
A new approach to the design of uniquely
folded thermally stable proteins

XIN JIANG,1 HANY FARID,2 ERNIE PISTOR,1 and RAMY S. FARID1

1Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
2Department of Computer Science, Dartmouth College, Hanover, New Hampshire 03755

~Received September 9, 1999;Final Revision December 7, 1999;Accepted December 8, 1999!

Abstract

A new computer program~CORE! is described that predicts core hydrophobic sequences of predetermined target protein
structures. A novel scoring function is employed, which for the first time incorporates parameters directly correlated to
free energies of unfolding~DGu!, melting temperatures~Tm!, and cooperativity. Metropolis-driven simulated annealing
and low-temperature Monte Carlo sampling are used to optimize this score, generating sequences predicted to yield
uniquely folded, stable proteins with cooperative unfolding transitions. The hydrophobic core residues of four natural
proteins were predicted using CORE with the backbone structure and solvent exposed residues as input. In the two
smaller proteins tested~Gb1, 11 core amino acids; 434 cro, 10 core amino acids!, the native sequence was regenerated
as well as the sequence of known thermally stable variants that exhibit cooperative denaturation transitions. Previously
designed sequences of variants with lower thermal stability and weaker cooperativity were not predicted. In the two
larger proteins tested~myoglobin, 32 core amino acids; methionine aminopeptidase, 63 core amino acids!, sequences
with corresponding side-chain conformations remarkably similar to that of native were predicted.

Keywords: computational; conformational entropy; convergence temperature; heat capacity; Metropolis Monte Carlo;
protein design; simulated annealing

Considerable attention has recently been directed at the design of
protein sequences that fold into predetermined structures~Tuch-
scherer et al., 1998!. Target structures include functional de novo
designed proteins, thermally or chemically stable variants of nat-
ural enzymes, and enzymes with altered functionality. Methods for
producing proteins with targeted structure and function include
iterative design and characterization~DeGrado et al., 1989!, com-
binatorial synthesis~Kamtekar et al., 1993!, and computational
approaches~Street & Mayo, 1999!. With recent dramatic increases
in computing speeds, computational approaches aimed at generat-
ing sequences that stabilize desired target structures have become
more feasible as evidenced by several noteworthy successes~Hel-
linga & Richards, 1994; Desjarlais & Handel, 1995; Dahiyat &
Mayo, 1996, 1997a; Su & Mayo, 1997; Harbury et al., 1998; Kono
et al., 1998!. Computer programs have been written that “score”
sequences by utilizing one or a combination of van der Waals
potential energy, solvation energy, amino acid propensities for sec-
ondary structure, electrostatic energy, and hydrogen bond energy.
Various optimization algorithms, such as simulated annealing~Hel-
linga & Richards, 1994!, dead-end elimination~Desmet et al.,
1992!, Metropolis Monte Carlo sampling~Holm & Sander, 1991;

Lee & Levitt, 1991!, and genetic algorithms~Desjarlais & Handel,
1995!, are then employed to optimize the score. However, despite
tremendous efforts, there are only a few examples of designed
proteins that fold into predetermined target structures with prop-
erties that characterize well-ordered stable proteins. These prop-
erties include~1! structural uniqueness;~2! maximum stability at
room and physiological temperatures as indicated by large free
energies of unfolding~DGu! at these temperatures;~3! optimal
thermal stability as indicated by high values forTm, the tempera-
ture at whichDGu 5 0 ~for monomeric proteins!; and ~4! highly
cooperative unfolding transitions, indicating that the protein folds
into a highly ordered structure. One of the primary barriers to
producing proteins with these key properties is the difficulty in
deconvoluting all of the terms that contribute to protein thermo-
dynamics and structural uniqueness. In addition, it is necessary to
calculate these energy terms for both the folded and unfolded
states, a task that clearly presents a significant challenge. The use
of terms such as amino acid secondary structure propensities or
solvation energy avoids the need to explicitly consider the un-
folded state; however, it is not clear whether consideration of these
terms alone can lead to accurate sequence predictions. Another
significant complication is that individual terms that contribute to
protein thermodynamics are correlated to one another in a complex
nonlinear way, making it difficult to determine whether a partic-
ular term should be increased or decreased to produce stable pro-
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teins. The goal is, therefore, to define criteria that are directly
correlated to experimentally measurable thermodynamic param-
eters that define protein stability, to rapidly calculate these criteria,
and then to efficiently optimize the criteria. To this end, a new
computer program~CORE! has been developed that predicts se-
quences and side-chain conformations of hydrophobic core resi-
dues by scoring sequences with criteria that are shown to directly
correlate to the free energy of unfolding~DGu!, melting tempera-
ture ~Tm!, cooperativity, and structural uniqueness. We recently
reported on the de novo design of a thermally stable synthetic
protein using CORE~Jiang et al., 1997!. This paper describes
CORE in more detail and presents sequence prediction results of
native proteins that validate the scoring function and the algo-
rithms employed to optimize the score.

Results

Free energy of unfolding and thermal stability

A primary goal in protein design is the generation of proteins that
exhibit large free energies of unfolding~DGu! and high melting
temperatures~Tm!. The analysis presented below reveals that de-
sign of proteins exhibiting maximalDGu and Tm values can be
accomplished by maximizing the heat capacity change of un-
folding ~DCp!, as long as hydrophobic amino acids are modified
exclusively, and the protein backbone structure is fixed. It is dem-
onstrated below that only under these conditions is it possible to
quantitatively expressDGu andTm as a function ofDCp.

The temperature dependence ofDGu can be obtained by con-
sidering the temperature dependence of the enthalpy~DHu! and
entropy ~DSu! of unfolding, expressed in Equations 1 and 2, re-
spectively, whereT is temperature,TR andT9R are reference tem-
peratures, andDCp is assumed to be temperature independent. It
has been experimentally demonstrated thatDCp exhibits little de-
pendence on temperature from 20 to 808C ~Privalov & Gill, 1988!.
Above 808C, DCp decreases, approaching zero at;1308C.

DHu~T ! 5 DH~TR! 1 DCp 3 ~T 2 Tp! ~1!

DSu~T ! 5 DS~T9R! 1 DCp 3 ln~T0T9R!. ~2!

When normalized to the number of residues~Nres!, the value of
DHu for proteins converges to approximately the same valueDHu

*

at a common temperatureTH
* ~Privalov & Khechinashvili, 1974!.

The same is true forDSu; at a common temperatureTS
*, proteins

have approximately the same entropy of unfolding per residue
DSu
*. These convergence temperatures are the temperatures at

which the apolar contributions to bothDH 8 andDS8 are zero~see
below for more details!. The convergence parameters can be in-
corporated into Equations 1 and 2 to yield Equations 3 and 4,
respectively.

DHu~T ! 5 NresDHu
*1 DCp 3 ~T 2 TH

* ! ~3!

DSu~T ! 5 NresDSu
*1 DCp 3 ln~T0TS

* !. ~4!

The free energy of unfolding can therefore be expressed by Equa-
tion 5, in which the heat capacity is now expressed as the average
per residue value,D OCp.

DGu~T ! 5 Nres$DHu
*2 TDSu

*1 D OCp@~T 2 TH
* ! 2 T ln~T0TS

* !#%.

~5!

Model compound and protein studies have yielded the following
values for the convergence parameters~Murphy & Freire, 1992!:
DHu

* 5 1,3506 0.11 cal{mol21{res21, DSu
* 5 4.30 6 0.1 cal{

mol21{K21{res21, TH
*5 373.56 6 K, TS

*5 3856 1 K. Therefore,
Equation 6 expresses the free energy of unfolding as a function of
temperature, the number of residues, and the heat capacity change
of unfolding per residue.

DGu~T ! 5 Nres$1.352 0.0043•T

1 D OCp@~T 2 373.5! 2 T ln~T0385!#%. ~6!

Figure 1 shows the dependence ofDGu on temperature for a hy-
pothetical 100 amino acid protein calculated using Equation 6.
Three curves are presented for different values ofD OCp that bracket
the range of values found for natural proteins, 10–20 cal{mol21{
K21{res21 ~Murphy et al., 1990!. The plot clearly shows thatTm

increases monotonically with increasingD OCp. DGu above 228C
~Ti! also increases with increasingD OCp. Ti depends on the value of
the convergence temperaturesTH

* andTS
*. Given the range in values

for TH
* andTS

*, the highest value forTi is ;548C, occurring when
TS
* is at the lower limit ~384 K! and TH

* is at the upper limit
~379.5 K!. Therefore, it is conceivable~but less likely! that in-

Fig. 1. Plot of free energy of unfolding~DGu! vs. temperature generated
using Equation 6 for three hypothetical 100 amino acid monomeric pro-
teins that have the same backbone structure, but different values of the heat
capacity change per residue~D OCp!. Equation 6 is valid ifD OCp is modulated
by altering hydrophobic amino acids without concomitant changes in the
backbone structure or burial of polar groups. This condition assures that
enthalpy and entropy convergence will occur~see text for details!. Tm

values~the temperature at whichDGu 5 0! increase with increasingD OCp.
DGu above 228C also increases with increasingDCp. ~a! D OCp 5 0.01 kcal0
mol0K 0res,~b! D OCp 5 0.015 kcal0mol0K 0res,~c! D OCp 5 0.02 kcal0mol0
K 0res.
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creases inD OCp would result in increases inDGu only at tempera-
tures higher than 548C rather then 228C, as indicated in Figure 1.

It is particularly useful to express the difference inTm~DTm! for
two proteins at a given set of values of the convergence parameters
as a function of the change inD OCp~DD OCp!. However, it is not
possible to express the true relationship betweenDTm and DD OCp

because of the transcendental form of Equation 5. Derivation of an
empirical relationship reveals thatDTm is linearly dependent on
DD OCp and on a weighted linear combination of the convergence
parameters as indicated by Equation 7, wherea 5 20.0127,b 5
3.03,c 5 20.114,d 5 0.0925,e 5 14.7.

DTm 5 ~aDHu
*1 bDSu

*1 cTH
*1 dTS

*1 e!

3 DD OCp ~cal{mol21{K21{res21!. ~7!

Given the range in values of the convergence parameters, Equa-
tion 7 can be simplified to Equation 8, which expresses a simple
linear dependence ofDTm on DD OCp.

DTm 5 ~3.66 2.5! 3 DD OCp ~cal{mol21{K21{res21!. ~8!

Equation 8 reveals that aDTm value as large as 6.1 times the
difference in heat capacity change per residue~expressed in
cal{mol21{K21{res21! can be observed. This is put into perspec-
tive by considering that a mutation of a single buried Ala residue
to a Phe in a hypothetical 50 amino acid protein@DD OCp 5 1 cal{
mol21{K21{res21 ~see below!# would result in an increase inTm

of as much as 68C, provided that the mutation does not induce a
change in the backbone structure.

DCp can be expressed as a function of the change of buried
apolar and polar surface area upon unfolding as shown in Equa-
tion 9 ~Murphy & Gill, 1991!.

DCp 5 0.45•DASAap 2 0.26•DASApol ~9!

whereDCp is expressed in units of cal{mol21{K21, andDASAap

andDASApol are the changes in solvent accessible surface area in
Å2 upon protein denaturation for apolar and polar areas, respec-
tively. The constants are taken from solid model compound studies
~Murphy & Gill, 1991! and have been shown to be reasonably
accurate in estimating values ofDCp for proteins~Murphy et al.,
1992!. If amino acid side chains are fully buried, and the protein
backbone is fixed~such that solvent exposure of main-chain atoms
remains constant!, DCp for each amino acid is constant; therefore,
theDCp for core residues can simply be calculated from a lookup
table of individualDCp values. Using values forDASAobtained
from Privalov and Makhatadze~1990!, the following DCp values
for buried hydrophobic amino acids were calculated: Ala5 30.2,
Met5 41.5, Val5 52.6, Tyr5 53.6, Leu5 61.6, Ile5 63.0, Phe5
78.7, and Trp5 80.7 cal{mol21{K21.

The quantitative expressions presented above, relatingDCp to
DGu andTm, are valid only if enthalpy and entropy convergence
actually occurs. The convergence of thermodynamic quantities at
some temperature will occur when there are two dominant inter-
actions~e.g., apolar and polar! that independently contribute to the
thermodynamics, and when one of these interactions is constant
~Murphy & Freire, 1992; Murphy & Gill, 1990, 1991!. Because
only the hydrophobic~apolar! contribution is modified by muta-
tion of core residues without significant effect on the polar con-
tribution ~such as hydrogen bonds!, convergence will be observed

~Murphy & Freire, 1992!. Under these conditions, the apolar con-
tribution to DH 8 is zero atTH

* and the apolar contribution toDS8
is zero such thatDHu

* andDSu
* represent the polar contribution to

the thermodynamics atTH
* and TS

*, respectively. It is expected,
therefore, that within a series of proteins in which the backbone
structure is maintained and only hydrophobic core residues are
modified, the convergence parameters will remain constant such
that Equation 5 is valid and an increase inDCp will, in fact, be
associated with an increase inTm as well as an increase inDGu

above 20 to 508C.

Protein structural uniqueness and cooperativity

Native proteins generally adopt highly ordered, densely packed,
unique structures in solution. This is evident from the cooperative
unfolding transitions observed for natural proteins. It has been
shown previously that the primary source of cooperativity in pro-
teins is extensive side-chain contacts that give rise to expansive
networks of interacting amino acids~Freire & Murphy, 1991; Mur-
phy et al., 1992!. Extensive side-chain contacts lead to highly
ordered structures with constrained side-chain mobility and thus
low side-chain conformational entropy. Therefore, side-chain con-
formational entropy was chosen as a criteria by which sequences
of uniquely folded proteins with cooperative unfolding transitions
can be predicted.

The conformational entropy change upon folding of a single
amino acid~DSconf! can be calculated using the Boltzmann equa-
tion given by Equation 10~Shenkin et al., 1996!.

DSconf 5 R~ ln W * 2 ln W! ~10!

whereR is the gas constant andW is the number of conformations
adopted in the unfolded state, taken here as the total number of
possible rotamers~nrot! derived from a suitable rotamer library
~see Methods!. Because of the lack of information for the unfolded
state, all rotamers in the unfolded state are treated as energetically
equivalent.W * is the number of allowable rotamers in the folded
state weighted by the probability of each rotamer existing in the
folded structure. It is convenient to think ofW * as the effective
number of rotamers in the folded sate. Equation 11 expressesW *

as a function ofpi and the fractional population of each rotamer
statei in the folded state.

W * 5 expS2(
i

nrot

pi ln~ pi !D. ~11!

The conformational entropy change for the hydrophobic core of a
protein is the average ofDSconf for each core residue.DSconf for Ala
is zero, because the conformational entropy in the folded and
unfolded state are the same.

Bumps

Steric compatibility is undoubtedly the most important criteria
necessary to stabilize a target structure. Amino acid side chains
that exhibit unfavorable van der Waals interactions will most likely
induce changes in the backbone structure to relieve steric crowd-
ing. Most commonly a van der Waals energy calculation is em-
ployed in an attempt to accurately represent steric compatibility
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with a target structure. This calculation is necessarily conducted on
a structure generated using a so-called rotamer library that defines
discrete allowable side-chain rotamers. However, if the structure is
not first energy minimized, the van der Waals energy is subject to
potentially large errors, and its value may not accurately represent
steric compatibility. A detailed discussion of the use of van der
Waals to define steric compatibility is presented in Discussion. For
computational efficiency, a hard-sphere model~Ponder & Rich-
ards, 1987; Shenkin et al., 1996! is preferred to represent side-
chain contacts. In this model, an unfavorable interatomic contact
~bump, B! occurs when the distance between a side-chain atom
and any other atom in the protein is shorter than a given allowed
value. Allowable interatomic distances are obtained by summing
appropriate combinations of the following distances obtained from
the Tripos 5.2 Force Field~Clark et al., 1989!: C5 1.34, H5 0.95,
O 5 1.2, N5 1.3, S5 1.5 Å. For example, an H{{{H nonbonding
contact of less than 1.90 Å is considered a bump.

Description of the program CORE

The three criteria described above, heat capacity change of unfold-
ing ~DCp!, conformational entropy change of folding~DSconf!, and
bumps, are incorporated into a protein design program called CORE.
CORE is designed to predict sequences and corresponding side-
chain conformations of hydrophobic core residues yielding ther-
mally stable proteins with high cooperativity. This is accomplished
by selecting sequences with zero hard-sphere bumps, maximum
DCp, and minimumDSconf. As described in detail above, zero
bumps assures steric compatibility with a target structure, maxi-
mizing DCp leads to proteins with maximalTm andDGu aboveTi ,
and minimizingDSconf gives rise to uniquely folded proteins with
optimal cooperativity. The number of bumps~B! and the value of
DSconf for a given sequence are calculated using a previously writ-
ten program~Shenkin et al., 1996! that utilizes Metropolis-driven
simulated annealing~Metropolis et al., 1953! to determine side-
chain conformations associated with a minimum number of bumps
in a fixed backbone structure. Subsequent low-temperature Monte
Carlo sampling of side-chain rotamers, at the final simulated an-
nealing Metropolis temperature, yieldspi values~see Equation 11!.
As mentioned above,DCp for a sequence is obtained from a lookup
table of individualDCp values. The values forB, DSconf, andDCp

are incorporated into aScorefor the sequence, determined from a
linear combination of these three quantities~Equation 12!.

Score5 aB 1 bDSconf 2 gDCp. ~12!

To assure that only sequences withB 5 0 are selected,a is set to
an arbitrarily large number. Since sequences with large values for
DCp are necessarily associated with large buried hydrophobic sur-
face areas and therefore large side-chain groups, it is expected that
large amino acids will exist in a smaller number of rotamers, thus
exhibiting low values forDSconf. This should lead to a correlation
betweenDSconf andDCp, making the relativeScoresfor sequences
somewhat insensitive to the values ofb andg. Therefore,b andg
are both initially set to unity; however, if cooperativity is a dom-
inant design goal,b is set to a higher value, and if highTm values
are desired,g is set higher relative tob. To predict sequences with
optimized Score, Metropolis-driven simulated annealing is used
again, this time to produce a single protein structure~i.e., sequence
and corresponding side-chain conformations!. Low-temperature

Monte Carlo sampling, initiated from the simulated annealing se-
quence, is then used to search for sequences near the global min-
imum. Monte Carlo sampling is terminated when no new sequences
are predicted. Sequences predicted during Monte Carlo sampling
are ranked byScoresuch that the top sequences are predicted to
exhibit optimized thermal stability and cooperativity.

Sequence prediction

A good test of a protein design program is its ability to accurately
predict the sequence of naturally occurring proteins. Four proteins,
ranging in size from 56 to 259 amino acids, were chosen to vali-
date the underlying principles guiding CORE, including the scor-
ing function and the optimization algorithms described above.

Protein Gb1 domain

The B1 domain~IgG binding domain! of protein G~Gb1! is com-
posed of 56 amino acids and contains no disulfide bonds or bound
cofactors. Native Gb1 forms a well-packed structure in solution
containing b-sheet,a-helix, and turn. Stability studies of both
wild-type Gb1 and engineered mutants have provided reliable
thermodynamic parameters~Alexander et al., 1992; Dahiyat &
Mayo, 1997b!, making this protein well-suited for theoretical in-
vestigation. Eleven core residues were defined that exhibit little or
no solvent exposure. Trp at position 43, although partially solvent
exposed, was selected as a core residue because of multiple con-
tacts with other buried hydrophobic core residues.

The simulated annealing procedure from one run of CORE pro-
duced a single sequence with a near minimizedScore~i.e., zero
bumps, near maximumDCp, and near minimumDSconf!. During
the subsequent low-temperature Monte Carlo sampling, 417 unique
sequences were generated of which nearly 75% exhibited better
~lower! Scores than the simulated annealing sequence. Among
these 417 predicted sequences was the native~WT! sequence that
exhibited an intermediate value forDCp and a large value for
DSconf. In addition to regenerating the WT sequence, the native
side-chain conformations of core residues was also reproduced.
With respect toScore, the WT sequence is ranked in the top 60%
of sequences predicted from the Monte Carlo sampling. A higher
rank is not expected because there is little natural evolutionary
pressure to produce proteins with maximum thermal stability and
cooperativity; undoubtedly, evolutionary pressure to optimize func-
tion is more dominant. Data on the WT sequence and the 10
sequences with lowestScoreare presented in Table 1. The top 10
sequences have values forDCp higher than that of the native,
suggesting that these designed variants would exhibit higherTm

values. Indeed, one of these sequences is the thermally stable
engineered variant,a90 ~Dahiyat & Mayo, 1997b!. The predicted
increase inTm compared to the WT value~DTm!, presented in
Table 1, is calculated using Equation 8 andDDCp values. Thea90
variant has a predictedDTm of at most 4.18C, while the measured
DTm value is 58C. The similarity in these values is an indication
that enthalpy and entropy convergence occurs fora90 and WT, and
that the backbone structures of these two proteins are very similar.
This latter conclusion is supported by experimental evidence in-
dicating similar structures fora90 and WT ~Dahiyat & Mayo,
1997b!.

Only 13,716 sequences out of the possible 2 billion~711: 11 core
positions, 7 hydrophobic amino acids! were sampled during the
sequence prediction run. For each of the sequences sampled, bumps
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were calculated for 2 million structures in which amino acid side
chains populate different rotamers derived from a rotamer library
file ~see Methods!, such that a total of nearly 33 1010 structures
were sampled. The output of this single run of CORE is repre-
sented graphically in Figure 2 that plots theDCp and DSconf for
sequences with zero bumps generated during both simulated an-
nealing and Monte Carlo sampling. The plot reveals the expected
correlation betweenDCp andDSconf mentioned above. In addition,
the plot shows that sequences sampled during simulated annealing
span a wide range ofScores ~DSconf 2 DCp!, while sequences
accepted during the low-temperature Monte Carlo sampling span a
much narrower range ofDCp andDSconf values. It is also notewor-
thy that sequences with the lowestScores are generated from the
Monte Carlo sampling, not the simulated annealing procedure,
justifying the use of low-temperature Monte Carlo sampling.

Not surprisingly, subsequent sequence prediction runs starting
from different random sequences do not produce the same 417
sequences; however, it is striking that from three separate runs of
CORE, the same 10 sequences presented in Table 1 are predicted
~data not shown!. This strongly suggests that the sequence with the
bestScore~see Table 1! is indeed at the global minimum.

434 cro

The cro protein from bacteriophage 434~434 cro! is a small 64
amino acid protein that does not contain disulfide bonds or metal
binding sites. The hydrophobic core of 434 cro has previously been
redesigned by Handel and co-workers using their protein design
program that scores sequences by employing both van der Waals
energy and changes in buried volume calculations~Desjarlais &
Handel, 1995!. Based on their computational results, several vari-
ants were synthesized and carefully characterized. In this previous
study, 12 hydrophobic core residues were targeted for redesign;
however, two of these residues~Leu13 and Trp58! exhibit sig-
nificant solvent exposure. Therefore, only 10 buried hydrophobic

amino acids were identified as core residues in the current study.
Exclusion of the residues at positions 13 and 58 did not preclude
direct comparison of the available experimental data with results
generated by CORE, because the native amino acids at these po-
sitions were retained for all predicted sequences in the previous
design. As was done in the previous study~Desjarlais & Handel,
1995!, a Cys residue at position 54 was mutated to Val, facilitating
direct comparison betweenScores generated by CORE and avail-
able thermodynamic data.

The low-temperature Monte Carlo sampling procedure from a
single run of CORE generated 151 sequences predicted to stabilize
the native structure of 434 cro. It was encouraging to find the
“WT” ~C54V! sequence among these predicted sequences. Once
again, it should not be surprising that this sequence is not found
among the top ranked sequences, because there is little or no
natural evolutionary pressure to produce a highly thermally stable
434 cro. Table 2 presents data on the top 10 predicted sequences.
Among these sequences is the only variant designed by Handel and
co-workers with a higherTm than the native. In addition, previ-
ously designed variants with lowerTm values were not predicted
because, as it turns out, these sequences are associated with non-
zero bumps~D-7 and D-8 in Table 2!.

Myoglobin

One of the principal difficulties in protein design is dealing with
the enormous number of combinations of all possible amino acid
sequences and side-chain conformations. This becomes particu-
larly challenging as the size of the target protein increases. How-
ever, the efficiency by which theScoreis calculated in CORE may
allow for sequence prediction of the hydrophobic cores of large
proteins. Horse heart myoglobin, which consists of 153 amino
acids including 34 residues that define an extensive hydrophobic
core, was chosen as the first test. The number of possible structures
~sequences and rotamers! is a staggering 1083 for this protein,

Table 1. Sequence prediction of core hydrophobic residues of Gb1 from a single CORE run

Core sequence position

Proteina
Rank
~0417! Bumps DSconf

b DCp
c Scored 3 5 7 20 26 30 34 39 43 52 54 DDCp0rese

Exp.
DTm

f
Calc.
DTm

g

WT 247 0 23.66 55.54 259.20 Y L L A A F A V W F V — — —
1 0 24.98 59.65 264.63 F . I . . . . I F . I 0.81 5.1
2 0 24.57 59.52 264.09 F . I . . . L I A . F 0.78 4.9
3 0 24.75 58.70 263.45 F . I . . . . I V . F 0.62 3.9
4 0 24.64 58.70 263.34 F . V . . . . I F . I 0.62 3.9
5 0 25.28 57.97 263.24 L . I . . . L I A . F 0.48 3.0

a90 6 0 24.30 58.88 263.18 F . I . . . . I . . . 0.66 5 4.1
7 0 25.03 58.09 263.13 L . I . . . . I F . I 0.50 3.1
8 0 24.95 58.09 263.04 F . I . . . . I L . I 0.50 3.1
9 0 24.25 58.76 263.01 F . . . . . . I . . . 0.63 4.0

10 0 24.26 58.64 262.90 F . . . . . . L . . . 0.61 3.8

aa90 was computer designed, synthesized, and characterized by Mayo and co-workers~see text!.
bAverage per residue conformational entropy change of folding for core residues in units of cal{mol21{K21{res21.
cAverage per residue heat capacity change of unfolding for core residues in units of cal{mol21{K21{res21.
dCalculated using Equation 12 withb 5 1 andg 5 1.
ePer residue change inDCp for the entire protein relative to WT.
fThe Tm of WT is 878C.
gCalculated using the upper limit value in Equation 8.
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Fig. 2. Plot of DCp vs. DSconf for Gb1 sequences with zero bumps sampled during the simulated annealing portion~white!, and
accepted during the Monte Carlo portion~light gray! of a single run of CORE. The top 10 sequences with respect toScore~2DCp 1
DSconf! are highlighted~dark gray! in the top left corner of the plot. The native sequence that was predicted during the Monte Carlo
run is also highlighted~black!. The dashed lines represent the WTDCp andDSconf values.

Table 2. Sequence prediction of core hydrophobic residues of 434 cro from a single CORE run

Core sequence position

Proteina
Rank
~0151! Bumps DSconf

b DCp
c Scored 2 6 20 26 31 34 45 48 52 59 DDCp0rese

Exp.
DTm

f
Calc.
DTm

g

“WT” 78 0 25.42 61.15 236.00 L L L V I I L I L L — — —
1 0 26.08 62.46 237.31 I I . I . I . . . . 0.21 1.3

D-5 2 0 26.13 62.32 237.29 I I . I . L . . . . 0.19 4 1.2
3 0 26.12 62.32 237.28 I I . I . . . L . . 0.19 1.2
4 0 26.14 62.19 237.24 I I . I . L . L . . 0.17 1.1
5 0 26.12 62.05 237.15 . . . I . . . L . . 0.15 0.94
6 0 26.57 61.02 237.08 I I . L V L . L . . 20.02 20.13
7 0 26.47 61.15 237.05 I I . L V . . L . . 0.00 0
8 0 26.47 61.15 237.05 I I V L . L . L . . 0.00 0
9 0 25.91 62.19 237.01 I . . I . . . L . . 0.17 1.1

10 0 26.35 61.29 237.00 I I V L . . . L . . 0.03 0.19

D-7 — 3 — — I F V L V . . L . . — 239 —
D-8 — 10 — — F I . L V L . L . . — 26 —
M-5 — 5 — — . . . L L L . L . . — 223 —

aD-5, D-7, and D-8 were computer designed, synthesized, and characterized by Handel and co-workers~see text!. M-5 has all core residues mutated to
leucine. The bottom three sequences were not predicted by CORE due to nonzero bumps and are shown only for comparison.

bAverage per residue conformational entropy change of folding for core residues in units of cal{mol21{K21{res21.
cAverage per residue heat capacity change of unfolding for core residues in units of cal{mol21{K21{res21.
dCalculated using Equation 12 withb 5 1 andg 5 0.5.
ePer residue change inDCp for the entire protein relative to WT.
fThe Tm of C54V ~“WT” ! is 568C.
gCalculated using the upper limit value in Equation 8.
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resulting from the possible seven hydrophobic residues and an
average of 40 rotamers per residue position.

In a single run of CORE, only 3,000 sequences were sampled
during the simulated annealing procedure to yield one sequence
near the global minimum with respect toScore; this step took 86 h
on an SGI Onyx Workstation~MIPS R10000, 180 MHz proces-
sor!. The subsequent low-temperature Monte Carlo sampling pro-
cedure, which was manually terminated after 7 days, produced 202
unique sequences with remarkable sequence homology to WT.
One of the predicted sequences, ranked in the top 10%, has nearly
75% ~25 of 34! core residue identity with WT. Data on this se-
quence and the top five predicted sequences are presented in Table 3.
All six sequences in Table 3 are associated with largerDCp and
lowerDSconfvalues compared to WT, suggesting that these variants
would exhibit higherTm values and cooperativity. The predicted
structure of the top ranked sequence is strikingly similar to that of
the crystal structure of WT. The identity and side-chain conforma-
tion of all seven WT aromatic core residues~W14, F23, F43, F46,
F123, F138, Y146! are duplicated in the predicted structure with
the exception of a minor Y146F mutation. One hundred twenty-
nine ~87%! of the 149 nonhydrogen side-chain atoms from the 34
core amino acids in the WT structure are duplicated in the pre-
dicted structure, with an RMS deviation of only 0.4 Å.

A plot of DCp vs.DSconf for sequences with zero bumps sampled
during the simulated annealing and Monte Carlo procedures is
presented in Figure 3. The plot highlights theDCp and DSconf

values for WT, which are on the edge of the values generated
during Monte Carlo sampling. This may explain why the WT
sequence is not predicted, despite high homology with the pre-
dicted sequences.

A random subset of the predicted myoglobin sequences was
analyzed to quantitatively demonstrate the relationship discussed
above between the extent of networking of side-chain contacts
~i.e., cooperativity! and conformational entropy. Figure 4 presents
the results in which a “contact index” is plotted as a function of
conformational entropy. The contact index is calculated using Equa-
tion 13 and corresponds to the extent of networking within the
protein interior.

Contact Index5
(

i

i5Ng

@mi ~mi 2 1!#

2Ncore~2Ncore2 1!
~13!

whereNcore is the total number of core residues,mi is the number
of amino acids in an island of side chains within van der Waals
contact, andNg is the number of islands. The factor of 2 in the
denominator assumes that core residues make on average one
contact with a noncore residue such that the contact index ranges
from 0–1. The contact index favors long-range side-chain inter-
actions that lead to extensive networks; for example, two proteins
each withNcore 5 10 and two clusters of contacting side chains
~Ng 5 2! exhibit very different contact indices if one of the proteins
has 2 and 18 amino acid clusters and the other has 10 and 10 amino
acid clusters. In the former the contact index is 0.8, while in the
latter it is 0.5.

Methionine aminopeptidase

Final validation of the scoring function and optimization algo-
rithm employed by CORE was accomplished through prediction

of the core sequence of a protein nearly twice the size of myo-
globin; methionine aminopeptidase from the hyperthermophilic
organism Pyrococcus furiosus. This 259 amino acid protein
contains an extensive hydrophobic core consisting of 63 amino
acids.

In the three previous runs, simulated annealing was initiated at
a high Metropolis temperature starting with a random sequence. A
significant portion of the simulated annealing run is therefore de-
voted to predicting sequences with zero bumps. It is only in the
latter portion of the simulating annealing procedure that theDCp is
maximized and theDSconf is minimized. For this much larger pro-
tein, simulating annealing was initiated at a lower Metropolis tem-
perature starting from a sequence in which all 63 positions were
mutated to Ala. This step, while still avoiding input of a sequence
bias, significantly shortens the run time because sequences that
exhibit zero bumps are predicted from the beginning and the whole
simulated annealing procedure is devoted to maximizingDCp and
minimizing DSconf.

A single run of CORE produced 330 unique sequences; data on
the top five sequences as well as the sequence with the highest
homology to WT are presented in Table 4. The top five sequences
have better~lower! Scores than WT, indicating that these protein
variants would exhibit enhanced thermal stability and cooperativ-
ity compared to WT. The sequence with highest homology is ranked
in the top 10% and has 45 out of 63 positions that match the
sequence of WT. The striking similarity to WT is made even more
remarkable when considering that the probability of obtaining 45
matches through random selection is 10224. The native sequence is
not generated, despite having aScorewithin the range of predicted
sequences. This may in part be due to the fact that there is an
enormous number of possible sequences~1053! for the 63 amino
acid core.

The efficiency by which simulated annealing reaches a sequence
near the global minimum is shown in Figure 5 that plots theDCp,
DSconf, and theScorefor all sequences sampled during the run. The
plot reveals that at early times during simulated annealing when
the Metropolis temperature is relatively high the algorithm allows
for escape from local minima. It is clear from the plot that the
subsequent low-temperature Monte Carlo sampling procedure pro-
duces sequences withScores lower than that generated during
simulated annealing.

Discussion

We have demonstrated that for a series of proteins with fixed
backbone structure and constant polar contribution to the thermo-
dynamics of folding, increases inDCp ~associated with increases in
buried hydrophobic surface area! correlate to increases inTm and
increases inDGu above a fixed temperature between 20 and 508C
defined by the convergence parameters. Metropolis-driven simu-
lated annealing and low-temperature Monte Carlo sampling are
effectively utilized to sample the enormous number of possible
sequences and side-chain conformations to predict hydrophobic
core sequences and structures of native proteins. Results are pre-
sented for hydrophobic core sequence prediction of four proteins
ranging in size from 56 to 259 amino acids. These results clearly
validate the use of hard sphere bumps to accurately represent steric
compatibility with a target structure. Also validated is the use of
heat capacity change and conformational entropy as design cri-
teria to predict sequences of thermally stable proteins with high
cooperativity.
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Table 3. Sequence prediction of core hydrophobic residues of myoglobin from a single CORE run

Core sequence position

Protein
Rank
~0202! Bumps DSconf

a DCp
b Scorec 2 10 13 14 17 28 29 30 32 33 43 46 49 61 68 69 72 75 76 86 89 99 104 107 110 111 114 115 123 134 135 138 142 146

WT — 0 25.15 61.29 266.44 L V V W V V L I L F F F L L V L L I L L L I L I A I V L F A L F I Y
1 0 25.63 63.30 268.93 . L . . L I . . . . . . . . I . . . F I F V I V . V . . . . . . L F
2 0 25.89 62.86 268.75 . L . . L L . . . . . . . . I . . . F I F A I V . L . . . . . . L F
3 0 25.93 62.79 268.72 . L . . L I . . . . . . . . I . . . F I F V I V . V . . . . . L L F
4 0 26.29 62.38 268.67 . L . I L L . . . . . . . V I I . . F V Y . I . . L . . . . . . . F
5 0 26.00 62.55 268.55 . L . . L L . . . . . . . . I . . . F I . V I V . . . . . . . L L F

23 0 25.62 62.47 268.09 . . . . L L . . . . . . . . I I . . . . F . I . . L . A . . . . . F

aAverage per residue conformational entropy change of folding for core residues in units of cal{mol21{K21{res21.
bAverage per residue heat capacity change of unfolding for core residues in units of cal{mol21{K21{res21.
cCalculated using Equation 12 withb 5 1 andg 5 1.

Table 4. Sequence prediction of core hydrophobic residues of methionine aminopeptidase from a single CORE run

Protein
Rank
~0330! Bumps DSconf

a DCp
b Scorec Core sequenced

WT — 0 23.26 50.82 254.08 L A A V A A L L A I I A F V L I A A L L I V V I A A V V V A A A L A A A I L A I I I L I L A I L V F A I F A V L V A F I I V V
1 0 23.77 51.20 254.97 . . . . . . A . . . V . . L I L I . F V V . . F . . I L I . . . . . . . . . . . . . . . F . L W I I . . I . . . A . . V . . .
2 0 23.98 50.97 254.95 . . . . . . A . . . L . A L F . I . F V V . . F . . I L I . . . . . . . . . . L L . I . F . L W I I . . I . . . A . . . V L .
3 0 23.78 51.15 254.93 . . . . . . A F . . L . . . V . I . Y V . I . F . . I L I . . . . . . . V F . V V . I . F . . . I . . V L . . . A . . . . L .
4 0 23.75 51.16 254.92 . . . . . . A . . . . . . . . . I . F V L L . . . . I L I . . . . . . . . I . . LV . L . . L . I . . F I . . . A . . V . I .
5 0 23.79 51.13 254.91 . . . . . . A F . . L . . . V . I . Y V . I . F . . I L I . . . . . . . V F . V V . . . F . . . I . . V L . . . A . . . . L .

36 0 23.68 50.83 254.51 . . . . . . A . . . . . . . . . I . F V L L . . . . I L I . . . . . . . . I . . L . . . . . L . I . . F A . . . A . . V . I .

aAverage per residue conformational entropy change of folding for core residues in units of cal{mol21{K21{res21.
cAverage per residue heat capacity change of unfolding for core residues in units of cal{mol21{K21{res21.
cCalculated using Equation 12 withb 5 1 andg 5 1.
dCore residue positions: 6, 9, 13, 16, 20, 24, 30, 33, 34, 37, 41, 49, 50, 52, 54, 56, 60, 61, 73, 79, 81, 83, 85, 91, 92, 95, 96, 98, 100, 110, 111, 114, 115, 117,118, 122, 128, 131, 134, 135, 139, 147,

150, 155, 160, 162, 166, 178, 183, 184, 185, 186, 189, 190, 197, 268, 276, 277, 279, 283, 284, 285, 290.
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Conformational entropy and free energy of unfolding

Side-chain conformational entropy of folding~DSconf! is mini-
mized using CORE to predict sequences with maximum coopera-
tivity. At first glance, this might appear to have the inadvertent
effect of decreasingDGu, because conformational entropy is a
major portion of the entropic component of the free energy of
protein folding, contributing as much as20.5 kcal{mol21 per
rotamer at room temperature~Doig & Sternberg, 1995!. However,
decreases inDS of folding are compensated by a similar decrease
in DH of folding near room temperature. This is often referred to
as enthalpy-entropy compensation of protein thermodynamics
~Lumry & Rajender, 1970; Dunitz, 1995!. The result of the nearly
1:1 compensation between enthalpy and entropy leads to small and
unpredictable modulation ofDGu upon changes inDSconf.

Enthalpy–entropy compensation is a general feature of many
chemical reactions and processes in biological systems~Lumry &
Rajender, 1970; Dunitz, 1995!. Enthalpy–entropy compensation of
folding has also been reported for natural proteins and their mu-
tants~Hawkes et al., 1984; Shortle et al., 1988!. The slope of the
linear plot ofDH 8 vs.DS8 is the compensation temperatureTc. The
value of Tc is close to room temperature~Lumry & Rajender,
1970!; therefore, the wide range ofDHu andDSu values for native
proteins are adjusted so thatDGu remains nearly constant at room
temperature. A consequence of enthalpy–entropy compensation
with respect to protein design is that enthalpy and entropy terms
should not be optimized separately if protein thermodynamics is a
design goal; it is the combination of enthalpy and entropy that

yields stability at all temperatures.DSconf is minimized in CORE
only to produce sequences of proteins with high cooperativity and
is not intended to be used as a criteria to optimize thermal or
chemical stability. As indicated by Equation 5, it is only through
maximizingDCp that individual contributions fromDH andDSare
jointly accounted for to produce sequences with optimal thermal
stability.

Use of van der Waals energy as a design criteria

A simple and computationally efficient hard-sphere bump calcu-
lation is employed in CORE to define steric compatibility with an
input target structure. However, most other protein design pro-
grams utilizeEvdw instead to define steric compatibility. Further-
more, low Evdw is often assumed to be associated with well-
ordered, thermally stable proteins. Therefore, programs that utilize
Evdw generate sequences predicted to stabilize an input target struc-
ture by searching for sequences associated with minimalEvdw of
the folded state of a protein. Although implementingEvdw in this
way may seem logical, it is, in fact, very unlikely that any corre-
lation betweenEvdw and thermal stability exists for the following
reasons:~1! the unfolded state or states of a protein cannot be
ignored when enhanced thermodynamic stability is the design goal;
~2! the existence of complex correlations betweenEvdw and other
parameters that contribute toDG, such as hydrophobic surface area
and side-chain conformational entropy, makes the magnitude and
sign of the contribution ofEvdw to DGu and Tm impossible to

Fig. 3. Plot of DCp vs. DSconf for myoglobin sequences with zero bumps sampled during the simulated annealing portion~white!,
and accepted during the Monte Carlo portion~light gray! of a single run of CORE. The top five sequences with respect toScore
~DSconf2 DCp! are highlighted~dark gray! in the top left corner of the plot. TheDCp andDSconf values of the native sequence that was
not predicted are highlighted with dashed lines. The plot clearly shows the expected correlation betweenDCp andDSconf mentioned
in the text.
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determine; and~3! the value ofEvdw is subject to potentially large
errors, because it is necessary in protein design programs to define
side-chain conformations using a discrete rotamer library. This last
reason presents the most significant problem with respect to using
Evdw as a design criteria, because slight fluctuations in side-chain
torsion angles can lead to dramatic changes inEvdw. For example,
changes in the side-chain torsion anglesx1 andx2 within a small
58 window result in side-chain hydrogen atoms shifting position by
as much as 0.5 Å for Phe and 0.3 Å for Leu. Considering only one
nonbonding H{{{H interaction, a change in H{{{H distance of
0.5 Å, from a reasonable distance of 2.5 to 2.0 Å, increasesEvdw

~12,6 Leonard–Jones potential! by about 4 kcal0mol. A change of
0.5 Å, from the reasonable distance of 2.2 to 1.7 Å, is associated
with an increase inEvdw of ;40 kcal0mol. Clearly, Evdw of a
structure generated using a discrete rotamer library may not accu-
rately represent steric compatibility. To demonstrate this, the van
der Waals energies of 16 random myoglobin structures with zero
bumps sampled during a CORE run~see Results! were calculated
using the Tripos Force Field~in Sybyl 6.3!. These protein struc-
tures were then energy minimized using 10 iterations, holding the
backbone atoms and heme group fixed. A plot of the resultingEvdw

min

vs. the initialEvdw ~Fig. 6A! shows only weak correlation between
the two energies~slope5 0.47! with significant noise~correlation
coefficientR 5 0.36!. This plot demonstrates the potential errors
associated with usingEvdw of structures generated using discrete
rotamer libraries and idealized side chains. Subsequent analysis of
the minimized structures reveals that indeed the 10-iteration min-
imization led tox2 angle changes of as large as 68 for some of the
amino acids. One way to minimize these errors associated with

using Evdw as a criterion to represent steric compatibility is to
define side-chain torsion angles using a small enough increment;
however, the increment must clearly be less than 58, a condition
that is not computationally feasible. For side chains with two tor-
sion angles~Leu, Ile, Phe, Tyr, Trp!, the number of rotamers would
approach 500 if a 58 incremented rotamer library were used. Sig-
nificantly longer time would then be required to effectively sample
the enormous number of possible conformations. The error asso-
ciated with usingEvdw can be partially overcome by decreasing the
van der Waals radius scaling factor~Dahiyat & Mayo, 1997b!;
however, this may lead to selection of sequences with side chains
that in reality are sterically clashing.

The use of hard-sphere bumps to select sequences sterically
compatible with target structures does not, of course, avoid any of
the potential errors associated with usingEvdw. In fact, the way in
which bumps are employed as a design criteria in CORE intro-
duces an additional potential error; a contact that is only 0.001 Å
shorter than the predefined cutoff distance would be associated
with a nonzero bump and would, therefore, be rejected. The “soft-
ness” ofEvdw avoids this problem to some degree. Although there
will be significant overlap between sequences predicted usingEvdw

and bumps, there will undoubtedly be sequences that one criteria
rejects that the other accepts and vice versa. To demonstrate this
point, Evdw and Evdw

min of myoglobin sequences presented in Fig-
ure 6A are plotted as a function ofDCp ~Fig. 6B,C!. The shaded
region in Figure 6B indicates the range ofDCp values for CORE-
predicted sequences and the dark circles represent actual se-
quences predicted by CORE. About half of these sequences are
associated with van der Waals energies high enough~100 kcal0mol

Fig. 4. Plot of contact index vs.DSconf for a random sampling of 16 predicted myoglobin sequences. The contact index represents the
extent to which side chains form long-range contacts giving rise to extended side-chain networks, a key feature of uniquely folded
natural proteins with cooperative unfolding transitions. The plot demonstrates that minimizingDSconf is an effective means by which
protein cooperativity can be maximized.
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higher than the minimum! that it appears they would have been
rejected ifEvdw were used as a design criteria. To demonstrate that
these sequences are not, in fact, incompatible with the native struc-

ture of myoglobin,Evdw
min was plotted as function ofDCp. This plot

~Fig. 6C! shows that all the predicted sequences generated by
CORE are, in fact, sterically compatible with the native structure

Fig. 5. Plots showing the optimization ofDCp, DSconf, andScoreas a function of sequence number for methionine aminopeptidase
sequence prediction using CORE. Because the starting point is the sequence in which all positions are mutated to Ala, the initialDCp

value is 30.15 cal{mol21{res21 and the initialDSconf is 0 cal{mol21{res21. Approximately 1,700 sequences were sampled during the
simulated annealing portion of the run. Many of the predicted sequences from the subsequent low-temperature Monte Carlo sampling
have lowerScoresthan that of the sequence predicted from simulated annealing.
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of myoglobin. The plot also shows a striking correlation between
DCp andEvdw

min, suggesting that sequences with lowEvdw
min will indeed

be associated with stable protein structures possessing highTm and
DGu. The correlation is not surprising, because largeDCp of se-
quences with zero bumps is associated with large buried hydro-
phobic surface area, which is in turn, most likely associated with
low van der Waals energy because of increased favorable hydro-
phobic interactions. Of course, this correlation does not provide
any utility with respect to employingEvdw

min as a design criteria,
because calculatingEvdw

min from a 10-iteration energy minimization
requires approximately five orders of magnitude more time than a
hard-sphere bump calculation. The weak correlation betweenDCp

andEvdw, especially at high energy, provides a possible explana-

tion for some of the observed similarities in sequence prediction
between CORE and other design programs~see Results!, despite
the use of very different criteria to define protein stability. Al-
though the use ofEvdw and bumps in defining steric compatibility
are both associated with potential errors as a consequence of the
necessary implementation of discrete rotamer libraries, a hard-
sphere bump calculation is associated with shorter computation
times and therefore appears to offer an advantage over the use of
Evdw to define steric compatibility.

The appropriate way to implementEvdw in protein design pro-
grams is to define a cutoff energy for which sequences withEvdw

above this energy are rejected. A second criteria that can be shown
to correlate to measurable thermodynamic parameters such as heat

A

B

C

Fig. 6. A: Plot of van der Waals energy after a 10-iteration energy minimization vs. van der Waals energy before minimization for 16
random myoglobin structures sampled during a CORE run.B: Van der Waals energy plotted as a function ofDCp for these same
myoglobin structures, showing no obvious correlation. The shaded region represents the range ofDCp values for predicted myoglobin
sequences, black circles represent predicted myoglobin sequences, and open circles represent sequences with zero bumps sampled, but
not predicted.C: Van der Waals energy after the 10-iteration energy minimization vs.DCp, showing good correlation between these
parameters.
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capacity change should then be used to rank the sequences with
Evdw below the cutoff energy. The value of the cutoff energy is dif-
ficult to determine~as is the cutoff distance in a bump calculation!,
because it is important thatall sterically compatible sequences be
accepted whileall sequences with clashing side chains be rejected.
Adjusting scale factors that modulate the van der Waals radii inEvdw

calculations~Dahiyat & Mayo, 1996! is often necessary to achieve
the desired balance between accepting sterically compatible se-
quences while rejecting sequences with clashing side chains.

The results presented here demonstrate that hard-sphere bumps
accurately represent steric compatibility with a target protein struc-
ture. The use of van der Waals energy to accomplish the same thing
offers no significant advantage and is computationally less effi-
cient. The results also show that side-chain conformational entropy
of folding and heat capacity change of unfolding yield a scoring
function that can be effectively minimized using Metropolis-
driven simulated annealing and low-temperature Monte Carlo sam-
pling, thus allowing sequence prediction of proteins exhibiting
optimal cooperativity and high thermal stability. Moreover, the
“force field” employed in CORE is simple and highly efficient to
calculate, thereby greatly facilitating the design of large synthetic
proteins and reengineered natural proteins that exhibit optimized
thermal and chemical stability.

Methods

Rotamer library

Accurate side-chain entropy calculations and bump calculations
rely on the use of an extensive rotamer library with a large range
of allowable torsion angles incremented by relatively small steps.
To generate an accurate rotamer library for use in CORE, analysis
of side-chain conformations of the hydrophobic amino acids of 44
nonhomologous high resolution protein crystal structures using
Iditis ~Oxford Molecular, Oxford, United Kingdom! was con-
ducted ~the list of proteins was obtained from Williams et al.,
1994!. This revealed that rotamers were scattered about a mean
value within a range of about 408 for eachx angle. Therefore, to
generate the rotamer library used to define side-chain conforma-
tions in CORE, each averagex value of a rotamer was expanded
by 6208 such that each Val rotamer was expanded by an additional
two rotamers, each Ile, Leu, Phe, Tyr, and Trp rotamer was ex-
panded by an additional eight rotamers, and each Met rotamer was
expanded by an additional 26 rotamers. The resulting rotamer li-
brary contains a total of 657 rotamers~Ile 5 54, Leu5 63, Met5
378, Phe5 45, Trp5 63, Tyr5 45, Val5 9!.

Protein input

WT structures were obtained from the Brookhaven Protein Data
Bank ~Gb1, 1PGA; 434 cro, 2CRO; myoglobin, 1WLA; methio-
nine aminopeptidase, 1XGO!. To more accurately describe side-
chain contacts, explicit hydrogen atoms were added using the
Biopolymer module in Sybyl 6.3~Tripos, St. Louis, Missouri!.
Potential strain introduced by addition of hydrogen atoms was
relaxed by a 100-iteration energy minimization using the Kollman
all-atom force field and Kollman charges, distance dependent di-
electric constant of 6, nonbonding cutoff of 8.0 Å, and aggregated
backbone atoms. To assure that core residues remain buried during
side-chain mutations and rotations, minimized proteins were solv-

ated with one layer of H2O using the droplet method in Sybyl and
a van der Waals bump factor of 1.0. Core residues were initially
identified using the program DSSP~Kabsch & Sander, 1983! and
then confirmed and modified if needed by visual inspection.
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