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Abstract

A new computer prograffCORE) is described that predicts core hydrophobic sequences of predetermined target protein
structures. A novel scoring function is employed, which for the first time incorporates parameters directly correlated to
free energies of unfoldingAG,), melting temperature@l,,), and cooperativity. Metropolis-driven simulated annealing

and low-temperature Monte Carlo sampling are used to optimize this score, generating sequences predicted to yield
uniquely folded, stable proteins with cooperative unfolding transitions. The hydrophobic core residues of four natural
proteins were predicted using CORE with the backbone structure and solvent exposed residues as input. In the two
smaller proteins teste@3B1, 11 core amino acids; 434 cro, 10 core amino ge¢ithe native sequence was regenerated

as well as the sequence of known thermally stable variants that exhibit cooperative denaturation transitions. Previously
designed sequences of variants with lower thermal stability and weaker cooperativity were not predicted. In the two
larger proteins teste@yoglobin, 32 core amino acids; methionine aminopeptidase, 63 core aming, aeigsences

with corresponding side-chain conformations remarkably similar to that of native were predicted.

Keywords: computational; conformational entropy; convergence temperature; heat capacity; Metropolis Monte Carlo;
protein design; simulated annealing

Considerable attention has recently been directed at the design bte & Levitt, 1991, and genetic algorithm®esjarlais & Handel,
protein sequences that fold into predetermined struct(ifash- 1995, are then employed to optimize the score. However, despite
scherer et al., 1998Target structures include functional de novo tremendous efforts, there are only a few examples of designed
designed proteins, thermally or chemically stable variants of natproteins that fold into predetermined target structures with prop-
ural enzymes, and enzymes with altered functionality. Methods foerties that characterize well-ordered stable proteins. These prop-
producing proteins with targeted structure and function includeerties include(1) structural uniqguenes$2) maximum stability at
iterative design and characterizatidbeGrado et al., 1989com- room and physiological temperatures as indicated by large free
binatorial synthesisKamtekar et al., 1993 and computational energies of unfoldingAG,) at these temperature§3) optimal
approachesStreet & Mayo, 1998 With recent dramatic increases thermal stability as indicated by high values My, the tempera-
in computing speeds, computational approaches aimed at generatie at whichAG, = 0 (for monomeric proteins and (4) highly
ing sequences that stabilize desired target structures have becomeoperative unfolding transitions, indicating that the protein folds
more feasible as evidenced by several noteworthy succ@dsés into a highly ordered structure. One of the primary barriers to
linga & Richards, 1994; Desjarlais & Handel, 1995; Dahiyat & producing proteins with these key properties is the difficulty in
Mayo, 1996, 1997a; Su & Mayo, 1997; Harbury et al., 1998; Konodeconvoluting all of the terms that contribute to protein thermo-
et al., 1998. Computer programs have been written that “score”dynamics and structural uniqueness. In addition, it is necessary to
sequences by utilizing one or a combination of van der Waalgalculate these energy terms for both the folded and unfolded
potential energy, solvation energy, amino acid propensities for secstates, a task that clearly presents a significant challenge. The use
ondary structure, electrostatic energy, and hydrogen bond energgf terms such as amino acid secondary structure propensities or
Various optimization algorithms, such as simulated anneélited- solvation energy avoids the need to explicitly consider the un-
linga & Richards, 1994 dead-end eliminatiofDesmet et al., folded state; however, it is not clear whether consideration of these
1992, Metropolis Monte Carlo samplingHolm & Sander, 1991; terms alone can lead to accurate sequence predictions. Another
significant complication is that individual terms that contribute to
Reprint requests: Ramy S. Farid, Department of Chemistry, Rutgergroteinthermodynamics are correlated to one another in a complex

University, 73 Warren Street, Newark, New Jersey 07102-1811; e-majlnonlinear way, making it difficult to determine whether a partic-
rfarid@newark.rutgers.edu. ular term should be increased or decreased to produce stable pro-

403




404 X. Jiang et al.

teins. The goal is, therefore, to define criteria that are directlyAG,(T) = N,os{AH; — TAS; + AC,[(T — Ty) — T In(T/TS)]}.
correlated to experimentally measurable thermodynamic param-

eters that define protein stability, to rapidly calculate these criteria, S

and then to efficiently optimize the criteria. To this end, a new ) . . .
computer prograniCORE) has been developed that predicts se-Model compound and protein studies have yleldeq the following
quences and side-chain conformations of hydrophobic core resﬂallies for the convergence Ee;ramt_ei(%rehy & Freire, 1992

dues by scoring sequences with criteria that are shown to directl$® H{l: 1;?50 J—ilo'll caimol™*-res, AS) = 4.30+ 0.1 cal
correlate to the free energy of unfoldiigG,), melting tempera- M0l ~-K™~-res %, Ty = 373.5£ 6K, T = 385+ 1 K. Therefore,

ture (T,,), cooperativity, and structural uniqueness. We recentIyEq“at'on 6 expresses the free energy of unfolding as a fu_nctlon of
reported on the de novo design of a thermally stable Symhetiéemperature, the number of residues, and the heat capacity change

protein using COREJiang et al., 1997 This paper describes ©f unfolding per residue.
CORE in more detail and presents sequence prediction results of
native proteins that validate the scoring function and the algo-  AGu(T) = Nies{1.35— 0.0043T

rithms employed to optimize the score. +AG,[(T—373.5 - TIn(T/385]}.  (6)

Results Figure 1 shows the dependenceAds, on temperature for a hy-
pothetical 100 amino acid protein calculated using Equation 6.
Three curves are presented for different valueA@f that bracket
the range of values found for natural proteins, 10—20roal~*-
A primary goal in protein design is the generation of proteins that ~*.res™* (Murphy et al., 1990 The plot clearly shows thak,,
exhibit large free energies of unfoldindG,) and high melting  increases monotonically with increasirztgfp. AG, above 22C
temperature¢Ty). The analysis presented below reveals that de<(T,) also increases with increasing,. T; depends on the value of
sign of proteins exhibiting maximalG, and T, values can be the convergence temperatuigsandTs. Given the range in values
accomplished by maximizing the heat capacity change of unfor T andT¢, the highest value foF; is ~54°C, occurring when
folding (ACp), as long as hydrophobic amino acids are modified T¢ is at the lower limit(384K) and T} is at the upper limit
exclusively, and the protein backbone structure is fixed. It is dem{379.5 K). Therefore, it is conceivablébut less likely that in-
onstrated below that only under these conditions is it possible to
quantitatively expresaG, and T, as a function oAC,,.

The temperature dependenceAdd, can be obtained by con-
sidering the temperature dependence of the enthalpy,) and 15 . T Y , r ;
entropy (AS,) of unfolding, expressed in Equations 1 and 2, re-
spectively, whereT is temperatureTg and T are reference tem-
peratures, andC, is assumed to be temperature independent. It 1g
has been experimentally demonstrated th@g exhibits little de-
pendence on temperature from 20 td°8QPrivalov & Gill, 1988.

Free energy of unfolding and thermal stability

Above 80°C, AC,, decreases, approaching zero-&t30°C. 5
3
AH,(T) = AH(Tg) + AC, X (T—T,) 1 E
So
AS(T) = AS(TR) + AC, X In(T/TR). (2 &
a
When normalized to the number of residu@$es), the value of -5

AH, for proteins converges to approximately the same vAlHg

at a common temperatuii; (Privalov & Khechinashvili, 1974

The same is true foAS,; at a common temperatuf&, proteins -10
have approximately the same entropy of unfolding per residue
AS;. These convergence temperatures are the temperatures at

which the apolar contributions to bottH ° andAS® are zero(see -15 1 1 1 L I\

below for more details The convergence parameters can be in- -20 0 20 40 60 80 100 120
corporated into Equations 1 and 2 to yield Equations 3 and 4, Temperature (°C)

respectively.

Fig. 1. Plot of free energy of unfoldingAG,) vs. temperature generated
using Equation 6 for three hypothetical 100 amino acid monomeric pro-
AHu(T) = NiesAH + AC, X (T = T) (3) teins that have the same backbone structure, but different values of the heat
capacity change per resid&Cp). Equation 6 is valid ifAC, is modulated
by altering hydrophobic amino acids without concomitant changes in the
AS(T) = NeesAS) + AC, X In(T/TE). (4)  backbone structure or burial of polar groups. This condition assures that
enthalpy and entropy convergence will ocdgee text for details Tp,
. values(the temperature at whichG, = 0) increase with increasingC,.
The fre_e energy of unfolding can t.herefore be expressed by EquaA-Gu above 22C also increases with increasing,. (a) AC, = 0.01 kcefy
tion 5, in which the_heat capacity is now expressed as the averaggol/K /res, (b) AC, = 0.015 kcafmol/K /res, (c) AC, = 0.02 kcaymol/
per residue valueAC,,. K/res.
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creases imC, would result in increases inG, only at tempera-  (Murphy & Freire, 1992 Under these conditions, the apolar con-
tures higher than 54C rather then 22C, as indicated in Figure 1. tribution to AH° is zero atT,; and the apolar contribution S°

It is particularly useful to express the differenceTin(AT,,) for is zero such thaAH;; andA S represent the polar contribution to
two proteins at a given set of values of the convergence parametetie thermodynamics af;; and T, respectively. It is expected,
as a function of the change inC,(AAC,). However, it is not  therefore, that within a series of proteins in which the backbone
possible to express the true relationship betwa&n and AAC, structure is maintained and only hydrophobic core residues are
because of the transcendental form of Equation 5. Derivation of amodified, the convergence parameters will remain constant such
empirical relationship reveals thafT,, is linearly dependent on that Equation 5 is valid and an increaseA@, will, in fact, be
AAC, and on a weighted linear combination of the convergenceassociated with an increase Ty, as well as an increase G,
parameters as indicated by Equation 7, wreere —0.0127,b = above 20 to 50C.
3.03,c = —0.114,d = 0.0925,e = 14.7.

AT, = (aAHJ + bAS; + cTi +dTS + e Protein structural uniqueness and cooperativity

@) Native proteins generally adopt highly ordered, densely packed,
unique structures in solution. This is evident from the cooperative

. . unfolding transitions observed for natural proteins. It has been
Given the range in values of the convergence parameters, Equar

tion 7 can be simplified to Equation 8, which expresses a simplefh.owr.] prewou_sly th_at the primary source of c_:oop_eratlwty n pro-
. = eins is extensive side-chain contacts that give rise to expansive
linear dependence afT,, on AAC,,.

networks of interacting amino acidBreire & Murphy, 1991; Mur-

phy et al., 1992 Extensive side-chain contacts lead to highly
ordered structures with constrained side-chain mobility and thus
) . low side-chain conformational entropy. Therefore, side-chain con-
Equation 8 reveals that aT, value as large as 6.1 times the ¢, mational entropy was chosen as a criteria by which sequences

difference in heat capacity change per residegpressed in ¢ niquely folded proteins with cooperative unfolding transitions
cal-mol~*-K~*.res™) can be observed. This is put into perspec- .4,y pe predicted.

tive by considering that a mutation of a single buried Ala residue 1o conformational entropy change upon folding of a single

to a_Fl>he_|r11 a h}’fomet'ca' 50 amino acid proteddC, = 1 cal  5ming acid(AS.,,) can be calculated using the Boltzmann equa-
mol~t.Kt.res! (see pelov)/] would result in an increase My tion given by Equation 1@Shenkin et al., 1996

of as much as 8C, provided that the mutation does not induce a
change in the backbone structure.

AC, can be expressed as a function of the change of buried
apolar and polar surface area upon unfolding as shown in Equa-
tion 9 (Murphy & Gill, 1991). whereR is the gas constant al is the number of conformations

adopted in the unfolded state, taken here as the total number of
AC, = 0.45AASA, — 0.26 AASA 9) possible rotamersn,,) derived from a suitable rotamer library
(see Methods Because of the lack of information for the unfolded
whereAC, is expressed in units of cahol~-K %, andAASA,, state, all rotamers in the unfolded state are treated as energetically

andAASAml are the Changes in solvent accessible surface area iﬁquivalent.W* is the number of allowable rotamers in the folded

A2 upon protein denaturation for apolar and polar areas, respetate weighted by the probability of each rotamer existing in the

tively. The constants are taken from solid model compound studiefolded structure. It is convenient to think 99" as the effective

(Murphy & Gill, 1991) and have been shown to be reasonablynumber of rotamers in the folded sate. Equation 11 exprésses

accurate in estimating values A€, for proteins(Murphy et al., ~ as & function ofy; and the fractional population of each rotamer

1992. If amino acid side chains are fully buried, and the proteinstatei in the folded state.

backbone is fixedsuch that solvent exposure of main-chain atoms

remains constantAC, for each amino acid is constant; therefore, Mrot

the AC,, for core residues can simply be calculated from a lookup W = eXp(-E pi |n(pi)>- (11

table of individualAC, values. Using values fok ASAobtained :

from Privalov and Makhatadz€ 990, the following AC, values ) )

for buried hydrophobic amino acids were calculated: AI80.2, The conformational entropy change for the hydrophobic core of a

Met = 41.5, Val= 52.6, Tyr= 53.6, Leu= 61.6, lle= 63.0, Phe= protein is the average afS.,n¢for each core residua.S.on¢for Ala

78.7, and Trp= 80.7 calmol 1.K L, is zero, because the conformational entropy in the folded and
The quantitative expressions presented above, relatigto ~ unfolded state are the same.

AG, and T, are valid only if enthalpy and entropy convergence

actually occurs. The convergence of thermodynamic quantities aéumps

some temperature will occur when there are two dominant inter-

actions(e.g., apolar and polathat independently contribute to the Steric compatibility is undoubtedly the most important criteria

thermodynamics, and when one of these interactions is constamecessary to stabilize a target structure. Amino acid side chains

(Murphy & Freire, 1992; Murphy & Gill, 1990, 1991 Because that exhibit unfavorable van der Waals interactions will most likely

only the hydrophobidapola) contribution is modified by muta- induce changes in the backbone structure to relieve steric crowd-

tion of core residues without significant effect on the polar con-ing. Most commonly a van der Waals energy calculation is em-

tribution (such as hydrogen bondsonvergence will be observed ployed in an attempt to accurately represent steric compatibility

X AAC, (cal-mol™*-K™*.res™).

AT, = (3.6+ 2.5 X AAC,, (cal-mol™*-K™*.res™?). (8)

ASeont = R(INW* — In W) (10)
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with a target structure. This calculation is necessarily conducted oMonte Carlo sampling, initiated from the simulated annealing se-

a structure generated using a so-called rotamer library that defineguence, is then used to search for sequences near the global min-
discrete allowable side-chain rotamers. However, if the structure ismum. Monte Carlo sampling is terminated when no new sequences
not first energy minimized, the van der Waals energy is subject tare predicted. Sequences predicted during Monte Carlo sampling
potentially large errors, and its value may not accurately represerdre ranked byscoresuch that the top sequences are predicted to
steric compatibility. A detailed discussion of the use of van derexhibit optimized thermal stability and cooperativity.

Waals to define steric compatibility is presented in Discussion. For

computational efficiency, a hard-sphere mo¢ebnder & Rich-
ards, 1987; Shenkin et al., 1998 preferred to represent side-
chain contacts. In this model, an unfavorable interatomic contach good test of a protein design program is its ability to accurately
(bump, B) occurs when the distance between a side-chain atonpredict the sequence of naturally occurring proteins. Four proteins,
and any other atom in the protein is shorter than a given allowedanging in size from 56 to 259 amino acids, were chosen to vali-
value. Allowable interatomic distances are obtained by summinglate the underlying principles guiding CORE, including the scor-
appropriate combinations of the following distances obtained froming function and the optimization algorithms described above.
the Tripos 5.2 Force Fiel(Clark et al., 1988 C = 1.34, H= 0.95,
O0=1.2,N=1.3,S=15A. For example, an H -H nonbonding
contact of less than 1.90 A is considered a bump.

Sequence prediction

Protein G831 domain

The B1 domain(IgG binding domaii of protein G(GB1) is com-
o posed of 56 amino acids and contains no disulfide bonds or bound
Description of the program CORE cofactors. Native 31 forms a well-packed structure in solution

The three criteria described above, heat capacity change of unfol@°Ntaining 8-sheet, a-helix, and turn. Stability studies of both
ing (AC,), conformational entropy change of foldifigS,on), and wild-type G,Gl_ and engineered mutants have provnded_ reliable
bumps, are incorporated into a protein design program called CORgNermodynamic parameter#lexander et al., 1992; Dahiyat &
CORE is designed to predict sequences and corresponding siday0, 1997b, making this protein well-suited for theoretical in-
chain conformations of hydrophobic core residues yielding ther.vestigation. Eleven core reS|due_s_ were defined that e>§h|b|t little or
mally stable proteins with high cooperativity. This is accomplished"© SOlvent exposure. Trp at position 43, although partially solvent
by selecting sequences with zero hard-sphere bumps, maximuﬁ?(pose_d' was selegted as a core _reS|due be_cause of multiple con-
AC,, and miNiMUMAS.on: As described in detail above, zero 'aCtS with other buried hydrophobic core residues.

bumps assures steric compatibility with a target structure, maxi- 1€ Simulated annealing procedure from one run of CORE pro-
mizing AC, leads to proteins with maximdl, andAG, aboveT,, duced a single se_quence with a near ml_rllmlsenbre(l.e., z_ero

and minimizingAS.o gives rise to uniquely folded proteins with PUMPS, near maximumc,, and near minimum\Song. During -
optimal cooperativity. The number of bumf®) and the value of the subsequent low-temperature Monte Carlo sampllng,. 417 unique
AS.onfor @ given sequence are calculated using a previously writSequences were generatgd of which near_ly 75% exhibited better
ten programShenkin et al., 1996that utilizes Metropolis-driven  (/0Wen Scores than the simulated annealing sequence. Among
simulated annealingMetropolis et al., 1958to determine side- these 417 predicted sequences was the na/e) sequence that
chain conformations associated with a minimum number of bump&Xhibited an intermediate value faC, and a large value for

in a fixed backbone structure. Subsequent low-temperature Mont® ont In addition to regenerating the WT sequence, the native
Carlo sampling of side-chain rotamers, at the final simulated anSide-chain conformations of core residues was also reproduced.
nealing Metropolis temperature, yielgsvalues(see Equation 21 With respect tdScore the WT sequence is ranked in the top 60%
As mentioned above\C, for a sequence is obtained from a lookup of sequences predicted from the Monte Carlo sampling. A higher
table of individualAC, values. The values fdB, ASon, andAC, rank is not expected becguse _there is little natural evol_u_tlonary
are incorporated into Scorefor the sequence, determined from a Pressure to produce proteins with maximum thermal stability and

linear combination of these three quantiti&@juation 12. cpopgrativity; undqubtedly, evolutionary pressure to optimize func-
tion is more dominant. Data on the WT sequence and the 10

sequences with lowe&coreare presented in Table 1. The top 10
sequences have values faC, higher than that of the native,
suggesting that these designed variants would exhibit higher

To assure that only sequences wih= 0 are selectedy is setto  values. Indeed, one of these sequences is the thermally stable
an arbitrarily large number. Since sequences with large values fagngineered variang90 (Dahiyat & Mayo, 1997h The predicted

AC, are necessarily associated with large buried hydrophobic suiincrease inT,,, compared to the WT valuéAT,,), presented in
face areas and therefore large side-chain groups, it is expected thkdble 1, is calculated using Equation 8 axiC, values. Thex90

large amino acids will exist in a smaller number of rotamers, thusvariant has a predictediT,,, of at most 4.£C, while the measured
exhibiting low values foAS.on. This should lead to a correlation AT, value is 5°C. The similarity in these values is an indication
betweemAS.onrandAC,, making the relativescoresfor sequences  that enthalpy and entropy convergence occursfr and WT, and
somewhat insensitive to the valuesgpandry. ThereforeB andy that the backbone structures of these two proteins are very similar.
are both initially set to unity; however, if cooperativity is a dom- This latter conclusion is supported by experimental evidence in-
inant design goal3 is set to a higher value, and if hidly, values  dicating similar structures foe90 and WT (Dahiyat & Mayo,

are desiredy is set higher relative t@. To predict sequences with 1997h.

optimized Score Metropolis-driven simulated annealing is used Only 13,716 sequences out of the possible 2 billidH: 11 core
again, this time to produce a single protein structuee, sequence positions, 7 hydrophobic amino acjdwere sampled during the
and corresponding side-chain conformatjorisow-temperature  sequence prediction run. For each of the sequences sampled, bumps

Score= aB + BAS o — YAC,. 12
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Table 1. Sequence prediction of core hydrophobic residues @1 @om a single CORE run

Core sequence position
Rank Exp. Calc.

Proteif  (/417) Bumps ASoen® ACY Scord 3 5 7 20 26 30 34 39 43 52 54 AACy/res AT, AT
WT 247 0 -366 5554 -5920 Y L L A A F A V W F V — — —
1 0 —4.98 5965 -6463 F I I F I 0.81 5.1
2 0 —457 5952 -64.09 F I L I A F 0.78 4.9
3 0 —4.75 5870 -6345 F I IV F 0.62 3.9
4 0 —4.64 5870 -63.34 F \% . I F I 0.62 3.9
5 0 -5.28 57.97 -6324 L I L I A F 0.48 3.0
90 6 0 -430 5888 -63.18 F I I ) 0.66 5 4.1
7 0 —5.03 58.09 -63.13 L I I F I 0.50 3.1
8 0 —4.95 5809 -63.04 F I I L I 0.50 3.1
9 0 —4.25 5876 -63.01 F I 0.63 4.0
10 0 —4.26 5864 -6290 F L 0.61 3.8

2290 was computer designed, synthesized, and characterized by Mayo and co-Wseketext

bAverage per residue conformational entropy change of folding for core residues in unitsrabtdl-K ~1.res™*.
CAverage per residue heat capacity change of unfolding for core residues in unitsrabtal- K ~.res™?.
dCalculated using Equation 12 wigh= 1 andy = 1.

°Per residue change ikC, for the entire protein relative to WT.

"The Ty, of WT is 87°C.

9Calculated using the upper limit value in Equation 8.

were calculated for 2 million structures in which amino acid sideamino acids were identified as core residues in the current study.
chains populate different rotamers derived from a rotamer libraryExclusion of the residues at positions 13 and 58 did not preclude
file (see Methods such that a total of nearly 8 10'° structures  direct comparison of the available experimental data with results
were sampled. The output of this single run of CORE is repre-generated by CORE, because the native amino acids at these po-
sented graphically in Figure 2 that plots th€, and AS.ons for sitions were retained for all predicted sequences in the previous
sequences with zero bumps generated during both simulated adesign. As was done in the previous stu@esjarlais & Handel,
nealing and Monte Carlo sampling. The plot reveals the expected995, a Cys residue at position 54 was mutated to Val, facilitating
correlation betweenC, andAS..n mentioned above. In addition, direct comparison betweedcores generated by CORE and avail-
the plot shows that sequences sampled during simulated annealiadple thermodynamic data.
span a wide range oBcores (ASon — AC,), while sequences The low-temperature Monte Carlo sampling procedure from a
accepted during the low-temperature Monte Carlo sampling span single run of CORE generated 151 sequences predicted to stabilize
much narrower range @&fC, andASqrvalues. It is also notewor-  the native structure of 434 cro. It was encouraging to find the
thy that sequences with the lowe3tores are generated from the “WT” (C54V) sequence among these predicted sequences. Once
Monte Carlo sampling, not the simulated annealing procedureagain, it should not be surprising that this sequence is not found
justifying the use of low-temperature Monte Carlo sampling. among the top ranked sequences, because there is little or no
Not surprisingly, subsequent sequence prediction runs startingatural evolutionary pressure to produce a highly thermally stable
from different random sequences do not produce the same 41434 cro. Table 2 presents data on the top 10 predicted sequences.
sequences; however, it is striking that from three separate runs #fmong these sequences is the only variant designed by Handel and
CORE, the same 10 sequences presented in Table 1 are predicteatworkers with a higheil,,, than the native. In addition, previ-
(data not shown This strongly suggests that the sequence with theously designed variants with lowdy, values were not predicted
bestScore(see Table LLis indeed at the global minimum. because, as it turns out, these sequences are associated with non-
zero bumpgD-7 and D-8 in Table R

434 cro

The cro protein from bacteriophage 48434 crg is a small 64 Myoglobin

amino acid protein that does not contain disulfide bonds or metaDne of the principal difficulties in protein design is dealing with
binding sites. The hydrophobic core of 434 cro has previously beetthe enormous number of combinations of all possible amino acid
redesigned by Handel and co-workers using their protein desigsequences and side-chain conformations. This becomes particu-
program that scores sequences by employing both van der Waallsrly challenging as the size of the target protein increases. How-
energy and changes in buried volume calculatidbssjarlais &  ever, the efficiency by which th&coreis calculated in CORE may
Handel, 1995 Based on their computational results, several vari-allow for sequence prediction of the hydrophobic cores of large
ants were synthesized and carefully characterized. In this previoysroteins. Horse heart myoglobin, which consists of 153 amino
study, 12 hydrophobic core residues were targeted for redesigrgcids including 34 residues that define an extensive hydrophobic
however, two of these residu¢keul3 and Trp58 exhibit sig-  core, was chosen as the first test. The number of possible structures
nificant solvent exposure. Therefore, only 10 buried hydrophobidsequences and rotampris a staggering 18 for this protein,
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AC, (cal/mol/K/core res.)

{ 1
-5 -4 -3 -2 -1
AScons (cal/mol/K/core res.)

40 ‘ :

Fig. 2. Plot of AC, vs. ASnf for GB1 sequences with zero bumps sampled during the simulated annealing povtioe), and
accepted during the Monte Carlo portidight gray) of a single run of CORE. The top 10 sequences with respeSttoe(—AC, +

ASone) are highlighteddark gray in the top left corner of the plot. The native sequence that was predicted during the Monte Carlo
run is also highlightedblack. The dashed lines represent the WT, and AS.o, values.

Table 2. Sequence prediction of core hydrophobic residues of 434 cro from a single CORE run

Core sequence position
Rank Exp. Calc.

Proteif  (/151) Bumps ASo® ACY Scord 2 6 20 26 31 34 45 48 52 59 AACy/res AT, AT.O

“WT” 78 0 -542 6115 -36.00 L L L \ | | L | L L — — —
1 0 -6.08 6246 —37.31 | | | | . . . . 0.21 1.3
D-5 2 0 —-6.13 6232 -37.29 | | | L . . . . 0.19 4 1.2
3 0 -6.12 6232 -—-37.28 | | | . . L . . 0.19 1.2
4 0 —-6.14 6219 -37.24 | | | L . L . . 0.17 11
5 0 —6.12 62.05 -37.15 . | . . . L . . 0.15 0.94
6 0 -6.57 61.02 -37.08 | | L \% L . L . . —0.02 -0.13
7 0 -6.47 6115 -37.05 | | . L \ . . L . . 0.00 0
8 0 -6.47 6115 -37.05 | | vV L L L 0.00 0
9 0 -591 6219 -37.01 | . | L 0.17 11
10 0 -6.35 61.29 -37.00 | | \% L L 0.03 0.19
D-7 — 3 — — I F Vv L \Y . L — -39 —
D-8 — 10 — — F ool L \% L L — -6 —
M-5 — 5 — — L L L L — -23 —

aD-5, D-7, and D-8 were computer designed, synthesized, and characterized by Handel and cofeeekert M-5 has all core residues mutated to
leucine. The bottom three sequences were not predicted by CORE due to nonzero bumps and are shown only for comparison.

bAverage per residue conformational entropy change of folding for core residues in unitsrabtdl-K ~1.res™*.

CAverage per residue heat capacity change of unfolding for core residues in unitsrobtdl- K ~.res™2.

dCalculated using Equation 12 wigh= 1 andy = 0.5.

Per residue change iC, for the entire protein relative to WT.

"The T of C54V (“WT") is 56°C.

9Calculated using the upper limit value in Equation 8.
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resulting from the possible seven hydrophobic residues and aaf the core sequence of a protein nearly twice the size of myo-
average of 40 rotamers per residue position. globin; methionine aminopeptidase from the hyperthermophilic
In a single run of CORE, only 3,000 sequences were sampledrganism Pyrococcus furiosusThis 259 amino acid protein
during the simulated annealing procedure to yield one sequenceontains an extensive hydrophobic core consisting of 63 amino
near the global minimum with respect$zore this step took 86 h  acids.
on an SGI Onyx WorkstatiodMIPS R10000, 180 MHz proces- In the three previous runs, simulated annealing was initiated at
son. The subsequent low-temperature Monte Carlo sampling proa high Metropolis temperature starting with a random sequence. A
cedure, which was manually terminated after 7 days, produced 20&ignificant portion of the simulated annealing run is therefore de-
unique sequences with remarkable sequence homology to WToted to predicting sequences with zero bumps. It is only in the
One of the predicted sequences, ranked in the top 10%, has neaibtter portion of the simulating annealing procedure thatt@gis
75% (25 of 34 core residue identity with WT. Data on this se- maximized and th&aS..n¢is minimized. For this much larger pro-
guence and the top five predicted sequences are presented in Tablégéin, simulating annealing was initiated at a lower Metropolis tem-
All six sequences in Table 3 are associated with lafy@g and perature starting from a sequence in which all 63 positions were
lower AS.onfvalues compared to WT, suggesting that these variantsnutated to Ala. This step, while still avoiding input of a sequence
would exhibit higherT,, values and cooperativity. The predicted bias, significantly shortens the run time because sequences that
structure of the top ranked sequence is strikingly similar to that ofexhibit zero bumps are predicted from the beginning and the whole
the crystal structure of WT. The identity and side-chain conforma-simulated annealing procedure is devoted to maximiagg and
tion of all seven WT aromatic core residu@¥y'14, F23, F43, F46, minimizing AS.ons
F123, F138, Y14pare duplicated in the predicted structure with A single run of CORE produced 330 unique sequences; data on
the exception of a minor Y146F mutation. One hundred twenty-the top five sequences as well as the sequence with the highest
nine (87%) of the 149 nonhydrogen side-chain atoms from the 34homology to WT are presented in Table 4. The top five sequences
core amino acids in the WT structure are duplicated in the prehave bettelower) Scores than WT, indicating that these protein
dicted structure, with an RMS deviation of only 0.4 A, variants would exhibit enhanced thermal stability and cooperativ-
Aplot of AC, vs. ASonfor sequences with zero bumps sampled ity compared to WT. The sequence with highest homology is ranked
during the simulated annealing and Monte Carlo procedures i the top 10% and has 45 out of 63 positions that match the
presented in Figure 3. The plot highlights th&, and ASons sequence of WT. The striking similarity to WT is made even more
values for WT, which are on the edge of the values generatedemarkable when considering that the probability of obtaining 45
during Monte Carlo sampling. This may explain why the WT matches through random selection is %8 The native sequence is
sequence is not predicted, despite high homology with the prenot generated, despite havin@eorewithin the range of predicted
dicted sequences. sequences. This may in part be due to the fact that there is an
A random subset of the predicted myoglobin sequences wasnormous number of possible sequen?) for the 63 amino
analyzed to quantitatively demonstrate the relationship discusseaicid core.
above between the extent of networking of side-chain contacts The efficiency by which simulated annealing reaches a sequence
(i.e., cooperativity and conformational entropy. Figure 4 presents near the global minimum is shown in Figure 5 that plots AlG,
the results in which a “contact index” is plotted as a function of AS;,n, and theScorefor all sequences sampled during the run. The
conformational entropy. The contact index is calculated using Equaplot reveals that at early times during simulated annealing when
tion 13 and corresponds to the extent of networking within thethe Metropolis temperature is relatively high the algorithm allows

protein interior. for escape from local minima. It is clear from the plot that the
subsequent low-temperature Monte Carlo sampling procedure pro-
i=Ng duces sequences witBcores lower than that generated during
> [mi(m —1)] simulated annealing.
Contact Indexs ———————— (13

2Neore(2Neore ~ 1) Discussion

whereNgore is the total number of core residues, is the number  We have demonstrated that for a series of proteins with fixed
of amino acids in an island of side chains within van der Waalsbackbone structure and constant polar contribution to the thermo-
contact, and\, is the number of islands. The factor of 2 in the dynamics of folding, increases &XC;, (associated with increases in
denominator assumes that core residues make on average oberied hydrophobic surface adeeorrelate to increases if, and
contact with a noncore residue such that the contact index rangéscreases il\G, above a fixed temperature between 20 and&0
from 0-1. The contact index favors long-range side-chain interdefined by the convergence parameters. Metropolis-driven simu-
actions that lead to extensive networks; for example, two proteinsated annealing and low-temperature Monte Carlo sampling are
each withNge = 10 and two clusters of contacting side chains effectively utilized to sample the enormous number of possible
(Ng = 2) exhibit very different contact indices if one of the proteins sequences and side-chain conformations to predict hydrophobic
has 2 and 18 amino acid clusters and the other has 10 and 10 amigore sequences and structures of native proteins. Results are pre-
acid clusters. In the former the contact index is 0.8, while in thesented for hydrophobic core sequence prediction of four proteins
latter it is 0.5. ranging in size from 56 to 259 amino acids. These results clearly
validate the use of hard sphere bumps to accurately represent steric
compatibility with a target structure. Also validated is the use of
heat capacity change and conformational entropy as design cri-
Final validation of the scoring function and optimization algo- teria to predict sequences of thermally stable proteins with high
rithm employed by CORE was accomplished through predictioncooperativity.

Methionine aminopeptidase
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Table 3. Sequence prediction of core hydrophobic residues of myoglobin from a single CORE run

Core sequence position
Rank

Protein (/202 Bumps ASo? AC,  Scoré 2 10 13 14 17 28 29 30 32 33 43 46 49 61 68 69 72 75 76 86 89 99 104107 110111114 115123 134 135 138 142 146

WT — 0 -515 6129 -6644 L V VW V V L | L F F F L LVLWLI1TLUL LT LI AI VL FALUF 1Y
1 0 —5.63 63.30 —68.93 . L L 1 | F I F V I V \% L F
2 0 —5.89 62.86 —68.75 L L L | F I F A I V L . L F
3 0 —5.93 62.79 —68.72 L L 1 | F I F V I V \% L L F
4 0 —-6.29 62.38 —68.67 L I L L AV | F VY . L F
5 0 —6.00 62.55 —68.55 L L L | F o vV IV . L L F
23 0 —5.62 62.47 —68.09 L L [ F | L A F
3Average per residue conformational entropy change of folding for core residues in unitsrobtal-K ~.res ™.
bAverage per residue heat capacity change of unfolding for core residues in unitsrabkdl-K ~*.res™?.
‘Calculated using Equation 12 wifh= 1 andy = 1.
Table 4. Sequence prediction of core hydrophobic residues of methionine aminopeptidase from a single CORE run
Rank
Protein (/330 Bumps ASo AC,°  Scoré Core sequende
WT — 0 —3.26 5082 —5408 LAAVAALLAIITAFVLIAALLIVVIAAVVVAAALAAAILAIITILILAILVFAIFAVLVAFIIVV
1 0 -3.77 5120 -5497 .. ... .A... V. .LILI .FVV..F. . ILI.............. . F.LWII..I. AL LV L
2 0 —398 5097 =549 .. ... .A...L.ALF. I .FVV. . F. . ILI... ... ...LL. 1 .F.LWILL. .. AL VL.
3 0 -378 5115 -5493 .. ... . AF..L.. . V. I .YV.I.F. . 0ILI...... .. VF.VV.I.F.. . l..VL...A....L.
4 0 —-375 5116 -5492 .. ....A. ... .. ... .FVLL... ILI...... .. 0 ..LV.L..L.I..FI. ALV DT
5 0 -379 5113 -5491 ... .. .AF..L.. . V. I .YV.I.F. . 0LI........VF.VV...F.. . 1l..VL. AL Lo L.
36 0 -368 5083 -5452 .. ....A...... ...l .FVLL... . 0ILI..... ... ..L.....L.1..FA. AL LV

3Average per residue conformational entropy change of folding for core residues in unitsrobtal-K ~.res ™.

CAverage per residue heat capacity change of unfolding for core residues in unitsrobtdl-K ~*-res™.

Calculated using Equation 12 wifh= 1 andy = 1.

dCore residue positions: 6, 9, 13, 16, 20, 24, 30, 33, 34, 37, 41, 49, 50, 52, 54, 56, 60, 61, 73, 79, 81, 83, 85, 91, 92, 95, 96, 98, 100, 110, 111, 11418, 182,128, 131, 134, 135, 139, 147,
150, 155, 160, 162, 166, 178, 183, 184, 185, 186, 189, 190, 197, 268, 276, 277, 279, 283, 284, 285, 290.
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Fig. 3. Plot of AC, vs. ASns for myoglobin sequences with zero bumps sampled during the simulated annealing ettits),
and accepted during the Monte Carlo portidight gray) of a single run of CORE. The top five sequences with respe&cire
(AS.oni— ACp) are highlighteddark gray in the top left corner of the plot. TheC, andAS,nsvalues of the native sequence that was
not predicted are highlighted with dashed lines. The plot clearly shows the expected correlation hebyaed AS.q,s mentioned

in the text.
Conformational entropy and free energy of unfolding yields stability at all temperatureaS.qnsis minimized in CORE
. . . . . - only to produce sequences of proteins with high cooperativity and
Side-chain conformational entropy of foldingSon) is mini is not intended to be used as a criteria to optimize thermal or

“_".Zed using CORE to p_redlc_:t sequences with maximum COOperaéhemical stability. As indicated by Equation 5, it is only through
tivity. At first glance, this might appear to have the inadvertent Lo s o
effect of decreasing\G,, because conformational entropy is a _m_aX|m|2|ngACp that individual contributions fror_ﬁH an'dASare
major portion of the entropic component of the free energy 0f10|nt[¥ accounted for to produce sequences with optimal thermal
protein folding, contributing as much as0.5 kcatmol™* per stability.
rotamer at room temperatu(Boig & Sternberg, 1996 However,
decreases inS of folding are compensated by a similar de(:reaseUse of van der Waals energy as a design criteria
in AH of folding near room temperature. This is often referred to
as enthalpy-entropy compensation of protein thermodynamicé\ simple and computationally efficient hard-sphere bump calcu-
(Lumry & Rajender, 1970; Dunitz, 1995The result of the nearly lation is employed in CORE to define steric compatibility with an
1:1 compensation between enthalpy and entropy leads to small aridput target structure. However, most other protein design pro-
unpredictable modulation afG,, upon changes iAS.on«. grams utilizeE, 4, instead to define steric compatibility. Further-
Enthalpy—entropy compensation is a general feature of manynore, low E,q,, is often assumed to be associated with well-
chemical reactions and processes in biological systémsiry & ordered, thermally stable proteins. Therefore, programs that utilize
Rajender, 1970; Dunitz, 1995 nthalpy—entropy compensation of E,q, generate sequences predicted to stabilize an input target struc-
folding has also been reported for natural proteins and their muture by searching for sequences associated with mining) of
tants(Hawkes et al., 1984; Shortle et al., 1988he slope of the the folded state of a protein. Although implementigg,, in this
linear plot ofAH ° vs.AS° is the compensation temperatdige The ~ way may seem logical, it is, in fact, very unlikely that any corre-
value of T is close to room temperaturgumry & Rajender, lation betweerE,q, and thermal stability exists for the following
1970; therefore, the wide range afH, andAS, values for native  reasons:(1) the unfolded state or states of a protein cannot be
proteins are adjusted so th&®, remains nearly constant at room ignored when enhanced thermodynamic stability is the design goal;
temperature. A consequence of enthalpy—entropy compensatid) the existence of complex correlations betwéeg, and other
with respect to protein design is that enthalpy and entropy termparameters that contribute 465, such as hydrophobic surface area
should not be optimized separately if protein thermodynamics is @nd side-chain conformational entropy, makes the magnitude and
design goal; it is the combination of enthalpy and entropy thatsign of the contribution ofE,g, to AG, and T, impossible to
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Fig. 4. Plot of contact index vsA S.onsfor a random sampling of 16 predicted myoglobin sequences. The contact index represents the
extent to which side chains form long-range contacts giving rise to extended side-chain networks, a key feature of uniquely folded
natural proteins with cooperative unfolding transitions. The plot demonstrates that minim&iggis an effective means by which

protein cooperativity can be maximized.

determine; and3) the value ofE,q, is subject to potentially large using E,q, @s a criterion to represent steric compatibility is to
errors, because it is necessary in protein design programs to defimefine side-chain torsion angles using a small enough increment;
side-chain conformations using a discrete rotamer library. This lashowever, the increment must clearly be less thgnaScondition
reason presents the most significant problem with respect to usintat is not computationally feasible. For side chains with two tor-
E,qw @S a design criteria, because slight fluctuations in side-chaision anglegLeu, lle, Phe, Tyr, Trp the number of rotamers would
torsion angles can lead to dramatic change,j),. For example, approach 500 if a Gincremented rotamer library were used. Sig-
changes in the side-chain torsion anglgsand y, within a small  nificantly longer time would then be required to effectively sample
5° window result in side-chain hydrogen atoms shifting position bythe enormous number of possible conformations. The error asso-
as much as 0.5 A for Phe and 0.3 A for Leu. Considering only oneciated with using,q,, can be partially overcome by decreasing the
nonbonding H--H interaction, a change in H-H distance of van der Waals radius scaling factdDahiyat & Mayo, 1997l

0.5 A, from a reasonable distance of 2.5 to 2.0 A, incre&gs however, this may lead to selection of sequences with side chains
(12,6 Leonard—Jones potenjidly about 4 kcaimol. A change of  that in reality are sterically clashing.

0.5 A, from the reasonable distance of 2.2 to 1.7 A, is associated The use of hard-sphere bumps to select sequences sterically
with an increase irE,q,, of ~40 kcalfmol. Clearly, E 4, of a compatible with target structures does not, of course, avoid any of
structure generated using a discrete rotamer library may not accuhe potential errors associated with uskig,,. In fact, the way in
rately represent steric compatibility. To demonstrate this, the vanvhich bumps are employed as a design criteria in CORE intro-
der Waals energies of 16 random myoglobin structures with zeraluces an additional potential error; a contact that is only 0.001 A
bumps sampled during a CORE r(see Resuljswere calculated shorter than the predefined cutoff distance would be associated
using the Tripos Force Fielin Sybyl 6.3. These protein struc-  with a nonzero bump and would, therefore, be rejected. The “soft-
tures were then energy minimized using 10 iterations, holding theness” ofE, 4., avoids this problem to some degree. Although there
backbone atoms and heme group fixed. A plot of the resuEjf will be significant overlap between sequences predicted ugjqg

vs. the initialE,q,, (Fig. 6A) shows only weak correlation between and bumps, there will undoubtedly be sequences that one criteria
the two energiesslope= 0.47) with significant noisgcorrelation  rejects that the other accepts and vice versa. To demonstrate this
coefficientR = 0.36). This plot demonstrates the potential errors point, E,q, and E/§" of myoglobin sequences presented in Fig-
associated with using,q, Of structures generated using discrete ure 6A are plotted as a function afC, (Fig. 6B,0). The shaded
rotamer libraries and idealized side chains. Subsequent analysis oégion in Figure 6B indicates the range &€, values for CORE-

the minimized structures reveals that indeed the 10-iteration minpredicted sequences and the dark circles represent actual se-
imization led toy, angle changes of as large &fér some of the  quences predicted by CORE. About half of these sequences are
amino acids. One way to minimize these errors associated witlassociated with van der Waals energies high endu@ kca)mol
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Fig. 5. Plots showing the optimization afC,, AS.on, andScoreas a function of sequence number for methionine aminopeptidase
sequence prediction using CORE. Because the starting point is the sequence in which all positions are mutated to AlaAfig initial

value is 30.15 camol *-res ! and the initialAS;onsis 0 catmol-re

s 1. Approximately 1,700 sequences were sampled during the

simulated annealing portion of the run. Many of the predicted sequences from the subsequent low-temperature Monte Carlo sampling
have lowerScoresthan that of the sequence predicted from simulated annealing.

higher than the minimupnthat it appears they would have been ture of myoglobinEfn was plotted as function afC,. This plot

rejected ifE,q Were used as a design criteria. To demonstrate thatFig. 6C) shows that all the predicted sequences generated by
these sequences are not, in fact, incompatible with the native stru€ORE are, in fact, sterically compatible with the native structure
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Fig. 6. A: Plot of van der Waals energy after a 10-iteration energy minimization vs. van der Waals energy before minimization for 16
random myoglobin structures sampled during a CORE BinvVan der Waals energy plotted as a functionAdt, for these same

myoglobin structures, showing no obvious correlation. The shaded region represents the rs@geadiies for predicted myoglobin

sequences, black circles represent predicted myoglobin sequences, and open circles represent sequences with zero bumps sampled, but
not predictedC: Van der Waals energy after the 10-iteration energy minimizatiom\@g, showing good correlation between these
parameters.

of myoglobin. The plot also shows a striking correlation betweention for some of the observed similarities in sequence prediction
AC, andE4w, suggesting that sequences with IBfjly will indeed between CORE and other design prograisee Resuljs despite

be associated with stable protein structures possessinghighd  the use of very different criteria to define protein stability. Al-
AG,. The correlation is not surprising, because laig&, of se-  though the use dE,q, and bumps in defining steric compatibility
guences with zero bumps is associated with large buried hydroare both associated with potential errors as a consequence of the
phobic surface area, which is in turn, most likely associated withnecessary implementation of discrete rotamer libraries, a hard-
low van der Waals energy because of increased favorable hydrsphere bump calculation is associated with shorter computation
phobic interactions. Of course, this correlation does not providgimes and therefore appears to offer an advantage over the use of
any utility with respect to employing/nin as a design criteria, E,q, to define steric compatibility.

because calculating/n from a 10-iteration energy minimization The appropriate way to implemeBtq,, in protein design pro-
requires approximately five orders of magnitude more time than ggrams is to define a cutoff energy for which sequences it
hard-sphere bump calculation. The weak correlation betus€®n  above this energy are rejected. A second criteria that can be shown
andE,q,, especially at high energy, provides a possible explanato correlate to measurable thermodynamic parameters such as heat
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capacity change should then be used to rank the sequences wittted with one layer of 5D using the droplet method in Sybyl and
E,qw below the cutoff energy. The value of the cutoff energy is dif- a van der Waals bump factor of 1.0. Core residues were initially
ficult to determingas is the cutoff distance in a bump calculajion identified using the program DSSRabsch & Sander, 1983nd
because it is important thatl sterically compatible sequences be then confirmed and modified if needed by visual inspection.
accepted whilall sequences with clashing side chains be rejected.

Adjusting scale factors that modulate the van der Waals ra#ijgp
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