respect to estimating only

the orientation of the light source, the average error is 0.4◦ with a minimum and maximum error of

0.04◦ and 1.1◦.

2.2.3 Multiple light sources

Shown in Figure 2.6 are three synthetically generated images. In each case, the 3-D scene consisted

of a single sphere illuminated with one or two infinite point light sources. In the two left-most panels

the sphere was illuminated with a single light source positioned at −20◦ and +20◦ from vertical

(90◦). In the right-most panel, the sphere was illuminated with two lights positioned at both +20◦

and −20◦ from vertical. Shown in each panel is the final estimated light direction (yellow arrow).

The actual directions to the individual light sources are 70◦ and 110◦ yielding a virtual light source

at 90◦ for the scene illuminated by both of these lights. The estimated directions are 69◦, 108◦, and

88◦, yielding an average error of 1.7◦. Note that in the case of the sphere illuminated with two light

sources, the estimated direction is, as expected, the vector sum of the individual light sources.

2.2.4 Sensitivity

In this section, we explore the sensitivity of the estimated direction to errors in surface normals,

errors in intensities, limited surface normal extent, and JPEG compression.

To test the sensitivity of the estimated direction to errors in the surface normals and intensi-
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Figure 2.7: Average errors in the estimated direction due to noise in the surface normals (left), intensities
(center), and surface normal extent (right). In all plots, the averages are computed over 216 images and the
error bars show one standard deviation above and below the average. In the surface normal extent plot (right),
the pair index indicates the pair of regions used, following the order in Figure 2.8.

ties, we generated 216 images of a sphere illuminated from different directions. For each image,

the intensities and surface normals along the occluding contour were measured, using only those

measurements that were within ±90◦ of the location with the maximum intensity. The resulting

180◦ contour was segmented into six overlapping regions and Gaussian noise of varying amounts

was added to both the surface normals and the intensities. The direction to the light source was

estimated using Equation (2.13) with λ set to 10. The average errors between the estimated and

known light directions over 216 images is shown in Figure 2.7 for noise in surface normals (left)

and intensities (center).

For the surface normal experiment, Figure 2.7 (left), Gaussian noise was added to the surface

normals in the matrix M , Equation (2.8). The standard deviation of the noise varied between 5◦

and 30◦, and it modified the direction, but not the magnitude, of each normal. Gaussian noise was

added to the intensities as well, with the standard deviation fixed at 5% of the intensity range in the

image. Overall, the noise had a small effect on the estimate, causing an average error of 3.4◦ when

the standard deviation of the noise was 30◦.

For the intensity experiment, Figure 2.7 (center), the Gaussian noise added to the intensities

varied between 2% and 10% of the intensity range of the image. The standard deviation of the noise

added to the surface normals was fixed at 10◦. As with the surface normal experiment, the additive

noise had little effect on the estimate, causing an average error of 2.3◦ for a standard deviation of

10%.

To test the sensitivity of the estimated direction to surface normal extent, the range of surface

normals was limited by using only two of the six regions, Figure 2.8. All fifteen pairs of regions

were tested across all 216 images. As with the previous experiments, Gaussian noise was added to

the surface normals and intensities, with standard deviations of 5◦ and 5%, respectively. Unlike the

previous experiments, however, the estimated direction was sensitive to these changes, Figure 2.7

(right). The experiment was run both with and without regularization, Equation (2.13), by setting λ
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Figure 2.8: All 15 pairs of regions used to test sensitivity to surface normal extent. The order, from left-to-
right and top-to-bottom, corresponds to the pair index in Figure 2.7.

to 0 or 10. In both cases, greater errors occurred when the pair of regions was skewed to one side

of the actual light direction, and lower errors occurred for pairs of regions that were balanced about

the light direction. Without regularization, the effect was increased, with an average error of 14◦ in

the worst case. With regularization (λ = 10), the errors in the worst case were 6◦. This experiment

demonstrates that the light direction estimates will be unreliable if the extent of surface normals is

too small or if the distribution of surface normals is skewed with respect to the actual light direction.

To test the sensitivity of the estimated direction to JPEG compression, we captured 110 images

of a diffuse gray sphere in natural environments with primarily directional lighting. For each image,

the occluding contour of the sphere was divided into six overlapping regions spanning 180◦ on the

brightest side of the sphere. The illuminant direction was estimated by solving Equation (2.13) with

λ = 10. One of the images is shown in Figure (2.9) (left). The images were saved a varying JPEG

qualities from 10 to 95 on scale of 0 to 100. Since the actual directions were unknown, we computed

the difference between the estimate at the reduced quality and the estimate at full quality. Figure 2.9

(right) shows the average change in the estimated direction due to JPEG compression with errors

bars at half the standard deviation. This experiment demonstrates that the errors introduced by JPEG

compression are small, even at very poor qualities.

2.2.5 Forgeries

To demonstrate our approach in a forensic setting, we analyzed three forgeries, Figure 2.10. The

first forgery is an image of John Kerry and Jane Fonda sharing a stage at an antiwar rally. This
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Figure 2.9: (Left) An image of a gray sphere with estimated regions and light directions. (Right) Average
difference in the estimated direction due to JPEG compression over 110 images.

Figure 2.10: From left to right: a known forgery of John Kerry and Jane Fonda sharing a stage at an antiwar
rally, a composite of actor Buster Keaton and actress Tara Reid, and a composite with two statues. The
estimated light directions are 123◦ for Kerry and 86◦ for Fonda, 120◦ for Buster and 62◦ for Tara, and 63◦

for the left statue and 42◦ for the right statue.

image was circulated in February of 2004 in an attempt to discredit John Kerry during his campaign

for the U.S. presidency. Shortly after its release, however, this image was determined to be a fake,

having been created by digitally compositing two separate images. Although we do not know the

true illuminant direction, we found an inconsistency in the estimated light direction: 123◦ for Kerry

and 86◦ for Fonda.

The other two forgeries in Figure 2.10 were downloaded from Worth1000, a website that hosts

Photoshop contests [58]. Both images are composites from multiple images. The image of Buster

Keaton and Tara Reid gives estimates of 120◦ for Buster and 62◦ for Tara. For the image of the two

statues, the left statue gives an estimate of 63◦ and the right statue gives an estimate of 42◦. In all

cases, the estimated errors are larger than the 11◦ error observed on real images.
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2.3 Discussion

The creation of a digital forgery often involves combining objects or people from separate images.

In doing so, it is often difficult to match the lighting effects due to directional lighting. At least one

reason for this difficulty is that such a manipulation may require the creation or removal of shadows

and lighting gradients. And while large inconsistencies in light direction may be fairly obvious,

there is evidence from the human psychophysics literature that human subjects are surprisingly

insensitive to differences in lighting across an image [40, 52]. The illuminant direction tool enables

a user to estimate the direction to a light source from objects in an image—strong inconsistencies

in estimates from different objects in the image are evidence of tampering.

While the tool can estimate the direction to a light source with reasonable accuracy, it is only

applicable under certain lighting conditions, e.g., outside on a clear day. The limitations of the

tool are mostly related to the assumptions of the illumination model: the surface is Lambertian, the

illumination is a point light source infinitely far away, and the analyzed intensities must be on a

region of the surface that is within 90◦ of the illuminant direction. In addition, the tool only returns

a 2-D estimate of the illuminant direction.

In the next two chapters, we address these limitations with two other tools that also estimate

properties of the lighting environment from images. The specularity tool estimates a 3-D light

direction by assuming a known geometry is in the scene. The lighting environment tool addresses

some of the limitations of the illumination model mentioned above, making it applicable to images

with more complex lighting. But the fundamental idea behind these tools is the same: to the extent

that properties of the lighting environment can be estimated from different objects or people in an

image, inconsistencies in lighting can be used as evidence of digital tampering.
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Chapter 3

Specularity

The photograph in Figure 3.1 of the host and judges for the popular television show American Idol

was scheduled for publication when it caught the attention of a photo-editor. Coming on the heels

of several scandals involving tampered images at major news organizations, the photo-editor was

concerned that the image had been doctored. There was good reason to worry: the image was a

composite of several photographs. Shown in Figure 3.1 are magnifications of the host’s and judge’s

eyes. The inconsistencies in the shape and location of the specular highlight on the eyes suggest

that the people were originally photographed under different lighting conditions. In this chapter, we

show how the location of a specular highlight can be used to determine the direction to the light

source. Inconsistencies in the estimates from different eyes, as well as differences in the shape and

color of the highlights, can be used to reveal traces of digital tampering.

In the previous chapter, we showed how to estimate the light source direction in 2-D from

the occluding boundary of an object in an image. While this approach has the benefit of being

applicable to arbitrary objects, it has the drawback that it can only determine the direction to the

light source within one degree of ambiguity. In contrast, we estimate the full 3-D light source

direction by leveraging a 3-D model of the human eye. Although not specifically developed for a

forensic setting, the authors of [39] described a technique for computing an environment map from

eyes that embodies the illumination in the scene. While the environment map provides a rich source

of information about the lighting, it has the drawback of requiring a relatively high-resolution image

of the eye.

In this chapter, we describe how to estimate the 3-D direction to a light source from specular

highlights on eyes and show the efficacy of this approach on synthetic and real images, as well as

on visually plausible forgeries.

3.1 Methods

The position of a specular highlight is determined by the relative positions of the light source, the

reflective surface and the viewer (or camera). In Figure 3.2, for example, is a diagram showing the

creation of a specular highlight on an eye. In this diagram, the three vectors EL , EN and ER correspond
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Figure 3.1: This photograph of the American Idol host and judges is a digital composite of multiple pho-
tographs. The inconsistencies in the shape and location of the specular highlight on the eyes suggest that
these people were originally photographed under different lighting conditions. Photo courtesy of Fox News
and the Associated Press.

to the direction to the light, the surface normal at the highlight, and the direction in which the

highlight will be seen. For a perfect reflector, the highlight is seen only when the view direction is

equal to the direction of reflection, EV = ER. For an imperfect reflector, a specular highlight can be

seen for view directions EV near ER, with the strongest highlight seen when EV = ER.

We will first derive an algebraic relationship between the vectors EL , EN , and EV . We then show

how the 3-D vectors EN and EV can be estimated from a single image, from which the direction to the

light source EL is determined.

Reflection

The law of reflection states that a light ray reflects off of a surface at an angle of reflection θr equal

to the angle of incidence θi , where these angles are measured with respect to the surface normal EN ,

Figure 3.2. Assuming unit-length vectors, the direction of the reflected ray ER can be described in

terms of the light direction EL and the surface normal EN :

ER = EL + 2(cos(θi ) EN − EL),

= 2 cos(θi ) EN − EL. (3.1)

By assuming a perfect reflector ( EV = ER), the above constraint yields:

EL = 2 cos(θi ) EN − EV ,
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Figure 3.2: The formation of a specular highlight on an eye (small white dot on the iris). The position of the
highlight is determined by the surface normal EN and the relative directions to the light source EL and viewer EV .

= 2
(

EV T EN
)

EN − EV . (3.2)

The light direction EL can therefore be estimated from the surface normal EN and view direction EV at

a specular highlight. In the following sections, we describe how to estimate these two 3-D vectors

from a single image.

Note that the light direction is specified with respect to the eye, and not the camera. In practice,

all vectors will be placed in a common coordinate system, allowing us to compare light directions

across the image.

3.1.1 Camera calibration

In order to estimate the surface normal EN and view direction EV in a common coordinate system,

we first need to estimate the projective transform that describes the transformation from world to

image coordinates. With only a single image, this is generally an under-constrained problem. In

our case, however, the known geometry of the eye can be exploited to estimate this required trans-

form. Throughout, upper-case symbols will denote world coordinates and lower-case will denote

camera/image coordinates.

The limbus, the boundary between the sclera (white part of the eye) and the iris (colored part of

the eye), can be well modeled as a circle [39]. The image of the limbus, however, will be an ellipse

except when the eye is directly facing the camera. Intuitively, the distortion of the ellipse away from

a circle will be related to the pose and position of the eye relative to the camera. We therefore seek

the transform that aligns the image of the limbus to a circle.

In general, a projective transform that maps 3-D world coordinates to 2-D image coordinates

can be represented, in homogeneous coordinates, as a 3 × 4 matrix. We assume that points on a

limbus are coplanar, and define the world coordinate system such that the limbus lies in the Z = 0

plane. With this assumption, the projective transformation reduces to a 3 × 3 planar projective
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transform [22], where the world points EX and image points Ex are represented by 2-D homogeneous

vectors.

Points on the limbus in our world coordinate system satisfy the following implicit equation of a

circle:

f ( EX; Ea) = (X1 − C1)
2
+ (X2 − C2)

2
− r2

= 0, (3.3)

where vector Ea = ( C1 C2 r )T denotes the circle center and radius.

Consider a collection of points, EX i , i = 1, . . . , m, each of which satisfy Equation (3.3). Under

an ideal pinhole camera model, the world point EX i maps to the image point Exi as follows:

Exi = H EX i , (3.4)

where H is a 3 × 3 projective transform matrix.

The estimation of H can be formulated in an orthogonal distance fitting framework. Let E(·)

be an error function on the parameter vector Ea and the unknown projective transform H :

E(Ea, H) =

m∑
i=1

min
EX∗

∥∥∥Exi − H EX∗

∥∥∥2
, (3.5)

where EX∗ is on the circle parameterized by Ea. The error embodies the sum of the squared errors

between the data, Exi , and the closest point on the model, EX∗. This error function is a nonlinear least-

squares problem, which is solved using a Gauss-Newton or Levenberg-Marquardt iteration. With

only a single circle, there is not a unique projective transform H that minimizes Equation (3.5). With

two coplanar circles, however, the transform can be uniquely determined up to a similarity [59].

Therefore, an error function incorporating both eyes is used to estimate the transform H . The

details of this error function are described in Appendix A.

Once estimated, the projective transform H can be decomposed in terms of intrinsic and ex-

trinsic camera parameters [22]. The intrinsic parameters consist of the camera focal length, camera

center, skew and aspect ratio. For simplicity, we assume that the camera center is the image center,

that the skew is 0 and the aspect ratio is 1, leaving only the focal length f . The extrinsic parameters

consist of a rotation matrix R and translation vector Et that define the transformation between the

world and camera coordinate systems. Since the world points lie on a single plane, the projective

transform can be decomposed in terms of the intrinsic and extrinsic parameters as:

H = λK
(

Er1 Er2 Et
)

, (3.6)
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where the 3 × 3 intrinsic matrix K is:

K =

 f 0 0

0 f 0

0 0 1

 , (3.7)

λ is a scale factor, the column vectors Er1 and Er2 are the first two columns of the rotation matrix R,

and Et is the translation vector.

With a known focal length f , and hence a known matrix K , the world to camera coordinate

transform Ĥ can be estimated directly:

1
λ

K −1 H =

(
Er1 Er2 Et

)
,

Ĥ =

(
Er1 Er2 Et

)
, (3.8)

where the scale factor λ is chosen so that Er1 and Er2 are unit vectors. The complete rotation matrix is

given by:

R =

(
Er1 Er2 Er1 × Er2

)
, (3.9)

where × denotes cross product.

In the case of an unknown focal length, we estimate the focal length first by decomposing

the projective transform H . The transform H has eight unknowns: the focal length f , the scale

factor λ, the three rotation angles θx , θy and θz for the rotation matrix R, and the three coordinates

of the translation vector Et . By multiplying the matrices on the right-hand side of Equation (3.6), H

can be expressed in terms of these unknowns:

H = λ

 f cycz f cysz f tx

f (sx sycz − cx sz) f (sx sysz + cx cz) f ty

cx sycz + sx sz cx sysz − sx cz tz

 , (3.10)

where cx = cos(θx), sx = sin(θx), etc., and where the rotation matrix follows the “x-y-z” conven-

tion.

Consider the upper-left 2 × 2 sub-matrix of H rewritten in terms of the four unknowns θx , θy ,

θz , and f̂ = λ f . These unknowns are estimated by minimizing the following error function using

non-linear least-squares:

E(θx , θy, θz, f̂ ) = ( f̂ cycz − h1)
2
+ ( f̂ cysz − h2)

2
+ ( f̂ (sx sycz − cx sz) − h4)

2

+ ( f̂ (sx sysz + cx cz) − h5)
2, (3.11)

where hi corresponds to the i th entry of H in row-major order. A Gauss-Newton iterative approach

is employed to minimize E(·). In practice, we have found that θz = tan−1(h2/h1), f = 1 and
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random values for θx and θy provide good starting conditions for this minimization. These estimated

parameters then yield two possible estimates of the focal length:

f1 =
f̂ (cx sycz + sx sz)

h7
and f2 =

f̂ (cx sysz − sx cz)

h8
. (3.12)

These two estimates are combined using the following weighted average:

f =
h2

7 f1 + h2
8 f2

h2
7 + h2

8
. (3.13)

Note that the focal length f is undefined for h7 = h8 = 0. In addition, this estimation is vulnerable

to numerical instabilities for values of h7 and h8 near zero. As such, the weighting was chosen to

favor larger values of h7 and h8.

3.1.2 View direction

Recall that the minimization of Equation (3.5) yields both the transform H and the circle parameters

Ea for the limbus. Let EXc = ( C1 C2 1 )T denote the estimated center of a limbus in world

coordinates. In the camera coordinate system, this point is given by:

Exc = Ĥ EXc. (3.14)

The view direction is the vector from the center of the limbus to the origin of the camera coordinate

system. It is given by:

Ev = −
Exc

‖Exc‖
, (3.15)

where it is normalized to unit length and the negative sign reverses the vector so that it points from

the eye to the camera.

3.1.3 Surface normal

The 3-D surface normal EN at a specular highlight is estimated from a 3-D model of the human

eye [33]. The model consists of a pair of spheres as illustrated in Figure 3.3(a). The larger sphere,

with radius r1 = 11.5 mm, represents the sclera and the smaller sphere, with radius r2 = 7.8 mm,

represents the cornea. The centers of the spheres are displaced by a distance d = 4.7 mm. The lim-

bus, a circle with radius p = 5.8 mm, is defined by the intersection of the two spheres. The distance

between the center of the smaller sphere and the plane containing the limbus is q = 5.25 mm. These

measurements vary slightly among adults, and the radii of the spheres are approximately 0.1 mm

smaller for female eyes [24, 33].

Consider a specular highlight in world coordinates at location ES = ( Sx Sy ), measured with

respect to the center of the limbus. The surface normal at ES depends on the view direction EV . In

30



r1

r2

d

p

q

Sclera

Cornea

Limbus

!V

!V

!N
!N!S

(a) (b)

Figure 3.3: (a) A side view of a 3-D model of the human eye. The larger sphere represents the sclera and the
smaller sphere represents the cornea. The limbus is defined by the intersection of the two spheres. (b) The
surface normal at a point ES in the plane of the limbus depends on the view direction EV .

Figure 3.3(b) is a schematic showing this relationship for two different positions of the camera.

The surface normal EN is determined by intersecting the ray leaving ES, along the direction EV , with

the edge of the sphere. This intersection can be computed by solving a quadratic system for k, the

distance between ES and the edge of the sphere:

(Sx + kVx)
2
+ (Sy + kVy)

2
+ (q + kVz)

2
= r2

2 ,

k2
+ 2(Sx Vx + Sy Vy + qVz)k + (S2

x + S2
y + q2

− r2
2 ) = 0, (3.16)

where q and r2 are specified by the 3-D model of the eye. The view direction EV = ( Vx Vy Vz )T

in the world coordinate system is given by:

EV = R−1
Ev, (3.17)

where Ev is the view direction in camera coordinates, section 3.1.2, and R is the estimated rotation

between the world and camera coordinate systems, section 3.1.1. The surface normal EN in the world

coordinate system is then given by:

EN =

 Sx + kVx

Sy + kVy

q + kVz

 , (3.18)

and in camera coordinates by:

En = R EN . (3.19)
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3.1.4 Light direction

Consider a specular highlight Exs specified in image coordinates and the estimated projective trans-

form H from world to image coordinates. The inverse transform H−1 maps the coordinates of the

specular highlight into world coordinates:

EXs = H−1
Exs . (3.20)

The center EC and radius r of the limbus in the world coordinate system determine the coordinates

of the specular highlight, ES, with respect to the model:

ES =
p
r

(
EXs − EC

)
, (3.21)

where p is specified by the 3-D model of the eye. The position of the specular highlight ES is

then used to determine the surface normal EN , as described in the previous section. Combined with

the estimate of the view direction EV , section 3.1.2, the light source direction EL can be estimated

from Equation (3.2). In order to compare estimates across the image, the light source direction is

converted to camera coordinates:

El = R EL. (3.22)

3.1.5 Consistency of estimates

In a forensic setting, we would like to determine if the specular highlights in an image are consistent,

i.e., they could have arisen from the same light source. The simplest method would be to measure

the angle between pairs of light direction estimates: estimates with large angular differences would

be deemed inconsistent. But this approach assumes the light source is infinitely far away so that

the individual light direction estimates are parallel. In real images, however, we do not expect the

estimates to be parallel since specular highlights are usually caused by local light sources (e.g.,

flashes, lights in the room, windows). Instead, we expect the estimates to converge towards the

position of the light source.

The light direction estimates from each specular highlight constrain the position of the light

source, Figure 3.4. At the i th specular highlight, the angle between the vector to the light source at

position Ex and the estimated direction Eli (a unit vector) is:

θi (Ex) = cos−1
(

ElT
i

Ex − Epi

‖Ex − Epi‖

)
, (3.23)

where Epi is the position of the i th specular highlight. Given a set of estimates from N specular

highlights, the position of the light source can be estimated by minimizing the following error
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Figure 3.4: Error surface for four specular highlights and corresponding light directions in 2-D, Equa-
tion 3.24. The error is minimal near the light position (yellow star).

function:

E(Ex) =

N∑
i=1

θi (Ex). (3.24)

Although this error function is intuitive, it is unnecessarily complex due to the cos−1(·) nonlin-

earity. We have also found empirically that this complexity often causes the error function to be

more difficult to minimize. To avoid these issues, we note that the term inside the parentheses in

Equation (3.23) is a dot product between two unit vectors. This quantity is one if the vectors are

parallel; otherwise, it is less than one. Instead of minimizing Equation (3.24), we can maximize:

Ê(Ex) =

N∑
i=1

ElT
i

Ex − Epi

‖Ex − Epi‖
, (3.25)

which is the sum of the dot products. This function has the advantage that the derivative is simple:

∂ Ê(Ex)

∂ Ex
=

(‖Ex − Ep‖
2Eli − ElT

i (Ex − Ep)(Ex − Ep))

‖Ex − Ep‖3
, (3.26)

and it can be maximized using the nonlinear conjugate gradient method [51]. If point Ex∗ is the light

source position computed by maximizing Equation (3.25), the angular error for the i th specular

highlight is given by θi (Ex∗).

One approach to detecting inconsistencies using angular errors is with a threshold: angles above

the threshold are inconsistent and angles below the threshold are not. But reliable thresholds are

often difficult to establish and thresholds provide only a binary result: above or below. A statistical

approach, such as a hypothesis test, provides more information since it reports the probability of

observing the result (or one more extreme). This approach assumes that the angular errors are
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normally distributed and that inconsistent estimates in a forgery will skew the minimization of

Equation (3.25) resulting in larger errors for all estimates. The hypothesis test will therefore use all

N angular errors to decide between two hypotheses: (1) that the mean is equal to an expected mean

of µ0; or (2) that the mean is greater than µ0. The test statistic is:

z =
µ − µ0

σ0/
√

N
, (3.27)

where µ is the average of the N angular errors, σ0 is the expected standard deviation, and µ0 is the

expected mean—the values of µ0 and σ0 are determined empirically from authentic images. The

significance of the test statistic is given in terms of the standard error function:

p(z) =
1
2

(
1 − erf

(
z

√
2

))
. (3.28)

If the significance of the test statistic is smaller than a level of α (e.g., α = 1%), then the aver-

age errors from the specular highlights are larger than expected and the estimates can be deemed

inconsistent. Otherwise, the estimates cannot be deemed inconsistent.

3.2 Results

We tested our technique for estimating the 3-D light source direction on both synthetically generated

and real images. In all of these results the direction to the light source was estimated from specular

highlights in both eyes. This required a slight modification to the minimization in Equation (3.5)

which is described in Appendix A. The view direction, surface normal and light direction were then

estimated separately for each eye.

3.2.1 Synthetic images

Synthetic images of eyes were rendered using the pbrt environment [42]. The shape of the eyes

conformed to the 3-D model described in section 3.1.3 and the eyes were placed in one of 12

different locations. For each location, the eyes were rotated by a unique amount relative to the

camera. The eyes were illuminated with two light sources: a fixed light directly in line with the

camera, and a second light placed in one of four different positions. The twelve locations and

four light directions gave rise to 48 images, Figure 3.5. Each image was rendered at a resolution

of 1200 × 1600 pixels, with the cornea occupying less than 0.1% of the entire image. Shown

in Figure 3.5 are several examples of the rendered eyes, along with a schematic of the imaging

geometry.

The limbus and position of the specular highlight(s) were automatically extracted from the ren-

dered image. For each highlight, the projective transform H , the view direction Ev and surface nor-

mal En were estimated, from which the direction to the light source El was determined. The angular
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Figure 3.5: Synthetically generated eyes. Each of the upper panels corresponds to different positions and
orientations of the eyes and locations of the light sources. The ellipse fit to each limbus is shown in dashed
green, and the red dots denote the positions of the specular highlights. Shown below is a schematic of the
imaging geometry: the position of the lights, camera and a subset of the eye positions.
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left eye right eye left eye right eye
image L1 L2 L1 L2 L1 L2 L1 L2

1 5.8 7.6 3.8 1.6 5.8 7.7 3.9 1.7
2 – 8.7 – 0.8 – 10.4 – 18.1
3 9.3 – 11.0 – 17.6 – 10.1 –
4 12.5 16.4 7.5 7.3 10.4 13.6 7.4 5.6
5 14.0 – 13.8 – 17.4 – 16.5 –

Table 3.1: Angular errors (degrees) in estimating the light direction for the images shown in Figure 3.6. On
the left are the errors for a known focal length, and on the right are the errors for an unknown focal length. A
’–’ indicates that the specular highlight for that light was not visible on the cornea.

error between the estimated El and actual El0 light directions is computed as:

φ = cos−1
(
ElT El0

)
. (3.29)

where the vectors are normalized to be unit length.

With a known focal length, the average angular error in estimating the light source direction was

2.8◦ with a standard deviation of 1.3◦ and a maximum error of 6.8◦. With an unknown focal length,

the average error was 2.8◦ with a standard deviation of 1.3◦ and a maximum error of 6.3◦.

3.2.2 Real images: controlled lighting

To further test the efficacy of our technique, we photographed a subject under controlled lighting.

A camera and two lights were arranged along a wall, and the subject was positioned 250 cm in front

of the camera and at the same elevation. The first light L1 was positioned 130 cm to the left of and

60 cm above the camera. The second light L2 was positioned 260 cm to the right and 80 cm above

the camera. The subject was placed in five different locations and orientations relative to the camera

and lights, Figure 3.6. A 6.3 megapixel Nikon D100 digital camera with a 35 mm lens was set to

capture in the highest quality JPEG format.

For each image, an ellipse was manually fit to the limbus of each eye. In these images, the

limbus did not form a sharp boundary—the boundary spanned roughly 3 pixels. As such, we fit

the ellipses to the better defined inner outline [27], Figure 3.6. The radius of each limbus was

approximately 9 pixels, and the cornea occupied 0.004% of the entire image.

Each specular highlight was localized by specifying a bounding rectangular area around each

highlight and computing the centroid of the selection. The weighting function for the centroid

computation was chosen to be the squared (normalized) pixel intensity.

The location to the light source(s) was estimated for each pair of eyes assuming a known and

unknown focal length. The angular errors, Equation (3.29), for each image are given in Table 3.1.

Note that in some cases an estimate for one of the light sources was not possible when the highlight

was not visible on the cornea. With a known focal length, the average angular error was 8.6◦, and

with an unknown focal length, the average angular error was 10.5◦.
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Figure 3.6: A subject at different locations and orientations relative to the camera and two light sources (left)
with magnified views of the eyes (right). The ellipse fit to each limbus is shown in dashed green and the red
dots denote the positions of the specular highlights. See also Table 3.1.
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Figure 3.7: Twenty images of two or more people with specular highlights in their eyes.

There are several reasons for the increase in error over the synthetic images. First, the average

size of the cornea in our real images is much smaller than the size of the cornea in the synthetic

images, 256 pixels2 versus over 1000 pixels2. Second, the limbus in an adult human eye is slightly

elliptical, being 1 mm wider than it is tall [24], while our model assumes a circular limbus. Lastly,

the positions of the lights and camera in the room were measured with a tape measure and are almost

certainly not exact.

3.2.3 Real images: unknown lighting

While it is important to establish the errors in estimating the direction to a known source, it is

more important for forensics to establish the consistency of measurements across multiple specular

highlights in an image. In an authentic image, we expect light direction estimates from highlights

to converge towards the position of the light source. In forgeries, on the other hand, we expect the

light direction estimates to diverge if the images were captured under different lighting.

To explore the consistency of light direction estimates in authentic images, we acquired twenty
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Figure 3.8: Uniform noise added to points on the limbi with maximum deviations of 0 to 2 pixels.

images from Flickr, a photo-sharing website [60]. Shown in Figure 3.7 are the twenty images, each

image showing multiple people with specular highlights in their eyes. Following the same approach

as the controlled lighting experiment, ellipses were fit by hand to the inner outline of the limbus

in each eye and the specular highlights were localized by specifying a bounding rectangular area

around each highlight and computing the centroid of the selection.

For each image, the light position Ex∗ was estimated by maximizing Equation (3.25) using the

light direction estimates from all the specular highlights in the image. The angular errors between

each estimated direction and the vector to the point Ex∗ were computed using Equation (3.23). In

total, there were 88 light direction estimates (44 people). The average angular error was 6.4◦, with

a standard deviation of 2.8◦ and a maximum error of 12.8◦.

3.2.4 Sensitivity

In this section, we explore the sensitivity of the estimated direction to noise in the points on the

limbi, noise in the positions of the highlights, and errors in the shape of the ellipses. A set of 243

simulated images of eyes was used for all experiments. The approximate radius of the eyes in this

experiment was 35 pixels and the shape of the limbus was automatically extracted from each eye.

In each image, the position and orientation of the eyes varied, and there were two highlights visible

in each eye, yielding four measurements from each image. For all experiments, the average errors

between the actual and estimated light directions across 972 measurements are given in degrees.

To test the sensitivity of the estimated direction to noise in the points on the limbi, we added

uniform random noise of varying amounts to the each coordinate of the points. The maximum

displacement of the noise varied between 0 to 2 pixels, Figure 3.8. The average error in the estimated

light directions due to the noise is shown as the solid line in the left panel of Figure 3.9. Uniform

noise with a 2 pixel maximum deviation caused an average error of 4.7◦ in the estimated direction.

To test the sensitivity of the estimated direction to noise in the positions of the highlights, we

added uniform random noise to the coordinates of the highlights. As with the previous experiment,

the maximum deviation of the noise varied between 0 and 2 pixels. The average error in the esti-

mated light directions due to the noise is shown as the dashed line in the left panel of Figure 3.9.
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Figure 3.9: Sensitivity of the estimated direction to noise. (Left) Average error due to noise in the points on
the limbi and noise in the positions of the highlights. (Center) Average error due to noise added to the ellipse
center, major axis, and minor axis. (Right) Average error due to noise added to the ellipse angle.

Uniform noise with a 2 pixel maximum deviation caused an average error of 3.7◦ in the estimated

direction.

To test the sensitivity of the estimated direction to the shape of the elliptical limbi, we fit ellipses

to each limbus and decomposed the ellipses into five parameters: the 2-D center, the lengths of the

major and minor axes, and the rotation angle θ . Uniform noise between 0 and 2 pixels was added

independently to the first four parameters, and noise between 0◦ and 5◦ was added to the angular

parameter θ . The average error in the estimated direction due to the noise is shown in the center

and right panels of Figure 3.9. The estimated direction is sensitive to noise added to the lengths of

the axes: two pixels of noise added to the major or minor axes caused an average error of 19.5◦ and

18.5◦, respectively. The ratio of the lengths of the axes (i.e., ellipse eccentricity) is directly related

to the pose of the eyes and the additive noise skews the pose estimation, causing large errors. The

estimated direction is less sensitive to noise added to the center or the angular parameter, with an

average error of 4.3◦ for 2 pixels of noise added to the center and 5.8◦ for 5◦ of noise added to θ .

3.2.5 Forgeries

Shown in Figure 3.10 are four image forgeries. The two images in the left column are the American

Idol forgery and a family portrait where the father’s face has been replaced with the face of Gene

Simmons from the rock band KISS. In the right column are two forgeries from the “Impossible

Celebrity Couples” Photoshop contest hosted by the website Worth1000 [58]. They show, from top

to bottom, actor Humphrey Bogart with actress Jessica Alba, and actor George Clooney with actress

Claudia Cardinale.

In the American Idol image, there were two specular highlights visible in the eyes of two of the

judges. As a result, we tested for consistency in two different ways. First, we minimized Equa-

tion (3.25) using the estimates from the left highlight from eyes with two highlights, together with

the highlight from eyes with one highlight. Next, we minimized the same equation with the esti-

mates from the right highlight instead of the left. The errors from both approaches are summarized
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Figure 3.10: Four image forgeries. (Left) the American Idol forgery and a family portrait with rock star Gene
Simmons. (Right) two forgeries from the Worth1000 “Impossible Celebrity Couples” Photoshop contest.

in the first two columns of Table 3.2. Using the z-test, we confirmed that the average error in both

cases is statistically greater than the average error of 6.4 and standard deviation of 2.8 measured

from the authentic images.

In the KISS image, there were two specular highlights visible in the eyes of the children but only

one visible in the eyes of the father. As with the American idol image, we measured consistency

between the left and right highlights separately, including the father’s estimates in both sets. We did

not estimate the light direction for the mother because we have found that glasses distort the shape

and location of the specularity on the eye. The errors for this image are summarized in the third and

fourth columns of Table 3.2 and the z-test confirmed that they are statistically greater than the errors

from the authentic images.

In the final two columns of Table 3.2 are the average errors for the celebrity couple images.

They too are statistically larger than the errors from the authentic images. Note, however, that it is

possible for a forgery to have errors consistent with the errors measured from the authentic images.

Two examples of such images are shown in Figure 3.11. The source images for these forgeries were

shot under similar lighting so the light direction estimates are close. In fact in the rightmost forgery,

the source images come from the same photo shoot so the lighting was the same.
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Idol (L) Idol (R) Kiss (L) Kiss (R) Bogart Clooney
mean 11.5 17.8 23.9 12.9 11.2 13.1

std. dev 6.0 8.5 11.0 5.0 3.1 6.1

Table 3.2: Average error and standard deviation for the light direction estimates from the image forgeries
shown in Figure 3.10. In all cases, the errors were statistically larger than the errors from the authentic
images, Figure 3.7.

Figure 3.11: Two forgeries from the Worth1000 “Attack of the Clones” Photoshop contest. Each image is a
composite of the same person under similar lighting.

3.3 Discussion

When creating a composite of two or more people it is often difficult to match the lighting conditions

under which each person was originally photographed. Specular highlights on the eye are a powerful

cue as to the shape, color and location of the light source(s). Inconsistencies in these properties can

be used as evidence of tampering. We have described how to measure the 3-D direction to a light

source from the position of the highlight on the eye. While we have not specifically focused on it,

the shape and color of a highlight are relatively easy to quantify and measure and should also prove

helpful in exposing digital forgeries.

This tool is capable of estimating the 3-D direction to a light source, but it depends on two

elliptical selections to approximate the shape of the limbi. These ellipses determine the pose of the

eyes in the image, and the accuracy of the light direction estimation depends on the accuracy of the

pose estimation. If the eyes are sufficiently large and not occluded by eyelids, this selection could

be partially automated to improve robustness. But as the eyes become smaller in the image, the

selection is difficult to perform manually or automatically. It may be possible to use other sources

of pose information, such as the head, to condition the pose of the eyes. Improving the ellipse

selection process could make the tool more robust and also simplify the user experience.

Another future direction for this work would be to reconsider, in a forensic setting, the problem

of estimating parameters of a full lighting environment from eyes. Earlier work has described this
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process for high-resolution images of eyes [39], but perhaps the approach could be simplified to

allow for smaller eyes, which would be more realistic for forensics. These estimates would provide

more detail about the lighting environment than a single 3-D direction and would be applicable

under complex illumination. In the next chapter, we describe a technique for estimating properties

of complex lighting environments from diffuse objects, but a similar approach could be used for

glossy objects, such as the eye.

Since specular highlights tend to be relatively small on the eye, it is possible to manipulate

them to conceal traces of tampering. To do so, the shape, color and location of the highlight would

have to be constructed so as to be globally consistent with the lighting in other parts of the image.

Inconsistencies in this lighting may also be detectable using the technique described in the previous

chapter. In addition, small artifacts on the eyes are often visually salient. Nevertheless, as with all

forensic tools, it is possible to circumvent this technique.
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Chapter 4

Lighting environment

In the previous two chapters, we have shown techniques for estimating the direction to a light source,

and how inconsistencies in these estimates can be used to detect tampering. These techniques are

appropriate when the lighting is dominated by a single light source, but are less appropriate in

more complex lighting environments containing multiple light sources or non-directional lighting

(e.g., the sky on a cloudy day). Shown in Figure 4.1, for example, is a digital composite of “Katie”

and “Kimo.” At first glance, this composite is reasonably compelling. Upon closer examination,

however, the lighting on Kimo is seen to be strongly directional while the lighting on Katie is more

diffuse. Here we describe how to quantify such complex lighting environments and how to use

inconsistencies in lighting to detect tampering.

We leverage earlier work [3, 49] that shows that under some simplifying assumptions, arbitrarily

complex lighting environments can be approximated by a low-dimensional model. We show how

the parameters of a reduced version of this model can be estimated from a single image, and how

this model can be used to detect consistencies and inconsistencies in an image. Results from a broad

range of simulated and photographed images as well as visually plausible forgeries are presented.

4.1 Methods

The lighting of a scene can be arbitrarily complex—any number of lights can be placed in any num-

ber of positions, creating different lighting environments. In order to model such complex lighting,

we assume that the lighting is distant and that surfaces in the scene are convex and Lambertian. To

use this model in a forensic setting, we also assume that the surface reflectance is constant and that

the camera response is linear.

4.1.1 Representing lighting environments

Under the assumption of distant lighting, an arbitrary lighting environment can be expressed as a

non-negative function on the sphere, L( EV ), where EV is a unit vector in Cartesian coordinates and

the value of L( EV ) is the intensity of the incident light along direction EV , Figure 4.2. If the object

being illuminated is convex, the irradiance (light received) at any point on the surface is due to
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Figure 4.1: A fake Star magazine cover showing Kimo with actress Katie Holmes. Also shown is a magnified
view of this forgery, and the original cover showing Holmes with actor Tom Cruise.

Figure 4.2: Shown from left to right are an image taken inside Grace Cathedral in San Francisco, a sphere
embodying the lighting environment in Grace Cathedral, and the Stanford bunny rendered under this lighting
environment.

only the lighting environment; i.e., there are no cast shadows or interreflections [49]. As a result,

the irradiance, E( EN ), can be parameterized by the unit length surface normal EN and written as

a convolution of the reflectance function of the surface, R( EV , EN ), with the lighting environment

L( EV ):

E( EN ) =

∫
�

L( EV ) R( EV , EN ) d�, (4.1)

where � represents the surface of the sphere and d� is an area differential on the sphere. For a

Lambertian surface, the reflectance function is a clamped cosine:

R( EV , EN ) = max
(

EV · EN , 0
)

, (4.2)
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Figure 4.3: The irradiance (light received) at a point Ex is determined by integrating the amount of incoming
light from all directions EV in the hemisphere about the surface normal EN .

which is either the cosine of the angle between vectors EV and EN , or zero when the angle is greater

than 90◦. This reflectance function effectively limits the integration in Equation (4.1) to the hemi-

sphere about the surface normal EN , Figure 4.3. In addition, while we have assumed no cast shadows,

Equation (4.2) explicitly models attached shadows, i.e., shadows due to surface normals facing away

from the direction EV .

The convolution in Equation (4.1) can be simplified by expressing both the lighting environment

and the reflectance function in terms of spherical harmonics. Spherical harmonics form an orthonor-

mal basis for piecewise continuous functions on the sphere and are analogous to the Fourier basis on

the line or plane. The first three orders of spherical harmonics in terms of the Cartesian coordinates

of the surface normal, EN = ( x y z )T , are defined below and shown in Figure 4.4.
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The lighting environment expanded in terms of spherical harmonics is:

L( EV ) =

∞∑
n=0

n∑
m=−n

ln,mYn,m( EV ), (4.3)

where Yn,m(·) is the mth spherical harmonic of order n, and ln,m is the corresponding coefficient of

the lighting environment. Similarly, the reflectance function for Lambertian surfaces, R( EV , EN ), can

be expanded in terms of spherical harmonics, and due to its symmetry about the surface normal,
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Figure 4.4: The first three orders of spherical harmonics as functions on the sphere. Shown from top to
bottom are the order zero spherical harmonic, Y0,0(·); the three order one spherical harmonics, Y1,m(·); and
the five order two spherical harmonics, Y2,m(·).

only harmonics with m = 0 appear in the expansion:

R( EV , EN ) =

∞∑
n=0

rnYn,0

(
( 0 0 EV · EN )T

)
. (4.4)

Note that for m = 0, the spherical harmonic Yn,0(·) depends only on the z-component of its argu-

ment.

Convolutions of functions on the sphere become products when represented in terms of spherical

harmonics [3, 49]. As a result, the irradiance, Equation (4.1), takes the form:

E( EN ) =

∞∑
n=0

n∑
m=−n

r̂nln,mYn,m( EN ), (4.5)

where

r̂n =

√
4π

2n + 1
rn. (4.6)

The key observation in [49] and [3] was that the coefficients r̂n for a Lambertian reflectance function

decay rapidly, and thus the infinite sum in Equation (4.5) can be well approximated by the first nine

terms:

E( EN ) ≈

2∑
n=0

n∑
m=−n

r̂nln,mYn,m( EN ). (4.7)
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Since the constants r̂n are known for a Lambertian reflectance function, the irradiance of a con-

vex Lambertian surface under arbitrary distant lighting can be well modeled by the nine lighting

environment coefficients ln,m up to order two.

4.1.2 From irradiance to intensity

Irradiance describes the total amount of light reaching a point on a surface. For a Lambertian

surface, the reflected light, or radiosity, is proportional to the irradiance by a reflectance term ρ. In

addition, Lambertian surfaces emit light uniformly in all directions, so the amount of light received

by a viewer (i.e., camera) is independent of the view direction.

A camera maps its received light to intensity through a camera response function:

I = f (Et), (4.8)

where I is the image intensity and the function f (·) is often nonlinear. The received light is rep-

resented by the product of irradiance E and exposure time t , and the dependence of the irradiance

and intensity on position Ex has been dropped for simplicity. In an arbitrary image, we cannot know

the exposure time t , but we show that under an assumption of bounded irradiance for objects in an

image, different exposure times cause a change in intensity that can be modeled linearly.

Suppose there is an object in an arbitrary lighting environment with bounded irradiance, and

let the minimum and maximum irradiance values for the object be E1 and E2. Let t1 and t2 be

two different exposure times, and without loss of generality, we assume t1 = 1 and t2 > t1. The

intensities for the first exposure, t1 = 1, can be approximated by a truncated Taylor series expanded

about the midpoint of irradiance values for the object:

f (Et1) ≈ f (m1) + f ′(m1)(Et1 − m1), (4.9)

= f (m1) + f ′(m1)(E − m1), (4.10)

where m1 = (E1 + E2)/2. Similarly, the intensities for the second exposure, f (Et2), can be

approximated by a truncated Taylor series expanded about the midpoint of the scaled irradiance

values:

f (Et2) ≈ f (m2) + f ′(m2)(Et2 − m2), (4.11)

where m2 = (t2 E1 + t2 E2)/2 = t2m1.

From Equations (4.10) and (4.11), the relationship between the intensities due to a change in

exposure is given by:

f (Et2) ≈ f (m2) + f ′(m2)(Et2 − m2),

= f (m2) + f ′(m2)(Et2 − m2) +

[
f ′(m2)

f ′(m1)
t2 f (Et1) −

f ′(m2)

f ′(m1)
t2 f (Et1)

]
,
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= f (m2) + f ′(m2)(Et2 − m2) + α f (Et1) − α f (m1) − f ′(m2)t2(E − m1),

= f (m2) + α f (Et1). (4.12)

Therefore, the change in the intensity profile due to an increased exposure time t2 can be modeled

by a linear change to the profile of exposure time t1.

In general, the intensity at a point Ex on a Lambertian object is given by

I (Ex) = f (ρt E( EN (Ex))), (4.13)

where E(·) is the irradiance, EN (Ex) is the surface normal at point Ex , and t is the exposure time, and

ρ is the constant reflectance of the surface. For simplicity, we assume a linear camera response and

ignore the effects of exposure time t and the reflectance term ρ since their effects on the intensity

can be modeled linearly. These assumptions imply that our estimates of the lighting coefficients will

be only accurate to within unknown additive and multiplicative terms. Under these assumptions, the

relationship between image intensity and irradiance is simply:

I (Ex) = E( EN (Ex)). (4.14)

4.1.3 Estimating lighting environments

Since, under our assumptions, the intensity is equal to irradiance, Equation (4.14) can be written in

terms of spherical harmonics by expanding Equation (4.7):

I (Ex) = l0,0πY0,0( EN ) + l1,−1
2π
3 Y1,−1( EN ) + l1,0

2π
3 Y1,0( EN ) + l1,1

2π
3 Y1,1( EN )

+ l2,−2
π
4 Y2,−2( EN ) + l2,−1

π
4 Y2,−1( EN ) + l2,0

π
4 Y2,0( EN )

+ l2,1
π
4 Y2,1( EN ) + l2,2

π
4 Y2,2( EN ). (4.15)

Note that this expression is linear in the nine lighting environment coefficients, l0,0 to l2,2. As such,

given 3-D surface normals at p ≥ 9 points on the surface of an object, the lighting environment co-

efficients can be estimated as the least-squares solution to the following system of linear equations:
πY0,0( EN (Ex1))

2π
3 Y1,−1( EN (Ex1)) . . . π

4 Y2,2( EN (Ex1))

πY0,0( EN (Ex2))
2π
3 Y1,−1( EN (Ex2)) . . . π

4 Y2,2( EN (Ex2))
...

...
. . .

...

πY0,0( EN (Ex p))
2π
3 Y1,−1( EN (Ex p)) . . . π

4 Y2,2( EN (Ex p))




l0,0

l1,−1
...

l2,2

 =


I (Ex1)

I (Ex2)
...

I (Ex p)

 ,

M Ev = Eb, (4.16)

where M is the matrix containing the sampled spherical harmonics, Ev is the vector of unknown

lighting environment coefficients, and Eb is the vector of intensities at p points. The least-squares
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solution to this system is:

Ev =
(
MT M

)−1
MT Eb. (4.17)

This solution requires 3-D surface normals from at least nine points on the surface of an object.

Without multiple images or known geometry, however, this requirement may be difficult to satisfy

from an arbitrary image.

As in chapter 2, we observe that under orthographic projection, the z-component of the surface

normal is zero along the occluding contour of an object. Therefore, the intensity profile along an

occluding contour simplifies to:

I (Ex) = A + l1,−1
2π
3 Y1,−1( EN ) + l1,1

2π
3 Y1,1( EN ) + l2,−2

π
4 Y2,−2( EN ) + l2,2

π
4 Y2,2( EN ), (4.18)

where:

A = l0,0
π

2
√

π
− l2,0

π
16

√
5
π
. (4.19)

Note that the functions Yi, j (·) depend only on the x and y components of the surface normal EN .

Therefore, the five lighting coefficients can be estimated from 2-D surface normals, which are rela-

tively simple to estimate from a single image.1 In addition, Equation (4.18) is still linear in its now

five lighting environment coefficients, which can be estimated as the least-squares solution to:


1 2π

3 Y1,−1( EN (Ex1))
2π
3 Y1,1( EN (Ex1))

π
4 Y2,−2( EN (Ex1))

π
4 Y2,2( EN (Ex1))

1 2π
3 Y1,−1( EN (Ex2))

2π
3 Y1,1( EN (Ex2))

π
4 Y2,−2( EN (Ex2))

π
4 Y2,2( EN (Ex2))

...
...

...
...

...

1 2π
3 Y1,−1( EN (Ex p))

2π
3 Y1,1( EN (Ex p))

π
4 Y2,−2( EN (Ex p))

π
4 Y2,2( EN (Ex p))




A

l1,−1

l1,1

l2,−2

l2,2

 =


I (Ex1)

I (Ex2)
...

I (Ex p)


which can be written more simply as:

M Ev = Eb. (4.20)

This system has the same least-squares solution as before:

Ev =
(
MT M

)−1
MT Eb. (4.21)

Note that this solution only provides five of the nine lighting environment coefficients. We will

show, however, that this subset of coefficients is still sufficiently descriptive for forensic analysis.

When analyzing the occluding contours of objects in real images, it is often the case that the

range of surface normals is limited, leading to an ill-conditioned matrix M . This limitation can arise

from many sources, including occlusion or object geometry. As a result, small amounts of noise in

1The 2-D surface normal is the gradient vector of an implicit curve fit to the edge of an object.
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either the surface normals or the measured intensities can cause large variations in the estimate of

the lighting environment vector Ev. To better condition the estimate, an error function E(Ev) is defined

that combines the least-squares error of the original linear system with a regularization term:

E(Ev) = ‖M Ev − Eb‖
2
+ λ‖C Ev‖

2, (4.22)

where λ is a scalar, and the matrix C is diagonal with ( 1 2 2 3 3 ) on the diagonal. The

matrix C is designed to dampen the effects of higher order harmonics and is motivated by the

observation that the average power of spherical harmonic coefficients for natural lighting environ-

ments decreases with increasing harmonic order [12]. For the full lighting model when 3-D surface

normals are available, Equation (4.16), the matrix C has ( 1 2 2 2 3 3 3 3 3 ) on the

diagonal.

The error function to be minimized, Equation (4.22), is a least-squares problem with a Tikhonov

regularization [21]. The analytic minimum is found by differentiating with respect to Ev:

∂ E(Ev)

∂ Ev
= 2MT M Ev − 2MT Eb + 2λCT C Ev,

= 2(MT M + λCT C)Ev − 2MT Eb, (4.23)

setting the result equal to zero, and solving for Ev:

Ev = (MT M + λCT C)−1 MT Eb. (4.24)

In practice, we have found that the conditioned estimate in Equation (4.24) is appropriate if

less than 180◦ of surface normals are available along the occluding contour. If more than 180◦ of

surface normals are available, the least-squares estimate, Equation (4.21), can be used, though both

estimates will give similar results for small values of λ.

4.1.4 Comparing lighting environments

The estimated coefficient vector Ev, Equation (4.24), is a low-order approximation of the lighting

environment. For forensic purposes, we would like to differentiate between lighting environments

based on these coefficients. Intuitively, coefficients from objects in different lighting environments

should be distinguishable, while coefficients from objects in the same lighting environment should

be similar. In addition, measurable differences in sets of coefficients should be mostly due to differ-

ences in the lighting environment and not to other factors such as object color or image exposure.

Taking these issues into consideration, we propose an error measure between two estimated lighting

environments.

Let Ev1 and Ev2 be two vectors of lighting environment coefficients. From these coefficients, the

irradiance profile along a circle (2-D) or a sphere (3-D) is synthesized, from which the error is
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computed. The irradiance profiles corresponding to Ev1 and Ev2 are given by:

Ex1 = M Ev1, (4.25)

Ex2 = M Ev2, (4.26)

where the matrix M is of the form in Equation (4.16) (for 3-D normals) or Equation (4.20) (for 2-D

normals). After subtracting the mean, the correlation between these zero-meaned profiles is:

corr(Ex1, Ex2) =
ExT

1 Ex2

‖Ex1‖‖Ex2‖
. (4.27)

In practice, this correlation can be computed directly from the lighting environment coefficients:

corr(Ev1, Ev2) =
EvT

1 QEv2√
EvT

1 QEv1

√
EvT

2 QEv2

, (4.28)

where the matrix Q is derived below for both the 2-D and 3-D cases.

By design, this correlation is invariant to both additive and multiplicative factors on the irra-

diance profiles Ex1 and Ex2. Recall that our coefficient vectors Ev1 and Ev2 are estimated to within

an unknown multiplicative factor. In addition, different exposure times under a nonlinear camera

response function can introduce an additive bias. The correlation is, therefore, invariant to these

factors and produces values in the interval [−1, 1]. The final error is then given by:

D(Ev1, Ev2) =
1
2

(1 − corr(Ev1, Ev2)) , (4.29)

with values in the range [0, 1].

Matrix Q for 2-D and 3-D correlation

The matrix Q for the 2-D correlation, notated Q2, is derived by integrating products of the functions

in the matrix M from Equation (4.20) about the unit circle. First, consider the average value of

the irradiance profile, found by integrating Equation (4.18) around the unit circle. Each of the

spherical harmonics integrates to zero, thus the average value is simply the ambient term A. From

this observation, the zero-mean irradiance profile for vector Ev is given by:

Ex = M̂ Ev, (4.30)

where M̂ is the matrix M from Equation (4.20) with the first column of ones replaced with zeros.

The numerator of Equation (4.28) can then be rewritten as an inner product of irradiance profiles:

ExT
1 Ex2 = (M̂ Ev1)

T (M̂ Ev2) = EvT
1 (M̂T M̂)Ev2 = EvT

1 Q2Ev2. (4.31)
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The terms of the matrix Q2 are derived by integrating products of pairs of functions mi, j around the

unit circle and normalizing by 1
2π

. Since these functions are orthogonal, the off-diagonal terms of

the matrix Q2 are zero. The terms on the diagonal are
(

0 π
6

π
6

15π
512

15π
512

)
.

For the 3-D matrix, notated Q3, we limit the correlation to the visible hemisphere by restricting

the bounds of the integration to values where z ≥ 0. Since the coefficient vectors Ev1 and Ev2 are

estimated from surface normals that face the camera, irradiance estimates for surface normals fac-

ing away from the camera (i.e., behind the object) are often numerically unstable. Restricting the

integration to the visible hemisphere reduces the effect of this instability.

On the hemisphere, the average value of the irradiance profile is derived by integrating Equa-

tion (4.15) and normalizing by 1
2π

(2π steradians of solid angle on the hemisphere):

1
2π

∫
�z≥0

E( EN ) d� = l0,0
π

2
√

π
+ l1,0

π

6

√
3
π

. (4.32)

The zero-mean irradiance profile over the hemisphere using M from Equation (4.16) is therefore:

Ex = M Ev − BEv = (M − B)Ev, (4.33)

where B is a matrix the same size as M with π
2
√

π
in column 1 and π

6

√
3
π

in column 3. Following

the derivation of Equation (4.31), a similar expression can be derived for the correlation between

the zero-mean irradiance profiles on the hemisphere:

ExT
1 Ex2 = ((M − B)Ev1)

T ((M − B)Ev2) = EvT
1 (M − B)T (M − B)Ev2 = EvT

1 Q3Ev2. (4.34)

The matrix Q3 can be expanded as:

Q3 = MT M − MT B − BT M + BT B. (4.35)

the components of Q3 determined by symbolic integration software to be:

Q3 =



0
π
9

√
5π

64
π
36

π
√

5
64

√
3

π
9

√
5π

64
π
64√

5π
64

π
64

π
√

5
64

√
3

π
64

√
5π

64
π
64

π
64



.
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l0,0 l1,−1 l1,0 l1,1 l2,−2 l2,−1 l2,0 l2,1 l2,2 3-D 2-D
GRC 0.44 0.35 -0.18 -0.06 -0.05 -0.22 -0.10 0.21 -0.05 2.6 2.7
GAL 0.76 0.34 -0.19 0.54 0.50 -0.10 -0.27 -0.14 0.42 4.4 0.8
EUC 0.43 0.36 0.03 -0.10 -0.06 -0.01 -0.13 -0.05 -0.00 0.2 0.1
STP 0.26 0.14 -0.01 0.02 0.01 -0.03 -0.08 0.00 -0.03 6.4 1.7
UFZ 0.31 0.37 -0.00 -0.01 -0.02 -0.01 -0.27 0.00 -0.24 2.5 1.4

Table 4.1: Lighting environment coefficients and estimation errors from different lighting environments. The
3-D and 2-D errors have exponent 10−4.

4.2 Results

We tested our technique for estimating lighting environment coefficients on synthetically generated

images and real images of natural lighting environments. The synthetic images were rendered us-

ing the pbrt environment [42] with data from a gallery of light probe images maintained by Paul

Debevec [11]. The natural images were obtained in two different ways. For the first set, we pho-

tographed a known target in a variety of lighting conditions. For the second set, we downloaded

twenty images from Flickr, a popular image sharing website [60]. Results from four visually plausi-

ble forgeries are also presented. For all images, the lighting environment coefficients were estimated

from the green channel of the image. Although all three color channels could be analyzed, we find

that this is often unnecessary since the estimation is invariant to both multiplicative and additive

terms.

4.2.1 Simulation

Lighting environments can be captured by a variety of methods, such as photographing a mirror

sphere [11], or through panoramic photography techniques. These methods produce high dynamic

range images, known as light probe images, that represent the lighting environment function L( EV ).

The spherical harmonic coefficients are computed by integrating the lighting environment function

L( EV ) against the corresponding spherical harmonic basis function [48]:

ln,m =

∫
�

L( EV )Yn,m( EV ) d�. (4.36)

Shown in Table 4.1 are nine lighting environment coefficients computed from five different light

probe images. The light probes, Figure 4.5, were captured in the following locations: Grace Cathe-

dral, San Francisco (GRC); Galileo’s Tomb, Florence (GAL); a Eucalyptus Grove, UC Berkeley

(EUC); St. Peter’s Basilica, Rome (STP); and the Uffizi Gallery, Florence (UFZ).2

These lighting environment coefficients were used to render a Lambertian sphere in each of the

five lighting environments, Figure 4.5. Using the known geometry of these spheres, the lighting

environment coefficients were estimated in two different ways: with 3-D surface normals from the

visible side of the sphere, and with 2-D surface normals along the occluding contour. In both cases,

2Light probe images c©1998, 1999 Paul Debevec, available at http://www.debevec.org/Probes.
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GRC GAL EUC STP UFZ

Figure 4.5: Shown along the top row are five light probes from different lighting environments, from which
lighting coefficients are computed (Table 4.1). Shown in the bottom row are Lambertian spheres rendered
from these coefficients.

the regularization term λ in Equation (4.24) was set to 0.01.

The estimation errors are reported in the last two columns of Table 4.1. For the 2-D case, the

errors are computed between the five estimated coefficients and the corresponding subset of actual

coefficients (l0,0, l1,−1, l1,1, l2,−2, l2,2). Overall, the errors are less than 0.001; for comparison, the

average error between all ten pairs of different lighting environments is 0.13 with a minimum of

0.015.

4.2.2 Spheres

To test our ability to discriminate between lighting environments in real images, we photographed

a diffuse sphere in 28 different locations with a 6.3 megapixel Nikon D100 digital camera set to

capture in high-quality JPEG mode. The focal length was set to 70 mm, the f -stop was fixed at

f/8, and the shutter speed was varied to capture two or three exposures per location. In total, there

were 68 images, four of which are shown in Figure 4.6.

For each image, the Adobe Photoshop “Quick Selection Tool” was used to locate the occluding

contour of the sphere from which both 2-D and 3-D surface normals could be estimated. The 3-D

surface normals were used to estimate the full set of nine lighting environment coefficients and the

2-D surface normals along the occluding contour were used to estimate five coefficients. For both

cases, the regularization term λ in Equation (4.24) was set to 0.01.

For each pair of images, the error, Equation (4.29), between the estimated coefficients was

computed. In total, there were 2278 image pairs: 52 pairs were different exposures from the same

location, and 2226 pairs were captured in different locations. The errors for all pairs for both models

(3-D and 2-D) are shown in Figure 4.7. In both plots, the 52 image pairs from the same location

are plotted first (blue ‘+’), sorted by error. The 2226 pairs from different locations are plotted next

(red ‘·’). Note that the axes are scaled logarithmically in both plots.
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Figure 4.6: A diffuse sphere photographed in four different lighting environments.
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Figure 4.7: Errors between image pairs corresponding to the same (blue ‘+’) and different (red ‘·’) locations
using the full 9-parameter model with 3-D surface normals (left) and using the 5-parameter model with 2-D
surface normals (right). Both the horizontal and vertical axes are scaled logarithmically.

For the 3-D case, the minimum error between an image pair from different locations is 0.0027

and the maximum error between an image pair from the same location is 0.0023. Therefore, the two

sets of data, same location versus different location, are separated by a threshold of 0.0025.

For the 2-D case, thirteen image pairs (0.6%) fell below the threshold of 0.0025. These image

pairs correspond to lighting environments that are indistinguishable based on the five coefficient

model. For example, two of these indistinguishable lighting environment pairs are shown in Fig-

ure 4.8. In each plot, the red (dashed) and blue (dotted) lines are from different lighting environ-

ments, where the 2-D error between these environments is less than 0.0025. Both plots illustrate

that different lighting environments can create similar intensity profiles, and low-order approxi-

mations of these profiles will be unable to capture the differences. Therefore, while large errors

indicate different lighting environments, small errors can only indicate indistinguishable lighting

environments.

4.2.3 Photographs

To be useful in a forensic setting, lighting estimates from objects in the same lighting environment

should be robust to differences in color and material type, as well as to geometric differences, since

arbitrary objects may not have the full range of surface normals available. To test our algorithm
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Figure 4.8: Shown in each panel are intensity profiles from a pair of spheres in indistinguishable lighting
environments. In each case, the error between the red dashed and blue dotted profiles is below the threshold
of 0.0025. (The gap in the profiles corresponds to the sphere’s mounting stand for which no intensity values
are available.)

under these conditions, we downloaded twenty images of multiple objects in natural lighting envi-

ronments from Flickr [60], Figure 4.9.

In each image, the occluding contours of two to four objects were specified using a semi-

automated approach. A coarse contour was defined by painting along the edge of the object using

Adobe Photoshop. Each stroke was then automatically divided into quadratic segments, or regions,

which were fit to nearby points with large gradients. The analyzed regions for all images are shown

in Figure 4.10. Analytic surface normals and intensities along the occluding contour were measured

from the regions. With the 2-D surface normals and intensities, the five lighting environment coeffi-

cients were estimated, Equation (4.24). The regularization term λ in Equation (4.24) was increased

to 0.1, which is larger than in the simulation due to sensitivity to noise (see section 4.2.4).

Across all twenty images, there were 49 pairs of objects from the same image and 1329 pairs of

objects from different images. For each pair of objects, the error between the estimated coefficients

was computed. For objects in the same image, the average error was 0.009 with a standard deviation

of 0.007 and a maximum error of 0.027. For comparison, between objects in different images the

average error was 0.295 with a standard deviation of 0.273.

The objects with the maximum error of 0.027 are the basketball and basketball player. The

sweaty skin of the basketball player is somewhat shiny, a violation of the Lambertian assumption.

In addition, the shoulders and arms of the basketball player provide only a limited extent of surface

normals, making the linear system somewhat ill-conditioned. In contrast, the objects with the mini-

mum error of 0.0001 are the left and right pumpkins on the bench. Both pumpkins provide a large

extent of surface normals, over 200◦, and the surfaces are fairly diffuse. Since the surfaces fit the as-

sumptions and the linear systems are well-conditioned, the error between the estimated coefficients

is small.
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Figure 4.9: Twenty images of multiple objects in natural lighting environments, see also Figure 4.10.

4.2.4 Sensitivity

We explored the sensitivity of the estimate to surface normal extent in the presence of additive noise

and JPEG compression. Random lighting environments were generated by picking coefficients

according to a unit-variance and zero-mean Gaussian distribution. To simulate natural lighting,

the coefficients at order n were scaled so that the average power was proportional to 1/n2 [12].

From each lighting environment, we rendered images of spheres and added Gaussian noise with

standard deviation equal to 5% of the intensity range of the image. From each image, the coefficient

vector Ev was estimated, Equation (4.24), with λ = 0.01. The surface normals were limited to

a specified extent, from 30◦ to 360◦, about the primary illuminant direction. The surface normal

extent affects the stability of the estimate Ev, which can be formalized by computing the sensitivity

of Ev to perturbations in M [54]:

κ(M) +
κ(M)2 tan θ

η
, (4.37)
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Figure 4.10: Superimposed on each image from Figure 4.9 are the contours from which the surface normals
and intensity values are extracted to form the matrix M and the corresponding vector Eb, Equation (4.20).

where κ(M) = σmax/σmin is the condition number of the matrix M (ratio of the largest to smallest

singular value), and θ and η are:

θ = cos−1
(

‖M Ev‖

‖Eb‖

)
, (4.38)

η = σmax ‖Ev‖/‖M Ev‖. (4.39)

As shown in the left panel of Figure 4.11, the sensitivity, Equation (4.37), increases dramati-

cally as the extent of surface normals decreases, indicating potential instability of the estimate Ev.

Shown in the right panel of Figure 4.11 is the error averaged over 2000 random environments per

surface normal extent for both the conditioned (solid red) and unconditioned systems (dashed blue),

Equations (4.21) and (4.24). Note that the conditioned system provides considerably more accurate

results when the surface normal extent is below 180◦.

The sensitivity to JPEG compression was also tested. As above, we generated random lighting

environments and rendered images of spheres in these environments. These images were then saved
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Figure 4.11: Shown on the left is the sensitivity, Equation (4.37), of the least-squares problem, Equa-
tion (4.16), as a function of the surface normal extent (note that the vertical axis is scaled logarithmically).
Shown on the right is the average error between the estimated and actual lighting environment vectors as
a function of surface normal extent. Each data point corresponds to the error averaged over 2000 random
lighting environments. The dashed blue curve corresponds to the unconditioned solution, Equation (4.20),
and is largely unstable for a surface normal extent less than 180◦. The solid red curve corresponds to the
conditioned solution, Equation (4.22), and is substantially more stable.

with a JPEG quality between 5 and 100 (in a range of 0, 100). The lighting environment coefficients

were estimated from surface normals spanning a range of 135◦. For JPEG quality of 5, the average

error over 2000 random trials is 0.03. For a quality between 10–35, the average error is 0.01; for a

quality between 40–65, the average error is 0.005; and for a quality between 70–100, the average

error is 0.002. Note that for JPEG quality between 40–100, the errors are comparable or less than

the errors introduced from additive noise, Figure 4.11.

4.2.5 Forgeries

We created three forgeries by mixing several of the images in Figure 4.9, and we downloaded

one forgery from Worth1000, a Photoshop contest website [58]. These forgeries are shown in

Figure 4.12 and Figure 4.13.

Regions along the occluding contour of two to four objects in each image were selected for

analysis. These regions are superimposed on the images in the right column of Figure 4.12 and Fig-

ure 4.13. Surface normals and intensities along these occluding contour were extracted, from which

the five lighting environment coefficients were estimated, Equation (4.24), with the regularization

term λ = 0.1.

Shown in each figure is a sphere rendered with the estimated coefficients. These spheres qual-

itatively show discrepancies between the estimated lighting environments. The calculated errors

between object pairs are summarized in Table 4.2. For all pairs of objects originally in the same

lighting environment (above the horizontal line), the average error is 0.005 with maximum error

of 0.01. For pairs of objects from different lighting environments (below the horizontal line), the

average error is 0.15 with a minimum error of 0.03.
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Police Umbrellas Soldiers Snoop Dogg
pair error pair error pair error pair error
1, 2 0.006 1, 2 0.010 2, 3 0.002
3, 4 0.004 3, 4 0.004
1, 3 0.047 1, 3 0.152 1, 2 0.109 1, 2 0.388
1, 4 0.033 1, 4 0.194 1, 3 0.138
2, 3 0.076 2, 3 0.229
2, 4 0.054 2, 4 0.277

Table 4.2: Errors between pairs of objects in the forgeries of Figure 4.12 and Figure 4.13.

4.3 Discussion

When creating a composite of two or more people, it is often difficult to exactly match the lighting,

even if it seems perceptually consistent. The reason for this difficulty is that complex lighting en-

vironments (multiple light sources, diffuse lighting, directional lighting) give rise to complex and

subtle lighting gradients and shading effects in the image. Under certain simplifying assumptions

(distant light sources and diffuse surfaces), arbitrary lighting environments can be modeled with a

9-dimensional model. This model approximates the lighting with a linear combination of spherical

harmonics. We have shown how to approximate a simplified 5-dimensional version of this model

from a single image, and how to stabilize the model estimation in the presence of noise. Inconsis-

tencies in the lighting model across an image are then used as evidence of tampering.

We showed the efficacy of this approach on a broad range of simulated images, photographic

images, and visually plausible forgeries. In each case, the model parameters can be well approxi-

mated, from which differences in lighting can typically be detected. There are, however, instances

when different lighting environments give rise to similar model coefficients—in these cases the

lighting differences are indistinguishable.

The ability to estimate complex lighting environments was motivated by the illuminant direction

technique presented in chapter 2. The approach in this chapter generalizes the illuminant direction

approach by allowing us to estimate more complex models of lighting and in fact can be adapted

to estimate the direction to a single light source. Specifically, by considering only the two first-

order spherical harmonics, Y1,−1(·) and Y1,1(·), the direction to a light source can be estimated as

tan−1(l1,−1/ l1,1).

While any forensic tool is vulnerable to countermeasures, the precise matching of lighting in an

image can be difficult, although certainly not impossible. And the forger will need to keep in mind

that there are other ways to estimate properties of the lighting, including the highlights in a subject’s

eyes.
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Figure 4.12: Shown on the left are three forgeries: the ducks, swans, and football coach were each added
into their respective images. Shown on the right are the analyzed regions superimposed in white, and spheres
rendered from the estimated lighting coefficients (see also Table 4.2).
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Figure 4.13: Shown on the left is a forgery where the head of rapper Snoop Dogg has been placed on the
body of an orchestra conductor. Shown on the right are the analyzed regions superimposed in white, and
spheres rendered from the estimated lighting coefficients (see also Table 4.2).
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Chapter 5

Chromatic aberration

Most images contain a variety of aberrations that result from imperfections and artifacts of the

optical imaging system. In an ideal imaging system, light passes through the lens and is focused to

a single point on the sensor. Optical systems, however, deviate from such ideal models in that they

fail to perfectly focus light of all wavelengths. The resulting effect is known as chromatic aberration

and it occurs in two forms: longitudinal and lateral. Longitudinal aberration manifests itself as

differences in the focal planes for different wavelengths of light. Lateral aberration manifests itself

as a spatial shift in the locations where light of different wavelengths reach the sensor—this shift

is proportional to the distance from the optical center. In both cases, chromatic aberration leads

to various forms of color imperfections in the image. To a first-order approximation, longitudinal

aberration can be modeled as a convolution of the individual color channels with an appropriate

low-pass filter. Lateral aberration, on the other hand, can be modeled as an expansion/contraction

of the color channels with respect to one another. When tampering with an image, these aberrations

are often disturbed and fail to be consistent across the image.

In this chapter, we describe a computational technique based on maximizing mutual information

for automatically estimating lateral chromatic aberration. Although we eventually plan to incorpo-

rate longitudinal chromatic aberration, only lateral chromatic aberration is considered here. We

show the efficacy of this approach for detecting digital tampering in synthetic and real images.

5.1 Methods

In classical optics, the refraction of light at the boundary between two media is described by Snell’s

Law:

n sin(θ) = n f sin(θ f ), (5.1)

where θ is the angle of incidence, θ f is the angle of refraction, and n and n f are the refractive indices

of the media through which the light passes, Figure 5.1. The refractive index of glass, n f , depends

on the wavelength of the light that traverses it. This dependency results in polychromatic light being
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Figure 5.1: The refraction of light in one dimension. Polychromatic light enters the lens at an angle θ , and
emerges at an angle which depends on wavelength. As a result, different wavelengths of light, two of which
are represented as the red (dashed) and the blue (solid) rays, will be imaged at different points, xr and xb.

split according to wavelength as it exits the lens and strikes the sensor. Figure 5.1, for example, is

a schematic showing the splitting of short wavelength (solid blue ray) and long wavelength (dashed

red ray) light. The result of this splitting of light is termed lateral chromatic aberration.

Lateral chromatic aberration can be quantified with a low-parameter model. Consider, for exam-

ple, the position of the short wavelength (solid blue ray) and the long wavelength (dashed red ray)

light on the sensor, xr and xb, shown in Figure 5.1. The relationship between the angle of incidence

and angle of refraction is given by Snell’s law, Equation (5.1), yielding:

sin(θ) = nr sin(θr ),

sin(θ) = nb sin(θb),

which are combined to yield:

nr sin(θr ) = nb sin(θb). (5.2)

Dividing both sides by cos(θb) gives:

nr sin(θr )/ cos(θb) = nb tan(θb),

= nbxb/ f, (5.3)

where f is the lens-to-sensor distance. If we assume that the differences in angles of refraction are

relatively small, then cos(θb) ≈ cos(θr ). Equation (5.3) then takes the form:

nr sin(θr )/ cos(θr ) ≈ nbxb/ f,

nr tan(θr ) ≈ nbxb/ f,
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Figure 5.2: The refraction of light in two dimensions. Polychromatic light enters the lens and emerges at an
angle which depends on wavelength. As a result, different wavelengths of light, two of which are represented
as the red (dashed) and the blue (solid) rays, will be imaged at different points. The vector field shows the
amount of deviation across the image.

nr xr/ f ≈ nbxb/ f,

nr xr ≈ nbxb,

xr ≈ αxb, (5.4)

where α = nb/nr . This low-parameter model generalizes for any two wavelengths of light, where

α is a function of these wavelengths.

5.1.1 2-D Aberration

For a two-dimensional lens and sensor, the distortion caused by lateral chromatic aberration takes a

form similar to Equation (5.4). In 2-D, an incident ray reaches the lens at angles θ and φ, relative

to the x = 0 and y = 0 planes, respectively. Applying Snell’s law yields:

nr sin(θr ) = nb sin(θb)

nr sin(φr ) = nb sin(φb),

and following the derivation for the 1-D model yields the following 2-D model:

(xr , yr ) ≈ α(xb, yb). (5.5)

Shown in Figure 5.2 is vector-based depiction of this aberration, where each vector Ev is the

difference between the positions of the short wavelength light and long wavelength light, Ev =

(xr − xb, yr − yb) . Note that this model is simply an expansion/contraction about the center of the

image. In real lenses, the center of optical aberrations is often different from the image center due to
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the complexities of multi-lens systems [57]. The previous model can therefore be augmented with

an additional two parameters, (x0, y0), to describe the position of the expansion/contraction center.

The model now takes the form:

xr = α(xb − x0) + x0, (5.6)

yr = α(yb − y0) + y0. (5.7)

It is common for lens designers to try to minimize chromatic aberration in lenses. This is

usually done by combining lenses with different refractive indices to align the rays for different

wavelengths of light. If two wavelengths are aligned, the lens is called an achromatic doublet or

achromat. It is not possible for all wavelengths that traverse an achromatic doublet to be aligned

and the residual error is known as the secondary spectrum. The secondary spectrum is visible in

high-contrast regions of an image as a magenta or green halo [23].

5.1.2 Estimating Chromatic Aberration

In the previous section, a model for lateral chromatic aberration was derived, Equations (5.6) and

(5.7). This model describes the relative positions at which light of varying wavelengths strike the

sensor. With a three color channel RGB image, we assume that the lateral chromatic aberration is

constant within each color channel. Using the green channel as reference, we would like to esti-

mate the aberration between the red and green channels, and between the blue and green channels.

Deviations or inconsistencies in these models will then be used as evidence of tampering.

Recall that the model for lateral chromatic aberration consists of three parameters, two param-

eters for the center of the distortion and one parameter for the magnitude of the distortion. These

model parameters will be denoted (x1, y1, α1) and (x2, y2, α2) for the red to green and blue to green

distortions, respectively.

The estimation of these model parameters can be framed as an image registration problem [4].

Specifically, lateral chromatic aberration results in an expansion or contraction between the color

channels, and hence a misalignment between the color channels. We, therefore, seek the model

parameters that bring the color channels back into alignment. There are several metrics that may be

used to quantify the alignment of the color channels. To help contend with the inherent intensity dif-

ferences across the color channels we employ a metric based on mutual information that has proven

successful in such situations [55]. We have found that this metric achieves slightly better results than

a simpler correlation coefficient metric (with little difference in the run-time complexity1). Other

metrics, however, may very well achieve similar or better results.

We will describe the estimation of the red to green distortion parameters (the blue to green

estimation follows a similar form). Denote the red channel of a RGB image as R(x, y) and the

1The run-time complexity is dominated by the interpolation necessary to generate R(xr , yr ), and not the computation
of mutual information.
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green channel as G(x, y). A corrected version of the red channel is denoted as R(xr , yr ) where:

xr = α1(x − x1) + x1, (5.8)

yr = α1(y − y1) + y1. (5.9)

The model parameters are determined by maximizing the mutual information between R(xr , yr )

and G(x, y) as follows:

argmaxx1,y1,α1
I (R;G), (5.10)

where R and G are the random variables from which the pixel intensities of R(xr , yr ) and G(x, y)

are drawn. The mutual information between these random variables is defined to be:

I (R;G) =

∑
r∈R

∑
g∈G

P(r, g) log
(

P(r, g)

P(r)P(g)

)
, (5.11)

where P(·, ·) is the joint probability distribution, and P(·) is the marginal probability distribution.

This measure of mutual information is maximized using a brute-force iterative search. On the

first iteration, a relatively course sampling of the parameter space for x1, y1, α1 is searched. On the

second iteration, a refined sampling of the parameter space is performed about the maximum from

the first stage. This process is repeated for N iterations.

In order to quantify the error between the estimated and known model parameters, we com-

pute the average angular error between the displacement vectors at every pixel. Specifically, let

x0, y0, α0 be the actual parameters and let x1, y1, α1 be the estimated model parameters. The vector

displacement fields for these distortions are:

Ev0(x, y) =

(
(α0(x − x0) + x0) − x

(α0(y − y0) + y0) − y

)
, (5.12)

Ev1(x, y) =

(
(α1(x − x1) + x1) − x

(α1(y − y1) + y1) − y

)
. (5.13)

The angular error θ(x, y) between any two vectors is:

θ(x, y) = cos−1
(

Ev0(x, y) · Ev1(x, y)

‖Ev0(x, y)‖ ‖Ev1(x, y)‖

)
. (5.14)

The average angular error, θ̄ , over all P pixels in the image is:

θ̄ =
1
P

∑
x,y

θ(x, y). (5.15)

To improve reliability, this average is restricted to vectors whose norms are larger than a specified

threshold, 0.01 pixels. It is this measure, θ̄ , that is used to quantify the error in estimating lateral
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Figure 5.3: Synthetically generated images. Shown are, from left to right, a sample image, the distortion
applied to the blue channel (the small circle denotes the distortion center), the estimated distortion, and a
histogram of angular errors from 2000 images. For purposes of display, the vector fields are scaled by a
factor of 50.

chromatic aberration.

5.2 Results

We demonstrate the suitability of the proposed model for lateral chromatic aberration, and the ef-

ficacy of estimating this aberration using the mutual information-based algorithm. We first present

results from synthetically generated images. Results are then presented for a set of calibrated im-

ages photographed under different lenses and lens settings. We also show how inconsistencies in

lateral chromatic aberration can be used to detect tampering in visually plausible forgeries.

5.2.1 Synthetic images

Synthetic color images of size 512 × 512 were generated as follows. Each image consisted of

ten randomly placed anti-aliased discs of various sizes and colors, Figure 5.3. Lateral chromatic

aberration was simulated by warping the blue channel relative to the green channel. The center of

the distortion, (x2, y2), was the image center, and the distortion coefficient, α2, was chosen between

1.0004 and 1.0078, producing maximum displacements of between 0.1 and 2 pixels. Fifty random

images for each of forty values of α2 were generated for a total of 2000 images.

As described in the previous section, the distortion parameters are determined by maximizing

the mutual information for the blue to green distortion. On the first iteration of the brute-force

search algorithm, values of x2, y2 spanning the entire image were considered, and values of α2

between 1.0002 to 1.02 were considered. Nine iterations of the search algorithm were performed,

with the search space consecutively refined on each iteration.

Shown in the second and third panels of Figure 5.3 are examples of the applied and estimated

distortion (the small circle denotes the distortion center). Shown in the fourth panel of Figure 5.3 is

the distribution of average angular errors from 2000 images. The average error is 3.4◦ with 93% of

the errors less than 10◦. These results demonstrate the general efficacy of the mutual information-

based algorithm for estimating lateral chromatic aberration.
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Figure 5.4: Calibration. In the left panel is an actual red to green chromatic aberration. In the right panel is
the best three parameter model fit to this distortion. Note that the actual distortion is well fit by this model.
For purposes of display, the vector fields are scaled by a factor of 100.

5.2.2 Calibrated images

In order to test the efficacy of our approach on real images, we first estimated the lateral chromatic

aberration for two lenses at various focal lengths and apertures. A 6.3 megapixel Nikon D100 digital

camera was equipped with a Nikkor 18–35 mm ED lens and a Nikkor 70–300 mm ED lens.2 For

the 18–35 mm lens, focal lengths of 18, 24, 28, and 35 mm with 17 f -stops, ranging from f /29 to

f /3.5, per focal length were considered. For the 70–300 mm lens, focal lengths of 70, 100, 135,

200, and 300 with 19 f -stops, ranging from f /45 to f /4, per focal length were considered.

A calibration target was constructed of a peg board with 1/4-inch diameter holes spaced one

inch apart. The camera was positioned at a distance from the target so that roughly 500 holes ap-

peared in each image. This target was back-illuminated with diffuse lighting, and photographed with

each lens and lens setting described above. For each color channel of each calibration image, the

center of the holes were automatically computed with sub-pixel resolution. The red to green lateral

chromatic aberration was estimated by comparing the relative positions of these centers across the

entire image. The displacements between the centers were then modeled as a three parameter expan-

sion/contraction pattern, x1, y1, α1. These parameters were estimated using a brute force search that

minimized the root mean square error between the measured displacements and the model. Shown

in the left panel of Figure 5.4 is the actual red to green distortion, and shown in the right panel is

the best model fit. Note that while not perfect, the three parameter is a reasonable approximation

to the actual distortion. The blue to green aberration was estimated in a similar manner, yielding

model parameters x2, y2, α2. This calibration data was used to quantify the estimation errors from

real images of natural scenes.

Images of natural scenes were obtained using the same camera and calibrated lenses. These

images of size 3020 × 2008 pixels were captured and stored in uncompressed TIFF format (see

below for the effects of JPEG compression). For each of these 205 images, the focal length and

f -stop were extracted from the EXIF data in the image header. The estimated aberration from each

2ED lenses help to eliminate secondary chromatic aberration.
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image was then compared with the corresponding calibration data with the same lens settings.

The distortion parameters were determined by maximizing the mutual information between

the red and green, and blue and green channels. On the first iteration of the brute-force search

algorithm, values of x1, y1 and x2, y2 spanning the entire image were considered, and values of α1

and α2 between 0.9985 to 1.0015 were considered. The bounds on α1 and α2 were chosen to include

the entire range of the distortion coefficient measured during calibration, 0.9987 to 1.0009. Nine

iterations of the search algorithm were performed, with the search space consecutively refined on

each iteration.

In the top panel of Figure 5.5 is one of the 205 images. In the second and third panels are the

calibrated and estimated blue to green distortions (the small circle denotes the distortion center). In

the bottom panel of Figure 5.5 is the distribution of average angular errors, Equation (5.15), from

the red to green and blue to green distortions from all 205 images. The average error is 20.3◦ with

96.6% of the errors less than 60◦. Note that the average errors here are approximately six times

larger than the synthetically generated images of the previous section. Much of the error is due

to other aberrations in the images, such as longitudinal aberration, that are not considered in our

current model.

JPEG Compression

The results of the previous section were based on uncompressed TIFF format images. Here we

explore the effect of lossy JPEG compression on the estimation of chromatic aberration. Each

of the 205 uncompressed images described in the previous section were compressed with a JPEG

quality of 95, 85, and 75 (on a scale of 1 to 100). The chromatic aberration was estimated as

described above, and the same error metric was computed. For a quality of 95, the average error

was 26.1◦ with 93.7% of the errors less than 60◦. For a quality of 85, the average error was 26.7◦

with 93.4% of the errors less than 60◦. For a quality of 75, the average error was 28.9◦ with 93.2%

of the errors less than 60◦. These errors should be compared to the uncompressed images with an

average error of 20.3◦ and with 96.6% of the errors less than 60◦. While the estimation suffers a

bit, it is still possible to estimate, with a reasonable amount of accuracy, chromatic aberration from

JPEG compressed images

5.2.3 Forgeries

When creating a forgery, it is sometimes necessary to conceal a part of an image with another part

of the image or to move an object from one part of an image to another part of an image. These

types of manipulations will lead to inconsistencies in the lateral chromatic aberrations, which can

therefore be used as evidence of tampering.

In order to detect tampering based on inconsistent chromatic aberration, it is first assumed that

only a relatively small portion of an image has been manipulated. With the additional assumption

that this manipulation will not significantly affect a global estimate, the aberration is estimated from
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Figure 5.5: Calibrated images. From top to bot-
tom, one of the 205 images, the calibrated blue to
green aberration, the estimated aberration, and a
histogram of angular errors from 205 images, for
the blue to green and red to green aberrations. For
purposes of display, the vector fields are scaled by
a factor of 150.
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Figure 5.6: Block-based estimates. From top to
bottom, one of the 205 images with one of the
300×300 pixel blocks outlined, the estimated aber-
ration based on the entire image, the estimated
aberration based on a single block, and a histogram
of 10,250 average angular errors (50 blocks from
205 images) between the image-based and block-
based estimates for both the red to green and blue
to green aberrations. For purposes of display, the
vector fields are scaled by a factor of 150.
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the entire image. This global estimate is then compared against estimates from small blocks. Any

block that deviates significantly from the global estimate is suspected of having been manipulated.

The 205 calibrated images described in the previous section were each partitioned into overlap-

ping 300 × 300 pixels blocks. It is difficult to estimate chromatic aberration from a block with little

or no spatial frequency content (e.g., a largely uniform patch of sky). As such, the average gradient

for each image block was computed and only 50 blocks with the largest gradients were considered.

The gradient, ∇ I (x, y), is computed as follows:

∇ I (x, y) =

√
I 2

x (x, y) + I 2
y (x, y), (5.16)

where Ix(·) and Iy(·) are the horizontal and vertical partial derivatives estimated as follows:

Ix(x, y) = I (x, y) ? d(x) ? p(y), (5.17)

Iy(x, y) = I (x, y) ? d(y) ? p(x), (5.18)

where ? denotes convolution and d(·) and p(·) are a pair of 1-D derivative and low-pass filters [15].

In the top panel of Figure 5.6 is one of the 205 images with an outline around one of the

300 × 300 blocks. In the second and third panels are, respectively, estimated blue to green warps

from the entire image and from just a single block. In the bottom panel is a histogram of angular

errors, Equation (5.15), between estimates based on the entire image and those based on a single

block. These errors are estimated over 50 blocks per 205 images, and over the blue to green and

red to green estimates. The average angular error is 14.8◦ with 98.0% less than 60◦. These results

suggest that inconsistencies in block-based estimates significantly larger than 60◦ are indicative of

tampering.

In the left column of Figure 5.7 are three original images, and in the right column are visually

plausible forgeries where a small part of each image was manipulated. For each image, the blue to

green and red to green aberration is estimated from the entire image. Each aberration is then esti-

mated for all 300 × 300 blocks with an average gradient above a threshold of 2.5 gray-levels/pixel.

The angular error for each block-based estimate is compared with the image-based estimate. Blocks

with an average error larger than 60◦, and an average distortion larger than 0.15 pixels are consid-

ered to be inconsistent with the global estimate, and are used to indicate tampering. The red (dashed

outline) blocks in Figure 5.7 reveal the traces of tampering, while the green (solid outline) blocks

are consistent with the global estimate and hence authentic. For purpose of display, only a subset of

all blocks are shown.

This approach for detecting tampering is effective when the manipulated region is relatively

small, allowing for a reliable global estimate. In the case when the tampering may be more sig-

nificant, an alternate approach may be taken. An image, as above, can be partitioned into small

blocks. An estimate of the global aberration is estimated from each block. The estimates from all

such blocks are then compared for global consistency. An image is considered to be authentic if the

global consistency is within an expected 60◦.
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5.3 Discussion

We have described an image forensic tool that exploits imperfections in a camera’s optical system.

Our current approach only considers lateral chromatic aberration, which is well approximated by

a low-parameter model. We have developed an automatic technique for estimating the model pa-

rameters that is based on maximizing the mutual information between color channels. We have also

shown the efficacy of this approach in detecting tampering in synthetic and real images.

Techniques exist for estimating lens distortion from images [14] and it may be possible to use

these estimates together with estimates of chromatic aberration for ballistics. In other words, a

camera make or model may be able to be identified from one or more images. Future work could

also consider other aberrations, such as longitudinal chromatic aberration, spherical aberration, and

astigmatism. All of these lens aberrations are sources of regularities in natural images that could be

useful for forensics.
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Figure 5.7: Three original images (left) and three image forgeries (right). The red (dashed outline) blocks
denote regions that are inconsistent with the global aberration estimate. The green (solid outline) blocks
denote regions that are consistent with the global estimate.
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Chapter 6

Discussion

Although tampering with images is not a new phenomenon, the availability of digital image technol-

ogy and image processing software makes it easy for anyone to create a forgery. Not surprisingly,

tampered images are showing up everywhere, from courtrooms to scientific journals, and these

images can have a profound effect on society. There is a clear need for tools to detect forgeries,

and the field of digital image forensics has emerged to address this problem without assuming spe-

cialized hardware, such as cameras with watermarking technology. Instead of watermarks, current

forensic tools assume that images contain statistical regularities from a variety of sources, including

the world, the lens, the camera, and the image, and that digital tampering disturbs these regulari-

ties. Image forensic tools can expose the tampering by measuring these regularities and detecting

changes.

The first forensic tools have primarily exploited the digital sources of regularities: the sensor, the

post-processing algorithms, or the image itself. The tools in this dissertation complement previous

work by exploring regularities from the world and the lens; specifically, how lighting and optical

properties of images can be used for forensics. In this context, we presented four new image forensic

tools: illuminant direction, specularity, lighting environment, and chromatic aberration. Together

with current statistical techniques, these tools move the problem of creating a convincing forgery

out of the hands of novice users and may help to restore public confidence in published images.

When creating a digital composite using objects from different images, it is often difficult to

match the lighting on the individual objects. In chapter 2, we described a technique for estimating

a 2-D illuminant direction from objects in an image—strong inconsistencies in estimates across the

image were evidence of tampering. We also derived two variations of the technique from the same

framework: one allowed for differences in an object’s reflectance function and the other allowed

for a local light source. We demonstrated results on a variety of images and showed robustness to

JPEG compression. Two drawbacks of the technique are that it only allowed for a 2-D estimate and

that it made strong assumptions about the lighting environment. We addressed these drawbacks by

developing two other tools that also estimate properties of the light on an object: the specularity tool,

to estimate a 3-D illuminant direction from specular highlights on eyes, and the lighting environment

tool, to allow for more complex lighting environments.
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The human eye is a glossy surface that reflects its environment. In a high-resolution image, it

is not uncommon to see the camera flash, windows, or other light sources reflected from a person’s

eye. Therefore, differences in reflections on eyes across the image can be a telltale sign of digital

tampering. The specularity tool, described in chapter 3, is able to estimate 3-D illuminant directions

from specular highlights on eyes using a 3-D model of an eye. We showed results on simulated

images, real images, and forgeries. We also described a method for measuring consistency between

estimates from different eyes.

The main drawback of the specularity tool is the reliance on user-specified ellipses. The pose

estimation is sensitive to the shape of the ellipses and eyes in images are often very small, making

automated shape estimation a difficult problem. As digital cameras continue to increase in resolu-

tion, we expect automated shape estimation to become easier, though still difficult for eyes that are

far from the camera. To better condition the estimate, it may be possible to use measurements from

other sources, such as the face and body, or to combine estimates from several people in the image.

Such techniques would make the tool easier to use and more robust. Nevertheless, with the current

tool, it is possible to render eyes according to the estimated parameters so that the user can judge if

the pose is reasonable before measuring light directions.

The lighting environment tool was developed to address the second drawback of the 2-D illu-

minant direction tool: the assumption of a single point light source infinitely far away. While this

assumption might be reasonable outside on a clear day, it will fail to be true in many other cases,

such as outside on an overcast day, or inside under mixed lighting. The lighting environment tool is

able to model complex lighting using a spherical harmonic representation. In chapter 4, we describe

the model, show how to estimate its parameters from an object in an image, and describe a method

for comparing estimates from different objects. We give results on simulated images, real images

with a known object (a sphere), real images with arbitrary objects, and forgeries.

The two limitations of the lighting environment tool, and the illuminant direction tool as well,

are the Lambertian assumption and the restriction of intensity measurements to the occluding con-

tour. While the Lambertian reflectance function is a convenient approximation for some surfaces, it

is actually ill-suited for distinguishing between lighting environments at a fine level since it behaves

like a low-pass filter—it reduces all lighting environments to their lowest-order terms. Specular

surfaces, on the other hand, are more complex to model, but are rich with information about both

the lighting environment and the shape of the object. Models of specular surfaces could therefore

be used to improve lighting-based forensic tools, but the ability to estimate the shape of an object

would also address the second limitation of the current tools—the restriction of intensity measure-

ments to the occluding contour. It seems slightly peculiar that the intensity measurements for these

tools come from the edges, the region of an object where the intensities can be unstable. Incorporat-

ing shape estimation techniques would allow the algorithms to choose intensities from other regions

on the object and perhaps estimate 3-D lighting environment parameters as well.

The chromatic aberration tool exploits a common lens aberration. In chapter 5, we derive a

simple model for this aberration and describe how to estimate the model parameters from a single
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image. For reliable estimates, the algorithm requires textured regions at different locations in the

image and it will typically be unable to detect tampering if the manipulated region is small. The

technique is also sensitive to downsampling since the shift caused by chromatic aberration is often

on the order of one to two pixels near the edges of the image. Future work could consider simple

models for other lens aberrations or explore the uses of chromatic aberration estimates for ballistics.

While each of the tools in this thesis could be used as a starting point for future work, it is

important to consider the types of forgeries that such tools can detect and how the tools would be

used to detect the forgeries. The tools in this thesis were designed with a specific workflow in

mind: an expert user analyzing individual images. This workflow is common in legal situations, for

example, where an image analyst might be asked to testify about a specific image. But, these tools

are not practical in situations where large quantities of images need to be analyzed. Newspapers,

scientific journals, and other publications receive thousands of images per day and it is important

for them to be able to screen images for tampering. Statistical techniques may be more effective in

this setting, though user-driven techniques could be applied after an initial screening.

While successful on specific types of forgeries, each tool presented in this thesis has several

known counterattacks, though some of the counterattacks may be difficult to realize. The easiest

and most obvious attack against all three lighting tools is to choose the source images carefully—if

the lighting on objects in different images is already consistent, the tools will be unable to detect

the tampering. But, sometimes it is not possible to choose other source images. In this case, for the

illuminant direction and lighting environment tools, new lighting gradients will need to be applied

to the objects to make the estimates more consistent, and this manipulation may be challenging for

arbitrary geometries. For the specularity tool, the highlights can be moved, but it may not be obvious

where to place the highlight so that it is consistent with other highlights in the image. Finally, for

the chromatic aberration tool, the color channels could be shifted to be consistent with the global

pattern. None of these counterattacks are beyond the abilities of a sophisticated forger, but would

be challenging for a novice especially considering the variety of other ways in which the forgery

could be detected.

Digital image forensics is in its early stages and many sources of regularities in images are

unexplored or even undiscovered. For example, real-world illumination has statistical regulari-

ties [12, 16], and statistical models of illumination and surface reflectance could lead to more pow-

erful lighting tools. Also, known geometry has been explored in photogrammetry and robot vision,

but more could be done to examine how tampering affects the geometric and projective properties

of an image. Finally, the wealth of images available though a search engine or an image sharing

website, such as Flickr [60], could be exploited for forensics. Many objects and people have hun-

dreds of images available, and these images could be used as statistical priors to help determine if an

object or person in an image has been modified. These ideas, and others from the computer vision

and graphics communities, are rich possibilities for future forensic tools. It is our hope that this and

future work on image forensics will contribute to a better understanding of images and the imaging

process, while making it more difficult for the average person to make a convincing forgery.
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Appendix A

Curve fitting

In this appendix, we describe a method for fitting implicit curves under affine and planar projective

transforms where the parameters of the curve and the transform are unknown. Our method uses the

orthogonal distance fitting framework proposed by Ahn [1] and extends it to handle both affine and

projective transforms.

In this context, the problem we would like to solve can be described as follows. Suppose a set

of points Ex are the images of world points EX under an unknown affine or projective transform. In

addition, suppose that the points EX all lie on an implicit curve in the world coordinate system. We

would like to find the parameters of the unknown transform as well as the parameters of the implicit

curve that best fit the given points Ex .

This problem is known as orthogonal distance fitting and solutions have been proposed for the

case when the unknown transform is a similarity; that is, when

Ex = R EX + Eb, (A.1)

where the matrix R is an arbitrary rotation matrix and the vector Eb is a displacement vector [1, 53].

In [1], Ahn et al. orthogonal distance fitting framework for fitting implicit curves under similarity

transforms that displayed robust and rapid convergence as well as separate estimation of model and

transform parameters. In this appendix, we extend this framework to handle implicit curves under

affine and planar projective transforms.

In the discussion that follows, we refer the coordinate system of vector EX as the world coordinate

system. A vector EX in the world coordinate system will be mapped to a vector Ex by an unknown

affine or projective transform; we refer to the coordinate system of vector Ex as the image coordinate

system.

A.1 Minimization

At a high level, the orthogonal distance fitting approach solves a nonlinear least-squares problem. In

general, a nonlinear least-squares problem finds the vector Ea that best solves a system of nonlinear
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equations:

f1(Ea) = 0,

f2(Ea) = 0,
...

fm(Ea) = 0,

where the m functions f1(·) to fm(·) are nonlinear in the terms of the vector Ea. The least-squares

solution to this system of equations is the vector Ea that minimizes the error function:

E(Ea) =

∥∥∥ Ef (Ea)
∥∥∥2

,

where:

Ef (Ea) =


f1(Ea)

f2(Ea)
...

fm(Ea)

 .

Before we describe the details of orthogonal distance fitting, we review the Gauss-Newton iteration,

an iterative scheme for solving nonlinear least-squares problems.

Gauss-Newton iteration

Like all iterative optimization techniques, the Gauss-Newton iteration begins at an initial estimate Ea0

and updates the estimate until a stopping condition is satisfied. The two important details are the

update rule and the stopping condition.

In the neighborhood of the estimate Ea0, the vector-valued function Ef (·) can be approximated by

its Taylor series:

Ef (Ea0 + Eh) ≈ Ef (Ea0) + J (Ea0)Eh,

where J (Ea0) is the Jacobian of the system of equations (matrix of first partial derivatives) evaluated

at the vector Ea0. To find the next estimate, Ea1 = Ea0 + Eh, we find the update vector Eh that minimizes:∥∥∥ Ef (Ea0) + J (Ea0)Eh
∥∥∥2

,

which is a linear least-squares problem. Differentiating with respect to Eh yields the normal equa-

tions:

J (Ea0)
T J (Ea0)Eh = −J (Ea0)

T Ef (Ea0),
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which have an analytic solution:

Eh = −J (Ea0)
+ Ef (Ea0),

where the ‘+’ denotes pseudo-inverse. Therefore, the update rule for the Gauss-Newton iteration is

simply [50]:

Eh = −J (Eai )
+ Ef (Eai ), (A.2)

Eai+1 = Eai + δEh, (A.3)

for some scalar δ, often equal to 1. Note that the update rule requires both the vector-valued func-

tion Ef (Ea) and its Jacobian J (Ea). A typical stopping condition for the iteration is:

‖Eh‖ < ε

for a small value of ε.

As with nonlinear optimization routines in general, the convergence of the iteration depends

strongly on the initial estimate Ea0 and the particular function Ef (·). In addition, the update vector Eh

may be unstable if the matrix J (Eai ) is ill-conditioned. Other schemes, such as the Levenberg-

Marquardt iteration, can provide faster and more robust convergence [50].

A.2 Affine transforms

We first describe the orthogonal distance fitting approach for implicit curves under unknown affine

transforms. The projective case is similar and will require modifications to only a few of the equa-

tions.

Implicit curves

An implicit curve on points EX in the world coordinate system is defined by an implicit equation:

f ( EX; Eα) = 0, (A.4)

where vector Eα represents the parameters of the curve. For example, the implicit equation for a

circle of radius r centered at ( C1 C2 )T is:

f ( EX; Eα) = (X1 − C1)
2
+ (X2 − C2)

2
− r2

= 0,

where the parameter vector Eα = ( C1 C2 r )T contains parameters describing the center of

the circle and the radius. Two-dimensional lines and ellipses can also be described by implicit

equations. If the vector EX is three-dimensional, then Equation (A.4) describes a surface. Some

examples of implicit surfaces are planes, spheres, cones, and cylinders.
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A.2.1 Error function

Suppose points EX on an implicit curve f in the world coordinate system are mapped to points Ex in

the image coordinate system by an unknown affine transform (A, Eb):

Ex = A EX + Eb. (A.5)

Given the points Ex in the image, we would like to estimate the affine transform as well as the

parameters of the implicit curve Eα such that the points mapped back to the world coordinate system

lie on the curve:

f ( EX; Eα) = 0 with EX = A−1(Ex − Eb). (A.6)

We formulate this problem in an orthogonal distance fitting framework as follows. Let vector Ea

represent the unknown parameters of both the implicit curve and the transform:

Ea =

 Eα

EA
Eb

 ,

where the notation EA is a column vector containing the elements of the matrix A. Let points Exi be

the images of points EX i on implicit curve f with additive noise Eεi at every point:

Exi = A EX i + Eb + Eεi .

We define an error function E on the parameter vector Ea as

E(Ea) =

∑
i

∥∥Exi − Ex∗
∥∥2

, (A.7)

where the point Ex∗ is the closest point to Exi that is on the implicit curve under the affine transform

(A, Eb). In other words,

f ( EX∗
; Eα) = 0 with EX∗

= A−1(Ex∗
− Eb). (A.8)

Recall that the parameter vector Ea contains the parameters of the affine transform (A, Eb) as well as

the parameters Eα of the implicit curve f . Thus it parameterizes the constraints of Equation (A.8)

and the point Ex∗ depends on the parameter vector Ea, though this dependency is not made explicit in

Equation (A.7).

The error function E(·) is minimized in nested iterations. The inner iteration computes the

closest point Ex∗ on the model for each image point Exi , where the model is specified by the current

state of Ea. The outer iteration then updates the parameter vector Ea according to the results of the

inner iteration. This process is repeated and terminates when the norm of the update to Ea is below a

specified threshold.
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Closest point

For a given point Exi in image coordinates, we seek the closest point Ex∗ on the model. The point Ex∗

that satisfies this condition must, of course, be on the model, Equation (A.8). In addition, the vector

between the points Exi and Ex∗ must be parallel to the gradient of the model in image coordinates,

Figure A.1. Note that this condition is true at the closest point Ex∗, but it may be true for other points

on the model as well. In the world coordinate system, the gradient of f is

∇ EX f =



∂ f
∂ X1
∂ f
∂ X2

...
∂ f
∂ Xn


.

We use the chain rule to find the gradient of f with respect to the image coordinate Ex ,

∇Ex f =

(
∂ f

∂ EX

∂ EX
∂ Ex

)T

=

(
∂ f

∂ EX
A−1

)T

,

= A−T
∇ EX f,

where the ∂ EX/∂ Ex is found by differentiating Equation (A.6) with respect to Ex . For the remain-

der of the discussion, the gradient symbol ‘∇’ will indicate the gradient with respect to the world

coordinate system unless the image coordinate system is specifically referenced, e.g. ‘∇Ex .’

Figure A.1 shows the relationships between the closest point Ex∗ in the world and image coor-

dinate systems as well as the gradient of the model at this point in both coordinate systems. Note

that in the world coordinate system, the point EX∗ is not necessarily the closest point to EX i nor is the

gradient at EX∗ parallel to the displacement vector between EX i and EX∗.

To constrain the gradient to be parallel to the vector between Exi and Ex∗, we use the cross product1

since it is not affected by the scale of the individual vectors,

(Exi − Ex∗) × A−T
∇ f = E0,

A( EX i − EX∗) × A−T
∇ f = E0. (A.9)

The constraints in Equations (A.6) and (A.9) are combined into a system of nonlinear equations,

Eg( EX , EX i , Ea) =

(
f ( EX; Eα)

A( EX i − EX) × A−T
∇ f

)
= E0, (A.10)

1In 2-D, we use the convention that Eu × Ev = det
(

Eu Ev
)
.
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Figure A.1: Closest point. (a) Point Ex∗ is the point on the implicit curve closest to Exi , and the gradient at Ex∗

is parallel to the difference vector between Exi and Ex∗. (b) In the world coordinate system, the point EX∗ is not
necessarily the closest point to EX i nor is the gradient at EX∗ parallel to the displacement vector between EX i

and EX∗.

which can be solved using a Gauss-Newton iteration.

Recall that the Gauss-Newton iteration requires the Jacobian of Eg(·) as well as a starting con-

dition. The starting condition for the iteration is simply EX = EX i . The Jacobian is computed by

differentiating Eg(·) with respect to EX , which can be simplified by rewriting the cross product in

Equation (A.10) as a vector of dot products. To demonstrate this, consider the cross product be-

tween vectors Es and Et , scaled by matrices M and N :

MEs × NEt,

where

M =

 EmT
1

EmT
2

EmT
3

 , N =

 EnT
1

EnT
2

EnT
3

 .

Then

MEs × NEt =

 EmT
1 Es

EmT
2 Es

EmT
3 Es

×

 EnT
1 Et

EnT
2 Et

EnT
3 Et

 =

 ( EmT
2 Es )( EnT

3 Et ) − ( EmT
3 Es )( EnT

2 Et )

( EmT
3 Es )( EnT

1 Et ) − ( EmT
1 Es )( EnT

3 Et )

( EmT
1 Es )( EnT

2 Et ) − ( EmT
2 Es )( EnT

1 Et )

 . (A.11)

A product of dot products, such as ( EmT
2 Es )( EnT

3 Et ), can be rewritten as a single dot product with an

appropriate scaling matrix:

( EmT
2 Es )( EnT

3 Et ) = ( EmT
2 Es )T ( EnT

3 Et ) = EsT ( Em2EnT
3 )Et = EsT C23Et,
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where

C23 = Em2EnT
3 .

Applying this relationship to the terms in Equation (A.11) yields: EsT C23Et − EsT C32Et

EsT C31Et − EsT C13Et

EsT C12Et − EsT C21Et

 =

 EsT (C23 − C32)Et

EsT (C31 − C13)Et

EsT (C12 − C21)Et

 =

 EsT D23Et

EsT D31Et

EsT D12Et

 .

With the appropriate matrices D23, D31, and D12, the vector-valued function Eg(·) in Equa-

tion (A.10) becomes:

Eg( EX , EX i , Ea) =


f ( EX; Eα)

( EX i − EX)T D23∇ f

( EX i − EX)T D31∇ f

( EX i − EX)T D12∇ f

 . (A.12)

Differentiating Eg(·) with respect to EX yields:

∂ Eg

∂ EX
=

(
(∇ f )T

( EX i − EX)T Di j H − (∇ f )T DT
i j

)
, (A.13)

where H is the Hessian of f (the matrix of second partial derivatives) and the final row is repeated

for each D matrix in Equation (A.12). With the Jacobian ∂ Eg/∂ EX and the initial estimate EX = EX i ,

the vector-valued function Eg(·) can be minimized using the Gauss-Newton iteration yielding the

closest point EX∗ in world coordinates. In image coordinates, the closest point is:

Ex∗
= A EX∗

+ Eb.

Parameter update

Once the inner iteration completes and the closest points Ex∗ have been computed for each image

point Exi , the parameter vector Ea is updated with the goal of minimizing the error function E , Equa-

tion (A.7). A necessary condition at the minimum of E is that the partial derivatives with respect to

the parameters in Ea are zero,

∂ E
∂ Ea

= −2
∑

i

(
∂ Ex∗

∂ Ea

)T

(Exi − Ex∗) = E0. (A.14)

This equation is solved using a Gauss-Newton iteration, which requires ∂ Ex/∂ Ea evaluated at the

closest point Ex∗. This term is found by differentiating Equation (A.5) with respect to Ea:

∂ Ex
∂ Ea

=
∂

∂ Ea

(
A EX + Eb

)
,
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=

(
∂ A
∂ Ea

)[
EX
]

+ A
∂ EX
∂ Ea

+
∂ Eb
∂ Ea

, (A.15)

where
[

EX
]

is a block-diagonal matrix with EX on the diagonal. The term ∂ A/∂ Ea is found by simply

differentiating the matrix A with respect to each of its components ai . The term ∂ X/∂ Ea is derived

by implicitly differentiating the vector-valued function Eg(·), Equation (A.10), with respect to Ea:

∂ Eg
∂ Ea

+
∂ Eg

∂ EX

∂ EX
∂ Ea

+
∂ Eg

∂ EX i

∂ EX i

∂ Ea
= 0,

and solving for ∂ X/∂ Ea:

∂ EX
∂ Ea

= −

(
∂ Eg

∂ EX

)−1
(

∂ Eg
∂ Ea

+
∂ Eg

∂ EX i

∂ EX i

∂ Ea

)
. (A.16)

The individual derivatives in this expression are given as:

∂ Eg
∂ Ea

=

 ∂ f/∂ Ea

( EX i − EX)T

(
∂ Di j

∂ Ea
[∇ f ] + Di j

∂∇ f
∂ Ea

)  , (A.17)

∂ Eg

∂ EX i
=

(
E0

(∇ f )T DT
i j

)
, (A.18)

∂ EX i

∂ Ea
=

∂ A−1

∂ Ea

[
Exi − Eb

]
− A−1 ∂ Eb

∂ Ea
. (A.19)

The derivatives for all m image points, Ex1 to Exm , are then stacked into a Jacobian matrix which

is used by the Gauss-Newton iteration to compute the update to the parameter vector Ea. The outer

iteration terminates when the update to Ea is below a specified threshold. At this point, the vector Ea

contains the parameters of the affine transform as well as the parameters for the implicit curve that

best fit the given points Exi in a geometric sense.

A.3 Planar projective transforms

For planar projective transforms, we let the transform between world and image coordinates be

represented by a 3 × 3 matrix P ,

Ex = P EX , (A.20)

where both EX and Ex are vectors in homogeneous coordinates. In order to contend with the scale

ambiguity inherent to homogeneous coordinates, the model in world coordinates takes on a slightly

different form: the division is accounted for within the model. For example, the implicit equation
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for a circle centered at the origin becomes:

f ( EX; r) = (X1/X3)
2
+ (X2/X3)

2
− r2.

A.3.1 Error function

The error function for the projective case is the same as Equation (A.7), but in this case the parameter

vector Ea contains the elements of the unknown projective transform P:

Ea =

(
Eα

EP

)
.

As before, this error function is minimized in nested iterations. The inner iteration finds the closest

point Ex∗ to each image point Exi , and the outer iteration updates the model parameters Ea.

Closest point

For Ex∗ to be the closest point on the model to the image point Exi , it must satisfy three constraints.

As with the affine case, the point must be on the curve in the world coordinate system:

f ( EX∗
; Eα) = 0 with EX∗

= P−1
Ex∗. (A.21)

The second constraint is that the vector between the image point Exi and the model point Ex∗ (ex-

pressed in image coordinates) must be parallel to the gradient of the model in image coordinates,

P−T
∇ f , yielding the following constraint:

EzT ((Exi − Ex∗) × P−T
∇ f ) = 0, (A.22)

where EzT
= ( 0 0 1 ) restricts this constraint to the image plane. The final constraint is that the

model point Ex∗ must lie in the image plane (recall that the homogeneous points Exi lie in the plane

z = 1). This constraint is expressed by making the difference vector orthogonal to the normal to the

image plane:

EzT (Exi − Ex∗) = 0. (A.23)

The constraints in Equations (A.22) and (A.23) can be rewritten in world coordinates as:

EzT (P( EX i − EX∗) × P−T
∇ f ) = 0,

EzT P( EX i − EX∗) = 0.
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All three constraints form a system of nonlinear equations,

Eg( EX , EX i , Ea) =

 f ( EX; Eα)

EzT (P( EX i − EX) × P−T
∇ f )

EzT P( EX i − EX)

 = E0, (A.24)

which can be solved using a Gauss-Newton iteration. To simplify differentiation, the term with

cross product can be expressed as a dot product:

EzT (P( EX i − EX) × P−T
∇ f ) = ( EX i − EX)T D∇ f,

where D = m1nT
2 − m2nT

1 and:

mT
1 =

(
p1 p2 p3

)
,

mT
2 =

(
p4 p5 p6

)
,

nT
1 =

(
p5 p9 − p6 p8 −p4 p9 + p6 p7 p4 p8 − p5 p7

)
,

nT
2 =

(
−p2 p9 + p3 p8 p1 p9 − p3 p7 −p1 p8 + p2 p7

)
,

where pi are the elements of matrix P in row-major order. Differentiating Eg(·) with respect to EX

yields:

∂ Eg

∂ EX
=

 (∇ f )T

( EX i − EX)T DH − (∇ f )T DT

−EzT P

 . (A.25)

Parameter update

As with the affine case, the inner iteration computes the closest points Ex∗ to each image point Exi . The

outer iteration updates the parameter vector Ea to solve the system of equations in Equation (A.14).

This system requires ∂ Ex/∂ Ea evaluated at the closest point Ex∗, which is computed by differentiating

Equation (A.20) with respect to Ea:

∂ Ex
∂ Ea

=
∂

∂ Ea
P EX ,

=

(
∂ P
∂ Ea

)[
EX
]

+ P
∂ EX
∂ Ea

, (A.26)
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where
[

EX
]

is a block-diagonal matrix with EX on the diagonal. The equation for computing ∂ EX/∂ Ea

is the same as in Equation (A.16), but with the following individual derivatives:

∂ Eg
∂ Ea

=


∂ f/∂ Ea

( EX i − EX)T

(
∂ D
∂ Ea

[∇ f ] + D
∂∇ f
∂ Ea

)
EzT

(
∂ P
∂ Ea

[
EX i − EX

])
 , (A.27)

∂ Eg

∂ EX i
=

 E0

(∇ f )T DT

EzT P

 , (A.28)

∂ EX i

∂ Ea
=

∂ P−1

∂ Ea

[
Exi
]
. (A.29)

For the derivatives of the inverse matrix P−1, we use the identity:

∂ P−1

∂pi
= −P−1

(
∂ P
∂p1

)
P−1,

and the nine derivatives of the matrix D are:

∂ D
∂p1

=

 −p2 p9 + p3 p8 2p1 p9 − p3 p7 −2p1 p8 + p2 p7

0 p2 p9 −p2 p8

0 p3 p9 −p3 p8

 ,

∂ D
∂p2

=

 −p1 p9 0 p1 p7

−2p2 p9 + p3 p8 p1 p9 − p3 p7 −p1 p8 + 2p2 p7

−p3 p9 0 p3 p7

 ,

∂ D
∂p3

=

 p1 p8 −p1 p7 0

p2 p8 −p2 p7 0

−p2 p9 + 2p3 p8 p1 p9 − 2p3 p7 −p1 p8 + p2 p7

 ,

∂ D
∂p4

=

 −p5 p9 + p6 p8 2p4 p9 − p6 p7 −2p4 p8 + p5 p7

0 p5 p9 −p5 p8

0 p6 p9 −p6 p8

 ,

∂ D
∂p5

=

 −p4 p9 0 p4 p7

−2p5 p9 + p6 p8 p4 p9 − p6 p7 −p4 p8 + 2p5 p7

−p6 p9 0 p6 p7

 ,

∂ D
∂p6

=

 p4 p8 −p4 p7 0

p5 p8 −p5 p7 0

−p5 p9 + 2p6 p8 p4 p9 − 2p6 p7 −p4 p8 + p5 p7

 ,
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∂ D
∂p7

=

 0 −p1 p3 − p4 p6 p1 p2 + p4 p5

0 −p2 p3 − p5 p6 p2
2 + p2

5

0 −p2
3 − p2

6 p2 p3 + p5 p6

 ,

∂ D
∂p8

=

 p1 p3 + p4 p6 0 −p2
1 − p2

4

p2 p3 + p5 p6 0 −p1 p2 − p4 p5

p2
3 + p2

6 0 −p1 p3 − p4 p6

 ,

∂ D
∂p9

=

 −p1 p2 − p4 p5 p2
1 + p2

4 0

−p2
2 − p2

5 p1 p2 + p4 p5 0

−p2 p3 − p5 p6 p1 p3 + p4 p6 0

 ,

where pi are the elements of the matrix P in row-major order.

The outer iteration terminates when the update to Ea is below a specified threshold. At this point,

the vector Ea contains the parameters of the projective transform as well as the parameters for the

implicit curve that best fit the given points Exi in a geometric sense.

A.4 Constraints

In many cases, there can be ambiguities between the parameters of the curve and the parameters

of the transform. For example, the scale of the transform can affect the scale of the curve (e.g.,

the radius of an unknown circle). To resolve these ambiguities, constraint equations on the pa-

rameters are added to the system of equations for the outer iteration. For a system of nonlinear

equations Ef (Ea) = E0 with Jacobian J (Ea), the constrained system is:

Ef ∗(Ea) =

(
Ef (Ea)

ω f̂ (Ea)

)
,

with Jacobian:

J ∗(Ea) =

(
J (Ea)

ω Ĵ (Ea)

)
,

for some scalar weight ω, typically set to a large value such as 106. In the case of circle, we often

constrain the radius to be close to one:

f̂ (Ea) = r − 1 = 0,

which has a Jacobian that is zero for all terms in Ea except the radius:

∂ f̂
∂r

= 1.
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A.5 Multiple curves

The orthogonal distance fitting approach can be extended to handle multiple curves as well. For

example, consider two curves with parameter vectors Ea1 and Ea2. A new error function is defined

from the individual error functions for each curve as:

E∗(Ea) = E(Ea1) + E(Ea2) + ωÊ(Ea),

where

Ea =

(
Ea1

Ea2

)
,

and Ê(Ea) is an error term for the constraints on the parameters of Ea1 and Ea2. Since both Ea1 and Ea2

contain elements for the unknown transform, at a minimum, the constraint equations should con-

strain corresponding elements to be equal. There might also be relationships between the parameters

of the implicit curves that could be expressed as constraints, such as identical y-coordinates for the

centers of two circles.

This new error function corresponds to a linear system with the following Jacobian:

J ∗(Ea) =

 J (Ea1)

J (Ea2)

Ĵ (Ea1) Ĵ (Ea2)

 ,

where J (Ea1) is the Jacobian for the first curve, J (Ea2) is the Jacobian for the second curve, and Ĵ (Ea1)

and Ĵ (Ea2) are the Jacobians of the constraint equations for the two curves.

A.6 Examples

The ability to estimate affine and planar projective transforms from points in an image is useful for

many computer vision algorithms, and is generally known as rectification. In contrast to previous

work on rectification from simple geometries, this approach provides a unifying framework: the

algorithm does not depend on the types of curves in the image. The same restrictions and necessary

conditions still apply, however, so that the problem is well-posed. For example, it is not possible

to uniquely fit an unknown ellipse under an unknown projective transform since all ellipses are

projectively equivalent. A thorough review of necessary conditions for solving for an unknown

projective transform can be found in [22].

To conclude this appendix, we show the application of the orthogonal distance fitting framework

to several problems. First, we derive the necessary components for fitting a circle under affine and

planar projective transforms and a line under a projective transform. Then, we show results on three

images: an image with a pair of eyes, an image with four wheels, and an image of a building. The
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pair of eyes formulation is used throughout chapter 3 to find the transform between the eyes and

camera and solve for the light direction. The four wheels and building images are examples of

metric rectification from circles and lines in the world.

Circle: affine

As a first example, consider the implicit equation of a circle of radius r centered at the origin in the

world coordinate system:

f ( EX; r) =
1
2

(
X2

1 + X2
2 − r2)

= 0.

The scale factor 1
2 simplifies the derivatives of f . In addition, suppose a set of points Exi are the

images of points on the circle under an unknown affine transform. In other words, there exists an

affine transform (A, Eb) such that:

f ( EX i ; r) = 0 with EX i = A−1(Exi − Eb).

Let the parameter vector Ea = ( r a1 a2 a3 a4 b1 b2 )T where r is the radius of the

circle,

A =

(
a1 a2

a3 a4

)
and Eb =

(
b1

b2

)
.

The orthogonal distance fitting approach finds the parameters Ea that best model the image

points Exi in the least-squares sense:

E(Ea) =

∑
i

∥∥Exi − Ex∗
∥∥2

.

Closest point

The inner iteration computes the closest point Ex∗ to each image point Exi . The corresponding point

in world coordinates, EX∗, is the solution to the nonlinear least-squares problem,

Eg( EX , EX i , Ea) =

(
f ( EX; Eα)

A( EX i − EX) × A−T
∇ f

)
= E0. (A.30)

As described above, the cross product (in this case, the determinant of a 2 × 2 matrix) can be

expressed as the following dot product:

A( EX i − EX) × A−T
∇ f = ( EX i − EX)T D∇ f,

where

D =

(
−a1a2 − a3a4 a2

1 + a2
3

−a2
2 − a2

4 a1a2 + a3a4

)
,
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and where the terms ai are the elements of the matrix A in row-major order.

The nonlinear least-squares problem in Equation (A.30) can be solved with the Gauss-Newton

iteration, which requires the Jacobian of Eg(·):

∂ Eg

∂ EX
=

(
(∇ f )T

( EX i − EX)T DH − (∇ f )T DT

)
,

where

∇ f =

(
X1

X2

)
and H =

(
1 0

0 1

)
.

Parameter update

The outer iteration updates the parameter vector Ea. This iteration also requires the Jacobian of the

system of equations which in turn requires several different derivatives outlined in Equations (A.15)

to (A.19). For the case of a circle under an affine transform, the necessary components to compute

these derivatives are:

∂ D
∂a1

=

(
−a2 2a1

0 a2

)
∂ D
∂a2

=

(
−a1 0

−2a2 a1

)

∂ D
∂a3

=

(
−a4 2a3

0 a4

)
∂ D
∂a4

=

(
−a3 0

−2a4 a3

)

∂ A−1

∂a1
=

1
12

(
−a2

4 a2a4

a3a4 −a2a3

)
∂ A−1

∂a2
=

1
12

(
a3a4 −a1a4

−a2
3 a1a3

)

∂ A−1

∂a3
=

1
12

(
a2a4 −a2

2

−a1a4 a1a2

)
∂ A−1

∂a4
=

1
12

(
−a2a3 a1a2

a1a3 −a2
1

)

where 1 = det(A).

Circle: projective

As a second example, consider the implicit equation of a circle centered at ( C1 C2 ) in the world

coordinate system with radius r :

f ( EX; Eα) =
1
2

[
(X1/X3 − C1)

2
+ (X2/X3 − C2)

2
− r2]

= 0,

where Eα = ( C1 C2 r )T and the scale factor 1
2 is introduced to simplify the derivatives. The

full parameter vector Ea for the error function, Equation (A.7), has twelve elements: three from the

parameter vector Eα and nine from the components of the 3 × 3 matrix P .
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Closest point

The inner iteration computes the closest point Ex∗ to each image point Exi . The corresponding point

in world coordinates, EX∗, is the solution to the nonlinear least-squares problem,

Eg( EX , EX i , Ea) =

 f ( EX; Eα)

EzT (P( EX i − EX) × P−T
∇ f )

EzT P( EX i − EX)

 = E0,

which can be solved using the Gauss-Newton iteration. The iteration requires the derivative of Eg(·)

with respect to EX , Equation (A.25), which in turn requires the gradient of f and the Hessian:

∇ f =
1
X3

 X̂1 − C1

X̂2 − C2

−(X̂1 − C1)X̂1 − (X̂2 − C2)X̂2

 ,

H =
1

X2
3

 1 0 −2X̂1 + C1

0 1 −2X̂2 + C2

−2X̂1 + C1 −2X̂2 + C2 X̂2
1 + 2(X̂1 − C1)X̂1 + X̂2

2 + 2(X̂2 − C2)X̂2

 ,

where X̂1 = X1/X3 and X̂2 = X2/X3.

Parameter update

The outer iteration updates the parameter vector Ea. The necessary derivatives are given in Equations

(A.27) through (A.29). For this example, these additional derivatives are needed:

∂ f
∂ Eα

=

(
−X̂1 + C1 −X̂2 + C2 −r

)
,

∂∇ f
∂ Eα

=
1
X3

 −1 0 0

0 −1 0

X̂1 X̂2 0

 .

Line

The implicit equation of a line in homogeneous coordinates is:

f ( EX; EL) = ELT EX = 0,

where EL is a 3-vector representing the line. The gradient of f is:

∇ f = EL,

94



Figure A.2: A pair of eyes. (Left) The limbus on each eye, a circle in the world coordinate system, is imaged
as an ellipse. (Right) The rectified image.

and the Hessian is a 3 × 3 matrix of zeros. For the outer iteration, the following derivatives are

needed:

∂ f

∂ EL
= X T

∂∇ f

∂ EL
= I,

where I is the 3 × 3 identity matrix.

Pair of eyes

For a pair of eyes, we use two circles, described in example A.6, with constraints on the radii as well

as constraints on the elements of the transform for each circle. These constraints add the following

equations to the nonlinear system:

r1 − r2 = 0,

p1 − q1 = 0,
...

p9 − q9 = 0,

where r1 is the radius of the first circle, r2 is the radius of the second circle, pi are the nine compo-

nents of the projective transform for the first circle, and qi are the nine components of the projective

transform for the second circle. The known radius of the limbus, 5.8 mm is used to resolve the scale

ambiguity.

Shown in Figure A.2 is a pair of eyes, rendered according to the 3-D model described in chap-

ter 3. The eyes were positioned at ( −15 15 45 ) in the world coordinate system and rotated

by ( 0 25◦ 0 ) about the x , y, and z axes.

The projective transform between the world and camera coordinate systems was estimated by

fitting two circles under a projective transform as described above. The extrinsic components of

the estimated projective transform were a position of ( −15.0 15.5 45.5 ) with rotation angles

of ( −2◦ 26◦ 1◦ ) about the x , y, and z axes, indicating a good estimate of the actual projective
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Figure A.3: The top image was rectified using four circles (wheels). Shown below is the rectified image
from which the distance between the cars can be measured.

transform.

Four wheels

Shown in Figure A.3 is an image of two parked cars. The image can be rectified by assuming that

the four wheels in the image are coplanar circles. The four circles are fit using four of the projective

circle models, example A.6, with constraints on the radii and the transform components. The radii

were constrained to be equal for wheels from the same car, but not between different cars. The

transform components were constrained to be the same for all four circles.

The known hubcap diameter of 16.5 inches was used to determine the final scaling. The three

line segments numbered 1, 2, and 3 denote the wheelbase of the first car, the distance between cars,

and the wheelbase of second car. These distances were measured in the physical world to be 93.0,

121.2, and 106.6 inches, and measured in the rectified image to be 94.4, 123.0, 108.5 inches. The

average error between these measurements is 1.6%.

Building

Shown in Figure A.4 is an image of two people standing outside of a store. The lines on the

building were used with the line model, given in example A.6, to rectify the image. The transform

components were constrained to be the same and several constraints were imposed on each line.

First, the first two components of the line were constrained to be unit length:

l2
1 + l2

2 − 1 = 0,

96



Figure A.4: The building wall was rectified using vanishing lines and a known angle and length ratio. Shown
on the right is the rectified image, from which measurements of the two people can be made.

where EL = ( l1 l2 l3 )T . Second, an orthogonality constraint was imposed on pairs of orthogonal

lines:

l1m1 + l2m2 = 0,

where EM = ( m1 m2 m3 )T is a line orthogonal to EL .

The final scaling of the transform was determined by assuming that the decorative border in the

corners of the window was approximately a square. Since the two people are standing in a plane that

is approximately parallel to the plane of the store front, their relative heights can be measured after

rectification. Using the height of the person on the left as a reference (64.75 inches), the height of

the person on the right was estimated to be 69.4 inches. This person’s actual height is 68.75 inches,

yielding an error of 0.65 inches or 0.9%.
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