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ABSTRACT

We describe a photo forensic technique based on detecting inconsistencies in lighting. This technique explicitly
measures the 3-D lighting properties for individual people, objects, or surfaces in a single image. We show
that with minimal training, an analyst can accurately specify 3-D shape in a single image from which 3-D
lighting can be automatically estimated. A perturbation analysis on the estimated lighting is performed to yield
a probabilistic measure of the location of the illuminating light. Inconsistencies in lighting within an image
evidence photo tampering.
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1. INTRODUCTION

It has become well established that photo manipulation has eroded our trust in photography. This lack of trust
has impacted law enforcement, national security, the media, advertising, commerce, and more. Advances in
photo forensics have begun to restore some trust in photography.1,2

There are many different and complementary approaches to analyzing a photo for evidence of manipulation.
These techniques operate on the general assumption that manipulation will disrupt some statistical, geometric,
or physical properties in an image. Manipulation can, therefore, be exposed by quantifying and detecting
these perturbations. For example, format-specific analyses exploit artifacts that are introduced when a JPEG
image is compressed multiple times.3–5 Pixel-based analyses detect low-level correlations that are introduced
by cloning,6,7 re-sizing,8 or non-linear filtering.9 Sensor-based analyses can detect inconsistencies in chromatic
aberrations,10 color filter array interpolation,11,12 or sensor noise.13,14 And, physically-based analyses can detect
inconsistencies in reflections,15 lighting,16–19 or shadows.20,21

Within these different techniques, physically-based methods are particularly attractive because they are
applicable in low quality and low resolution images, and can be hard to counter attack since the physical
measurements being made are the result of interactions in the 3-D physical world being projected into the 2-D
image.

Earlier lighting-based forensic techniques focused on estimating 2-D properties of lighting. This is because
estimating the full 3-D lighting requires knowledge of the 3-D structure of the scene which is, of course, generally
not readily available. We describe a new 3-D lighting-based technique that overcomes this limitation. This
technique leverages the fact that with minimal training, an analyst can often provide fairly reliable estimates of
local 3-D scene structure, from which 3-D lighting can be estimated. Estimating the full 3-D lighting properties
of a scene makes this forensic technique even more powerful as a determined forger will now be forced to correct
for the full 3-D lighting properties – a decidedly more difficult and time-consuming task.
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Figure 1. An analyst specifies 3-D surface normals (red probes on the face) from which the 3-D light direction is estimated
(visualized as a probability in azimuth/elevation in the upper right panel). Multiple such constraints are combined to
determine if lighting in the entire image is consistent, as in this example (lower right panel).

2. METHODS

We seek to estimate 3-D lighting in a single image. We rely on an analyst to specify the required local 3-D shape
from which lighting is estimated. We describe an easy to use user-interface for obtaining these shape estimates,
how 3-D lighting can be estimated from these estimates, a perturbation analysis that contends with any errors
or biases in the user-specified 3-D shape, and a probabilistic technique for combining multiple lighting estimates
to determine if they are physically consistent with a single light source.

2.1 User-Assisted 3-D Shape Estimation

The projection of a 3-D scene onto a 2-D image sensor results in a basic loss of information. Recovering 3-D
shape from a single 2-D image is at best a difficult problem and at worst an under-constrained problem. There is,
however, good evidence from the human perception literature that human observers are fairly good at estimating
local 3-D shape from a variety of cues including, foreshortening, shading, and familiarity.22–25 To this end, we
ask an analyst to specify the local 3-D shape of surfaces. We have found that with minimal training, this task
is relatively easy and accurate.

An analyst estimates the local 3-D shape at different locations on an object by adjusting the orientation of
a small 3-D probe. The probe consists of a circular base and a small vector (the stem) orthogonal to the base.
An analyst orients a virtual 3-D probe so that when the probe is projected into the image, the stem appears to
be orthogonal to the object surface. Shown in Figure 2 is an example of several such probes on a 3-D rendered
model of a car.

With the click of a mouse, an analyst can place a probe at any point p in the image. This initial mouse click
specifies the location of the probe’s base. As the analyst drags their mouse, they control the orientation of the
probe by way of the 2-D vector v from the probe’s base to the mouse location. This vector is restricted by the
interface to have a maximum value of δ pixels.

Probes are displayed to the analyst by constructing them in 3-D, and projecting them into the image. The
3-D probe is constructed in a coordinate system that is local to the object, Figure 3, defined by three mutually
orthogonal vectors:

b1 =

[
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f

]
b2 =

[
v

1
f v · (p− c)

]
b3 = b1 × b2 , (1)

where p is the location of the probe’s base in the image, and f and c are a focal length and principal point
(described below). The 3-D probe is constructed by first initializing it into a default orientation in which its
stem, a unit vector, is coincident with b1, and the circular base lies in the plane spanned by b2 and b3, Figure 3.



Figure 2. Shown is a rendered 3-D object with user-specified probes that capture the local 3-D structure. Shown in the
top left is a magnified view of two probes.

The 3-D probe is then adjusted to correspond with the analyst’s desired orientation which is uniquely defined
by their 2-D mouse position v. The 3-D probe is parameterized by a slant and tilt, Figure 3. The length of the
vector v specifies a slant rotation, σ = sin−1(‖v‖/δ), of the probe around b3. The tilt, τ = tan−1(vy/vx), is
embodied in the definition of the coordinate system, Equation (1).

The construction of the 3-D probe requires the specification of a focal length f and principal point c,
Equation (1). There are, however, two imaging systems to be considered. The first is that of the observer
relative to the display.26 This imaging system dictates the appearance of the probe in the image plane. In that
case, we assume an orthographic projection with c = 0.22,25 The second imaging system is that of the camera
which recorded the image. This imaging system dictates how the surface normal n is constructed to estimate
the lighting (Section 2.2). In this case, if the focal length f and principal point c are unknown then f can be
assigned a typical mid-range value and c = 0.

The slant/tilt convention accounts for linear perspective, and for the analyst’s interpretation of the photo.26–28

A slant of 0 corresponds to a probe that is aligned with the 3-D camera ray, b1. In this case the probe’s stem
projects to a single point within the circular base.27 A slant of π/2 corresponds to a probe that lies on an
occluding boundary in the photo. In this case, the probe projects to a “T”-shape with the stem coincident with
the axis b2, and with the circular base laying in the plane spanned by axes b1 and b3. This 3-D geometry is
consistent given the analyst’s orthographic interpretation of a photo, as derived in.28

With user-assisted 3-D surface normals in hand, we proceed with estimating 3-D lighting.

2.2 3-D Light Estimation

We begin with the standard assumptions that a scene is illuminated by a single distant point light source (e.g., the
sun) and that an illuminated surface is Lambertian and of constant reflectance. Under these assumptions, the
radiance of a surface patch is given by:

r = n · s + a, (2)

where nT =
(
nx ny nz

)
is the 3-D surface normal, sT =

(
sx sy sz

)
specifies the direction to the light source

(the magnitude of s is proportional to the light’s brightness), and the constant ambient light term a approximates
indirect illumination. Note that this expression assumes that the angle between the surface normal and light is
less than 90◦.
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Figure 3. Shown is a shaded sphere in the image plane and a small circular probe corresponding to surface normal n. A
local coordinate system is defined by b1, b2, and b3. The slant of n is specified by a rotation σ around b3, while the tilt
τ is implicitly defined by the axes b2 and b3, Equation (1).

The four components of this lighting model (light direction and ambient term) can be estimated from k ≥ 4
surface patches with known surface normals. The equation for each surface normal and corresponding radiance
are packed into the following linear system:nT

1 1

...
...

nT
k 1

(sa
)

= r (3)

Ne = r , (4)

where r is a k-vector of observed radiance for each surface patch. The lighting parameters e can be estimated
using standard least squares:

e = (NTN)−1NT r, (5)

where the first three components of e correspond to the estimated light direction. Because we assume a distant
light source, this light estimate can be normalized to be unit sum and visualized in terms of azimuth φ =
−atan2 (sx/sz), φ ∈ [−π, π] and elevation θ = sin−1(sy/‖s‖), θ ∈ [−π/2, π/2].

In practice there will be errors in the estimated light direction due to errors in the user-specified 3-D surface
normals, deviations of the imaging model from our assumptions, sensor noise, etc. To contend with such errors,
we perform a perturbation analysis yielding a probabilistic measure of the light direction.

2.3 Modeling Uncertainty

For simplicity, we assume that the dominant source of error is the analyst’s estimate of the 3-D normals. A
model for these errors is generated from a large-scale psychophysical study in which observers were presented
with one of twelve different 3-D models, and asked to orient probes, like those used here, to specify the object’s
shape.25 The objects were shaded with a simple outdoor lighting environment. Using Amazon’s Mechanical
Turk a total of 45, 241 probe settings from 560 observers were collected.

From this data, we construct a probability distribution for the actual light slant and tilt conditioned on the
estimated slant and tilt. We then model the uncertainty in the analyst’s estimated light position by randomly



Figure 4. Shown on the left are four representative objects with user-specified probes. Shown on the right is the estimated
light position specified as confidence intervals in an azimuth/elevation space. The contours correspond to probabilities
30% (smallest), 60%, 90%, 95%, and 99% (largest). The small black dot corresponds to the actual light position.

drawing from this conditional probability distribution and re-estimating the light position. Each estimated light
position contributes a small Gaussian density that is projected into azimuth/elevation space. These densities
are accumulated across 20, 000 random draws, producing a kernel-density estimation of the uncertainty in the
analyst’s estimate of lighting.

The probe setting data is used to construct a probability distribution over the ground truth slant and tilt
conditioned on the analyst’s slant and tilt. This slant/tilt distribution is then used to build a distribution over
the 3-D light direction. Specifically, for each of the analyst’s probes, a ground truth slant/tilt is randomly drawn.
The light direction is then estimated, and contributes a small Gaussian density (over the 3-D light direction)
that is projected into azimuth/elevation space. This density estimation procedure is repeated for 20, 000 random
perturbations of the analyst’s probes. The result is a kernel-density estimate of the distribution over light
directions, given the analyst’s estimate of the object geometry.

Multiple distributions are constructed by an analyst, each from a particular object or feature in the image.
A confidence region is computed in each distribution, identifying a potentially non-contiguous area in which
the light source must lie. The physical consistency of an image is determined by intersecting these confidence



Figure 5. Shown are (left to right, top to bottom) the confidence intervals for the lighting estimate from 1 through 6 objects
in the same scene. This interval shrinks as more objects are added. Confidence intervals are shown at 30% (smallest),
60%, 90% (bold), 95%, and 99% (largest and bold). The small black dot corresponds to the actual light position.

regions. Forgery is detected if the intersection∗ is empty, up to a specified confidence threshold.

3. RESULTS

We rendered ten objects under six different lighting conditions. Sixteen previously untrained users were each
instructed to place probes on ten objects. Shown in the left column of Figure 4 are four representative objects
with the user-selected probes. Shown in the right column of this same figure are the estimated light positions
specified as confidence intervals. The small black dot in each figure corresponds to the actual light position. On
average, users were able to estimate the azimuth and elevation with an average accuracy of 11.1 and 20.6 degrees
with a standard deviation of 9.4 and 13.3 degrees, respectively. On average, a user placed 12 probes on an object
in 2.4 minutes.

In a real-world analysis, an analyst will be able to specify the 3-D shape of multiple objects which can then
be combined to yield an increasingly more specific estimate of lighting. Shown in Figure 5, for example, are the
results of sequentially intersecting the confidence regions from six rendered objects (Figure 4) in the same scene.
From left to right and top to bottom, the confidence intervals shrink. Of course, the smaller this confidence
region, the more effective this technique will be in detecting inconsistent lighting.

Shown in Figure 1 is the result from a real-world image. Shown in the top row is the original image. Shown
in the middle row are sample probes from one person’s face. Shown next to this panel is the estimated light
source. An analyst also selected probes on the other person. Shown in the bottom panel of the same figure is
the intersection of the estimated light sources from each of these. These results reveal that the lighting in this
image is physically consistent. Shown in Figure 6 is a forgery based on the image in Figure 1. Shown in the
lower panel is the estimated light source for the added soccer ball (labeled B) which is clearly inconsistent with
the estimated light source from Figure 1 (labeled A).

∗By intersecting confidence regions, rather than multiplying probabilities, every constraint must be satisfied for the
lighting to be consistent.



Figure 6. A forgery in which the soccer ball was inserted. The 3-D lighting estimated from the ball (B) is detected as
being inconsistent with the rest of the scene (A). Confidence intervals are shown at 30% (smallest), 60%, 90% (bold),
95%, and 99% (largest and bold).
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Figure 7. A forgery in which the jet was inserted. The 3-D lighting estimated from the jet (B) is detected as being
inconsistent with the rest of the scene (A). Confidence intervals are shown at 30% (smallest), 60%, 90% (bold), 95%, and
99% (largest and bold). [Original image copyright 2010, Connect for the Cure, http://connectforthecure.blogspot.com]



And lastly, shown in Figure 7 is another result from a real-world image in which the jet was digitally inserted
into an authentic photo. An analyst selected probes on the face and body of each man and on the bicycle wheel
of the second cyclists from the left. Shown in the bottom panel of the same figure is the intersection of the
estimated light sources from each of these. Despite the somewhat unusual collection of characters, these results
reveal that the lighting in this image (minus the jet) is physically consistent. An analyst also selected 47 probes
on the jet. Shown in the bottom panel of Figure 7 is the estimated light source for the jet (labeled B) which is
clearly inconsistent with the rest of the scene (labeled A).

4. DISCUSSION

We have described a user-guided forensic technique for estimating 3-D lighting. With minimal training, an
analyst can quickly and accurately specify the required 3-D surface normals needed to estimate lighting from a
single image. Unlike previous lighting-based techniques, this approach is able to estimate the full 3-D lighting
properties of a scene. Estimating the full 3-D lighting makes this forensic technique more powerful than previous
2-D methods as it removes the inherent ambiguity present when only analyzing a subset of the full lighting
model. Although we have focused here on estimating light direction only, this technique could easily be used to
estimate more complex 3-D lighting environments.17

More generally, other forensic techniques might benefit from user-guided assistance when dealing with other-
wise poorly-defined estimation problems such as that described here.
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