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ABSTRACT

We have applied techniques from differential motion estimation in the context of automatic registration of medical
images. This method uses optical-flow and Fourier techniques for local/global registration. A six parameter affine
model is used to estimate shear, rotation, scale and translation. We show the efficacy of this method with images of
similar and different contrasts.
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1. INTRODUCTION

Medical image registration is a well studied problem and the literature is rich in techniques. Various survey papers
have been published on the topic.!”®> However, we believe that the potential of approaches based on differential
motion estimation have not been fully realized (see®® for earlier related work). This approach is attractive because
its formulation is elegant, and the resulting computations are fast, simple, and non-feature based. We demonstrate
the effectiveness of this technique for registration of medical images with images of similar and different contrasts.
We recognize that global affine registration by itself can not fully characterize complex distortions. However, it is a
key component for a more generic elastic registration technique.

2. DIFFERENTIAL AFFINE MOTION ESTIMATION
2.1. Methods

The estimation of parametric motion based on spatio-temporal variations has been extensively studied in the com-
puter vision literature.”~!! Most of these methods begin by making an assumption of brightness constancy.!? That
is, it is assumed that the difference between a pair of images is due solely to motion and not to any brightness
variations. Most approaches are then characterized as differential'®!4-, energy!®!6- or Fourier'”- based. While these
methods are equivalent,'® they can differ in their parameterization of the motion. In the simplest case, it is assumed
that the motion is due to translations. A more generic six parameter affine model allows for shear, rotation, scale
and translation.!820  We describe a slightly modified version of this model that includes symmetric translations.
The affine parameters are estimated using a differential framework.

Let f(z,y) and g(z,y) represent test and reference images. If the brightness constancy assumption holds, and
the images are related by an affine transform, then:

[ (z,y) = g (miz + may + to, M3z + may + ty) (2.1)

where m1, ma, m3, my form the affine matrix A and ¢,,t, form the displacement vector t

A:(Zl ZZ‘) and f’:(iw). (2.2)
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For reasons that will become clear shortly, the translations are made “symmetric”’ as follows:
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Substituting ms = % and me = %”, Equation (2.3) is rewritten as:

[z —ms,y —meg) = g (m1z + may + ms, msx + myy + me) . (2.4)
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The goal is to estimate the six parameters m = ( mi Ms M3 Mg M5 Mg ) . In order to do this, we first
define the following quadratic error function to be minimized:

E(m) = [f (& —ms,y —me) — g (maz + may + ms, msx + may +me)]”, (2.5)
Q

where Q) defines the spatial region of interest in the image. This error function cannot be minimized analytically since
it is non-linear in its unknowns. To simplify the minimization, we approximate this error function using a first-order
truncated Taylor series expansion:

E(m) ~ Z [(f (may) - m5fz($ay) - mey(a;:y))
Q

— (9(z,y) + (M2 + may +ms — 2) g (T, y) + (M3 + May +me — y) gy (z,y))]° (2.6)

where f;(-), fy(+), 9z(-) and g,(-) are the spatial derivatives of f(-) and g(-) with respect to = and y. Note that this
error function is now linear in its unknowns. Note also that this Taylor series expansion is most accurate for small
motions. As a result, by symmetrically distributing the translation terms, the errors in the expansion are reduced.
The error function may be expressed more compactly in vector form as follows:

B =Y (k7). 2.7)
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where the vector ¢ and scalar k are defined as:
-
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This error function can now be minimized by differentiating with respect to m :
dE - T,
P —g—Qc (k—c m) , (2.10)

setting equal to zero, and solving for 7i:
-1
= <255T> (Z%). (2.11)
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This solution assumes that the 6 x 6 matrix (ZQ eé ) is invertible. This can usually be guaranteed by integrating
over a large enough spatial region Q with sufficient image content.

Recall that the error function being minimized in Equation (2.7) is only an approximation to the actual error
function in Equation (2.5). The estimation from the approximate error function is improved using a Newton-Raphson
style iterative scheme.?! At each iteration, we estimate the affine parameters between the test and reference image,
warp the test image according to this estimate, and repeat.

The required spatio-temporal derivatives have finite support thus fundamentally limiting the amount of motion
that can be estimated. A coarse-to-fine scheme is adopted in order to contend with larger motions.'*2? A Gaussian



pyramid is built for both images, and the affine parameters are first estimated at the coarsest level. These parameters
are estimated according to Equation (2.11) using the iterative scheme described above. The estimated parameters
are then used in the next level to warp the test image, and the affine parameters re-estimated. This procedure is
repeated through each level of the pyramid.

The calculation of the spatio-temporal derivatives is an important step in this procedure. Spatio-temporal deriva-
tives of discretely sampled images are often computed as differences between neighboring sample values. Such dif-
ferences are typically poor approximations to derivatives and lead to substantial errors in the motion estimation.
In computing spatio-temporal derivatives we employ derivative filters specifically designed for multi-dimensional
differentiation.?® These filters significantly improve both the stability and accuracy of the estimate.

2.2. Results

We tested the efficacy of the differential approach on a broad range of medical images with simulated and real
distortions. All the images were 8-bit and of size 256 x 256. In all of our examples, a three-level pyramid was
constructed, and at each scale, the affine parameters were iteratively estimated ten times. In the first set of results,
a set, of test images were subjected to a variety of global affine warps to generate the reference images. The coarse-
to-fine differential technique described above was used to estimate the six affine parameters, Equation (2.2). Shown
in Figure 1 are the test and reference images (columns 1,2), the registered test image (column 3) and the errors
before and after registration (columns 4,5). The error images are displayed on the same log intensity scale and then
rescaled into the full intensity range. Shown in Table 1 are the actual and estimated affine parameters and the mean
squared error (MSE) before and after registration. In these examples the estimated parameters are nearly perfect.

In the next set of results, the test and reference images were obtained from different subjects, or from subjects at
different times. The same approach was used to estimate the global affine parameters. However, in order to minimize
violations of the brightness-constancy assumption, the two images were first histogram matched*. Shown in Figure
2 are the test and reference images (columns 1,2), the registered test image (column 3) and the errors before and
after registration (columns 4,5). The error images are displayed on the same linear intensity scale and then rescaled
into the full intensity range. In this case, the actual warp parameters are unknown. Qualitatively we see that the
estimates are quite good, and that a global affine warp is reasonably effective in characterizing the overall distortion.

2.3. Weaknesses

While the differential framework yields good results there are several inherent limitations. First, because of the
limited support of the derivative filters and the Taylor series approximation, this approach is fundamentally limited
by the magnitude of the distortion. Large distortions are typically caused by large translations and cannot always
be overcome even by using a coarse-to-fine strategy. Second, because of the brightness constancy assumption, this
approach is unlikely to perform well with images of different contrasts. This will be particularly problematic when
estimating distortions locally. These issues are addressed in the following section.

3. EXTENSIONS FOR IMAGES OF DIFFERENT CONTRASTS

In this section, we provide a slight variation on the same differential framework described above that contends with
large distortions and images of different contrasts. Both of these limitations can be simultaneously addressed by
simply estimating the distortions in the Fourier domain. Specifically, the affine parameters are estimated from the
normalized power spectra of the test and reference images. By using the power spectrum, the potentially large
translations are decoupled from the linear affine parameters. Violations of the brightness-constancy assumption are
contended with by using a normalized power spectrum.

3.1. Methods

It is well known that the power spectrum decouples the translation term and preserves the linear affine transform.?*
More specifically, let f (%) be the test image with Fourier transform:

F(i) = /Q f (&) e 2" Eqz. (3.1)

*Denote ci1(-), c2(-) as the sampled cumulative distribution functions of images fi(-), f2(-). The histogram of fa(-) is made
to match that of fi(-) by mapping each pixel fo(x,%) to ¢ " (c2 (fi(z,¥)))-
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Figure 1. Registration with simulated distortions. Shown are the test and reference images (columns 1,2), the
registered test image (column 3) and the errors before and after registration (columns 4,5). The error images are
displayed on the same log intensity scale. See also Table 1.



Figure 2. Registration with real distortions. Shown are the test and reference images (columns 1,2), the registered
test image (column 3) and the errors before and after registration (columns 4,5). The error images are displayed on
the same linear intensity scale. See also Table 1.



Table 1. Affine parameter estimates with simulated (rows 1-5) and real (rows 6-9) distortions. See also Figures 1
and 2.
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Figure 3. Registration in the Fourier domain with simulated distortions. Shown are the test and reference images
(columns 1,2), the registered test image (column 3) and the errors before and after registration (columns 4,5). The
error images are displayed on the same linear intensity scale. See also Table 2.

Let g (AZ + f) be the distorted reference image with Fourier transform G (i) , where A and # are the affine parameters
defined in Equation (2.2). The power spectrum is then given by:

G (@) = @ Py a)l. (3.2)

Note that in the Fourier domain the reference image is related to the test image by only the linear portion of the
original affine distortion (i.e., the translation component i’ has been decoupled). Also note that the power spectra are
related within a scale factor. In order to contend with this scale factor and other potential violations of the brightness-
constancy assumption, we normalize the power spectra before estimating the linear affine parameters. Each radial
frequency band is divided by the mean energy in that band. This is most easily performed by first converting the
power spectra from rectangular to polar coordinates, normalizing and inverting. Given the normalized power spectra
of the test and reference images, the estimation of the linear affine transform terms is identical to that described in
the previous section. The translation term is then estimated using standard phase-only correlation.??

3.2. Results

We tested the efficacy of the Fourier-based approach on a range of medical images with simulated and real distortions.
In the first set of results we verify that the Fourier-based estimation yields similar results as previously shown in the
spatial domain. In Figure 3 are a subset of the test images from Figure 1. The reference images were distorted using
the same linear affine terms but with larger translations. The estimation of the linear affine terms was identical to
that of Figure 1, and the translation was estimated separately as described above. Shown in Figure 3 are the test
and reference images (columns 1,2), the registered test image (column 3) and the errors before and after registration



Figure 4. Registration in the Fourier domain using images of different contrasts with simulated distortions. Shown
are the test and reference images (columns 1,2), the registered test image (column 3) and the errors before and after
registration (columns 4,5). See also Table 2.

Table 2. Affine parameter estimates for similar images (rows 1-3) and those with differing contrasts (rows 4-5). See
also Figures 3 and 4.
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(columns 4,5). The error images are displayed on the same linear intensity scale and then rescaled into the full
intensity range. Shown in Table 2 are the actual and estimated affine parameters. Note that while the affine
parameters are accurately estimated, the errors in translation are larger leading to an overall larger MSE.

In the next set of results, the test and reference images are MRI, T1/T2 images with different contrasts. These
images were obtained from a single scan suggesting that the distortions between them are minimal. A known affine
distortion was applied to the reference image. These affine parameters were then estimated as described above.
Shown in Figure 4 are the test and reference images (columns 1,2), the registered test image (column 3) and the
errors before and after registration (columns 4,5). Shown in Table 2 are the actual and estimated affine parameters.
Since these images are of different contrasts, the MSE is not reported. Note that in the spatial domain, these images
violate the brightness-constancy assumption. Nevertheless, by using the normalized power spectrum, the distortion
can still be accurately estimated. The slightly larger errors are most likely due to small misalignments in the original
images. Note once again that the estimation errors are dominated by errors in the translation.

4. DISCUSSION

We have shown how an elegant and simple framework for differential affine motion estimation can be used for medical
image registration. The resulting computations are simple, fast, and non-feature based. This approach has shown
itself to be robust over a broad range of medical images with similar and different contrasts.

There are several natural extensions to this work that we are currently pursuing. First, estimating the linear
affine parameters in the Fourier domain affords us the ability to contend with images of different contrasts and large
distortions. However, the resulting phase-only estimation of translation is sensitive to slight errors in the affine
estimation. We are currently investigating how to improve the translation estimates. Second, while we have only
tested the proposed technique for global registration, there is no inherent reason why this approach cannot be applied
locally. Local parameter estimation coupled with a smoothness constraint will allow for more flexible modeling of
distortions as in our earlier work.?6-2° While we believe that this approach is promising, it is unlikely that it will
supplant the multitude of existing techniques such as the commonly used mutual information.3%3! Rather, we
expect that this approach will prove to be useful in conjunction with other techniques.
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