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Search for a category target in clutter

MARY J. BRAVO, ! HANY FARID 2

An airport security worker searching a suitcase for a weapon is engaging in an es-
pecially difficult search task: the target is not well-specified, it is not salient and it
is not predicted by its context. Under these conditions, search may proceed item-by-
item. The experiment reported here tested whether the items for this form of search
are whole familiar objects. Our displays were composed of color photographs of
ordinary objects that were either uniform in color and texture (simple), or had two
or more parts with different colors or textures (compound). The observer’s task was
to detect the presence of a target belonging to a broad category (food). We found
that when the objects were presented in a sparse array, search times to find the tar-
get were similar for displays composed of simple and compound objects. But when
the same objects were presented as dense clutter, search functions were steeper for
displays composed of compound objects. We attribute this difference to the diffi-
culty of segmenting compound objects in clutter: compared with simple objects,
bottom-up grouping processes are less likely to organize compound objects into a
single item. Our results indicate that while search rates in a sparse display may be
determined by the number of objects, search rates in clutter are also affected by the
number of object parts.

Visual search ~ Clutter = Object segmentation
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1 Introduction

The visual search paradigm has been an immensely popular tool for studying the efficiency of
visual processing (Neisser, 1967; Atkinson, Holmgren, & Juola, 1969; Treisman & Gelade, 1980;
Treisman, 1988; Egeth & Yantis, 1997; Wolfe, 1998). Because the purpose of these experimenters is
to isolate and study a particular stimulus feature or a particular psychological mechanism, search
stimuli have traditionally been very simple and highly artificial. In addition to serving as a re-
search tool, the visual search paradigm also has practical applications. We engage in visual search
numerous times each day (for our car, keys, glasses), and visual search is a central task in some
professions (baggage screening, X-ray reading). To understand everyday vision or to improve
task performance, it would be useful to extend visual search research to these real-world tasks.
Recently, a number of experimenters have begun to study visual search using photographs of real
objects and real scenes (Zelinksy, Rao, Hayhoe, & Ballard, 1997; Moores, Laiti, & Chelazzi, 2003).

Most visual search research focuses on the task of detecting a specific target object. In these
experiments, the same target is used on every trial, or, alternatively, an image of the search target
is shown to the observer prior to the search stimulus. In both cases, there is no uncertainty, not
even lighting or viewpoint uncertainty, as to the target’s appearance. These experiments have led
to the hypothesis that observers maintain an image of the search target in working memory and
use this image as a ”search template” (Duncan & Humphreys, 1989; Rao, Zelinsky, Hayhoe, &
Ballard, 2002). This template is matched, in a parallel process, against the search stimulus. Neuro-
physiological experiments in which monkeys perform a comparable task have been interpreted in
a similar way. These experiments indicate that top-down inputs from working memory enhance
the activity of extrastriate neurons selective for the target stimulus (Chelazzi, Duncan, Miller, &
Desimone, 1998). These top-down effects can be very selective because the representation of the
target in working memory is very specific.

While a search template implemented through selective top-down enhancement might explain
search for a specified target, this kind of parallel process seems less suited to search for a category
target. This is the task faced, for example, by an airport security worker searching baggage for
potential weapons. In this case, the target could have a variety of colors, shapes, and sizes, and
it could even be an object that the observer has never seen before. It is difficult to imagine how a
search template could incorporate this high degree of variance and still be selective for the target.
Instead of simple template or feature matching, search for category targets would seem to require
that at least some regions of the display be processed to a deeper level.

The variability of the target’s appearance is not the only difficulty faced by the airport security
worker. The high degree of clutter and the lack of predictive context also pose a problem. Under
some conditions, category targets can be detected very rapidly, but this has only been demon-
strated when the background clutter is minimal or the context is predictive (VanRullen & Thorpe,
2001; Li & R. Van Rullen, 2002), but also see (Johnson & Olshausen, 2003). These experiments
showing rapid categorization have used professional photographs in which the target is the sub-
ject. Thus, the target is generally centered in the frame, high contrast, unoccluded, and in a typical
setting. This last characteristic might be especially important because there is some evidence that
rapid scene categorization may be crucial for rapid target categorization (Torralba & Oliva, 2003;
Torralba, 2003). We would argue then that the reports of rapid target categorization do not neces-
sarily indicate that it is possible to simultaneously recognize (or categorize) all of the objects in a
cluttered scene. In fact, we assume that the opposite is true: that the recognition and categorization



Figure 1: Cluttered natural images. It is unlikely that preattentive grouping processes could orga-
nize the image on the right into a lamp, a book and a radio.

of multiple objects involves a serial process. Our assumption is based in part on the well-known
theoretical argument that the highest levels of visual processing are likely to involve a distributed
feature representation. With such a representation, an ambiguity arises when numerous objects
are represented simultaneously (von der Malsburg, 1999). Thus, one role of selective attention
may be to limit the number of objects that are recognized at any given moment (Moran & Desi-
mone, 1985; Olshausen, Anderson, & VanEssen, 1993; Treisman, 1999), but also see (Riesenhuber &
Poggio, 1999; Ghose & Maunsell, 1999).

In this paper we are interested in examining search for a category target in clutter. The impor-
tant characteristics of this task are that the target is not known, the target is not salient, and the
target’s existence and location are not predicted by context. Under these stringent conditions, we
assume that observers resort to an item-by-item search. Our specific aim is to characterize the
items of this search. There is a prevalent, but often implicit, assumption that these items are famil-
iar objects. The notion is that bottom-up grouping processes organize the scene into objects and
that visual attention then selects a small number of objects for recognition (see for example, (Ol-
son, 2001)). While we agree with the idea that visual attention may select items for recognition, we
doubt that these items correspond to familiar objects. This is because, in clutter, it may be impos-
sible to segment, bottom-up, whole familiar objects. Consider, for example, an object made from
two different materials (e.g., a table lamp with a linen shade and a metal base, Figure 1). When
this object is juxtaposed with other objects, the within-object boundaries may be as salient as the
between-object boundaries (Spelke, 1990). Similarly, occlusions pose a problem for segmentation
because they may cause an object to be visible only in fragments. Observers may still group these
fragments using color or texture similarity if the object is made from a single material. 3 If the
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object has multiple parts made from different materials, however, it seems less likely that preat-
tentive processes will reliably group the object’s fragments. In such cases, it may be necessary to
recognize these objects in order to accurately segment them from their background. Thus, when
observers search a cluttered scene for a category target, we question whether they can select whole
objects.

To test the idea that observers select and reject whole objects, we used two kinds stimulus ar-
rangements. In one, photographs of familiar objects were placed in a sparse array. The objects
were clearly separated, even when viewed peripherally. This sparse arrangement is typical of
traditional search experiments. In the other arrangement, the familiar objects were positioned
randomly on the computer screen. This random arrangement, while clearly not typical of most
natural scenes, mimics the dense clutter that one might see in a suitcase, a kitchen drawer or a
toy chest. In our experiment, observers searched for a food target. Because these targets were
drawn from a diverse category and so varied in color, shape and texture, observers could not use
the efficient strategy of searching for a distinctive feature or set of features. Instead, we assumed
observers would resort to an item-by-item search. The question, then, is whether search times
would increase with the number of objects or with the number of object parts. (We are using the
term “part” in non-standard way: here, parts must differ in their color or texture.) To test this,
we generated cluttered displays composed of simple objects (e.g., a wooden stool) or compound
objects (e.g., a paint roller). If these familiar objects are the items for search, then we would ex-
pect that the time it takes observers to find the target would increase with the number of objects,
regardless of the object type. On the other hand, if preattentive segmentation does not always
yield whole objects, especially when these objects are composed of two materials, then we would
expect search times to increase more rapidly for compound objects than for simple objects.

2  Stimuli

Our stimuli were composed of color photographs of familiar objects. We hand-selected from the
Hemera photo-object collection (www.hemera.com) 132 distractor objects, Figure 2, and 44 tar-
get objects, Figure 3. Half of the distractor and target objects were selected because they were
composed of one material. That is, they appeared to have largely uniform reflectance and surface
texture (e.g., a cucumber, a fire hydrant). We refer to these as “simple” objects. The other half of
the objects were selected because they had two parts with obviously different colors or textures
(e.g., a pineapple, a hand trowel). These “compound” objects were not simply multi-colored; the
different colors had to correspond to different parts, and so a striped sock would not be considered
compound object.

Displays were composed of 6, 12, or 24 objects. In half the displays, one of these objects was a
food target. The distractor objects were selected randomly and without replacement from either
the simple or compound sets. Thus, the distractors in a given display were different examples of
a single object type. The target object, when it appeared, was selected from either set. Thus, the
same targets were used in both the compound displays and the simple displays.

The objects depicted in the images ranged in size from a garbage can to a car key, but the images
themselves were all scaled to have the same area (16, 000 pixels). Before an image was added to

color and texture variation in the image of the object. This may make grouping such fragments non-trivial, but at least
it is plausible.



Figure 3: Examples of simple (top) and compound (bottom) targets.



Figure 4: A sparse display composed of compound objects and a simple food target.

a display, its area was rescaled by a random factor between 1.0 and 0.5 and its orientation was
rotated by 0, 90, 180 or 270 degrees.

In addition to using two kinds of objects, we also used two kinds of object arrangements. In
the sparse arrangement, the objects were positioned on a uniform array of size 2 x 3, 3 x 4, or
4 x 6, Figure 4. The average width and height of an object was 120 pixels (about 3 degrees of
visual angle), and the average space between objects was 60 pixels. In the clutter arrangement,
the objects were positioned randomly as in Figure 5. The area of the display was scaled with the
number of objects to keep the average overlap between objects fixed at 20%. If more than 40% an
object was obscured, the display was recreated. Each target had an average occlusion of 20% for
both the composed and simple displays.

The stimulus generation required both manual and automated steps. First, anti-aliased masks
were created for each image. This manual step was done in Adobe Photoshop. Then the masks
and images were randomly scaled, rotated and positioned in each stimulus. This automated step
was done in MatLab. The stimuli were generated off-line, and a new stimulus was generated for
each of the observer’s 1,056 trials. The stimuli were displayed on an Apple PowerBookG4 using
MatLab and PsychToolbox routines (Brainard, 1997; Pelli, 1997).



Figure 5: Cluttered displays composed of simple (left) and compound (right) objects. A target is
present on the left but not on the right.

2.1 Procedure

In all, there were 24 conditions: two arrangements (sparse or clutter); two distractors types (simple
or compound), three levels of distractor number (6, 12 or 24) and target present or absent. The two
arrangement conditions were varied across observers. All other conditions were varied within
observers and were completely intermixed within blocks of trials. Each observer participated in
two sessions within a one week period. During these sessions, the observers ran a total of 22
blocks of 48 trials each.

The observer initiated the first trial in each block, and the stimulus remained on until the ob-
server responded by pressing either the 8 key (food absent) or the 9 key (food present). Auditory
teedback was given after incorrect responses. The next stimulus was presented after a one second
delay. The first two trials of each block were discarded as practice.

2.2 Participants

The observers were fourteen Rutgers-Camden students who participated to fulfill a course re-
quirement for Introductory Psychology. None of the observers were aware of the purpose of the
study.

3 Results

We analyzed the data separately for the two target types and found no significant difference.
So within each condition, the data from simple target and compound target trials were pooled.
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Figure 6: Averaged reaction times (top) and percent correct (bottom) as a function of the number of
objects in the display. Open circles correspond to simple objects, filled circles to compound objects.
Dashed lines correspond to target absent trials, solid lines to target present trials. See Figure 7 for
the slope and intercepts.




Sparse Clutter
present absent | present  absent
simple 45/700 112/666 | 53/760  197/631
compound | 39/734 125/676 | 73/716 233/1,114
significance -/- */- */- */*

Figure 7: Slopes (msec/item)/intercepts (msec) from Figure 6. The asterisks in the bottom row
indicate significant differences between the parameters for simple and compound objects (paired
t-test, p < 0.05).

We also analyzed the data separately for the two experimental sessions run by each observer.
Although observers were generally faster during the second session, they produced the same
pattern of results on both days. These data were pooled as well.

The average results for the seven observers in the sparse condition are shown on the left side
of Figure 6. The open circles correspond to simple object displays, the filled-circles to compound
object displays. The solid lines indicate that the target was present, the dashed lines indicate that
the target was absent. These reaction time functions were well fit by lines, the slopes and intercepts
of which are given in Figure 7. Since we are interested in whether simple and compound objects
produce similar results, we used a paired t-test to compare the slope and intercept values for the
search functions corresponding to these two object types. When the target was present in the
sparse condition, we found no difference in performance between displays composed of simple
objects and those composed of compound objects. When the target was absent, the slope for the
compound objects was slightly, but significantly, greater than that for the simple objects.

The average results for the seven observers in the clutter condition are shown on the right side
of Figure 6. Here we see a more noticeable difference in the reaction times for displays composed
of simple objects (open circles) and compound objects (filled circles). Again, the data were well
fit by lines and the slope and intercepts of these lines are given in Figure 7. When the target was
present, the slope for the compound objects were steeper than that for the simple objects. When
the target was absent, the slope and intercept for the compound objects were greater than those
for the simple objects.

A MANOVA of the target-present data revealed main effects for set size (F[2,24] = 79.6, p
= 0.00) and object type (F[1,12] = 8.32, p = 0.014). The main effect of display arrangement did
not reach significance (F[1,12] = 4.64, p = 0.052). All two-way interactions were significant, as
was the three-way interaction (F[2.24] = 5.64, p = 0.009). This last interaction bears directly on
our hypothesis. We predicted that the set-size effect would be similar for compound and sim-
ple objects when these objects were sparsely arranged, but not when they were were randomly
arranged.

4 Discussion

To briefly summarize our results, we found that when the compound and simple objects were
arranged in a sparse array, they produced similar search times. In particular, we found no differ-
ence in performance when the target was present and only a small difference when the target was



absent. When the objects were arranged as dense clutter, however, a clear difference between the
two types of objects emerged. Observers were slower to determine the target’s presence amongst
compound objects, and they were extremely slow to determine the target’s absence in displays
composed of compound objects.

The critical difference between the sparse and clutter arrangements is in the difficulty they pose
for object segmentation. In sparse displays, the objects are effectively “pre-segmented”, and so,
we argue, these displays measure the time it takes observers to judge whether a whole object is
a food target. Because search times were similar for the simple and compound objects in sparse
arrays, these objects appear to be similarly discriminable from food. In clutter displays, however,
the observers must segment the objects. Thus, the different pattern of results for these displays can
reasonably be attributed to differences in object segmentation. The finding that, in clutter, search
times were considerably slower for the compound objects than for the simple objects suggests
that observers have greater difficulty segmenting compound objects. In particular, we would
argue that when these objects appear in clutter, their parts cannot always be grouped through
bottom-up processes.

This failure to group object parts could cause observers to treat each part of the object as a
separate item which they must select and reject independently. To illustrate this idea, consider
an observer searching for food in a display with a partially occluded table lamp. The observer
might select an image chunk corresponding to the lamp base and reject it as not being food. This
rejection need not involve recognition, it could be based on the decision that the item is made
from some inedible material like wood or metal, or it could be that the item simply doesn’t look
like any familiar food. Later, the observer might independently select a chunk corresponding to
the lamp shade and reject it. Since our compound objects had at least twice as many parts as
our simple objects, one might expect search slopes for the compound displays to be at least twice
that for simple displays. But the parts within compound objects were not randomly arranged,
and so grouping cues like colinearity sometimes allowed the preattentive segmentation of whole
objects. In addition, because the objects themselves were randomly positioned, some objects were
not obscured by clutter. 4

An alternative explanation for our result is that observers select and reject compound objects
in their entirety, but they do so only after recognition-driven segmentation. Consider again an
observer searching for food in a display with a table lamp. By this second account, the observer
might select the base and recognize it as the bottom of a lamp. This would cue the observer to se-
lect the shade and then reject the entire lamp. In this case, there are two selection steps, one involv-
ing the results of image-driven grouping processes, the other involving the results of recognition-
driven grouping processes. Thus, the items of the item-by-item search would be whole objects,
but the amount of processing required to select and reject whole objects would depend on the
complexity of the object. We have some preliminary data suggesting that under the conditions of
our experiment, observers use the former strategy. But regardless of which account best describes
this process, our results show that clutter can have a significant effect on the processes underlying
visual search.

4The idea that search rates depend upon the number of object parts might also suggest that search for compound
targets will be faster than search for simple targets. (Compound objects, having twice as many parts as simple objects,
would seem to provide twice as many targets.) But this reasoning assumes that the observer has two separate chances
of landing on the target. If observers use an orderly scan path, then given the close spatial proximity of the target parts,
the chances of landing on each of the target parts would be highly correlated.
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We wish to emphasize again that our task of searching for a category target in clutter differs in
a fundamental way from the search for a known target. When the observer knows the size, color,
shape or likely location of the target, the observer can use a search template or specific target
feature to guide search. Only those stimuli that share this feature would be given further process-
ing (Cave & Wolfe, 1990; Egeth, Virzi, & Garbart, 1984; Nakayama & Silverman, 1986; Treisman &
Sato, 1990; Folk, Remington, & Johnston, 1992; Rossi & Paradiso, 1995). It is important to keep
this distinction in mind when contrasting our experiment with another experiment that examined
the effect of clutter on search (Wolfe, Oliva, Horowitz, Butcher, & Bompas, 2002). In this earlier
experiment, the observer searched for a known target (a yellow “T” ) amongst distractors that
closely resembled the target (yellow “L”s). These letter stimuli were superimposed on either a
blank background or a cluttered scene. The clutter caused an increase in the intercept but not the
slope of the search function. The authors interpreted this as evidence that observers could “seg-
ment out” the clutter in a single step. Presumably, observers eliminated the clutter by selecting
only those items that possessed the distinctive target feature (e.g., yellow). In our experiment, the
targets had no common distinctive feature and so observers could not use the absence this feature
to eliminate the clutter.

We undertook this experiment because we questioned the view that visual attention selects
whole objects prior to recognition. We were skeptical of this view because we believe that bottom-
up grouping processes cannot always extract whole objects from cluttered scenes. In particular,
when an object’s parts are made from different materials, it may be impossible to group these parts
through a purely bottom-up process. The results of this experiment support this idea: observers
were slower to find targets in scenes composed of compound objects than scenes composed of
simple objects. We have offered two explanations for this result: observer may treat compound
objects as multiple items, or they may segment these objects with a recognition-driven process.
Either way, these results suggests the need to modify simple accounts of segmentation, attention
and recognition.
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