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Abstract

GENERAL-PURPOSE MEDICAL IMAGE REGISTRATION

Senthil Periaswamy

We have developed a general-purpose registration algorithm for medical images
and volumes. The transformation between images is modeled as locally affine but
globally smooth, and explicitly accounts for local and global variations in image in-
tensities. An explicit model for missing data is also incorporated, allowing us to simul-
taneously segment and register images with partial or missing data. The algorithm
is built upon a differential multiscale framework and incorporates the expectation-
maximization (EM) algorithm. We show that this approach is highly effective in

registering a range of clinical medical images.
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Chapter 1

Introduction

Our primary goal is to design and analyze an algorithm for the registration of images.
Immage registration (also known as image fusion, super-imposition, or matching) can
be broadly defined as the process of finding a transformation that aligns one image
to another. Our focus in particular is on medical images, which presents some unique
challenges, and for which there are a large number of interesting applications. We
begin the first chapter with a formal statement of the problem, including an intuitive
explanation of why this problem is hard. The importance of registration will also
be explored along with a discussion of current techniques. In the second chapter,
the details of our algorithm are fully described. In the third chapter, the efficacy
of the algorithm on a wide range of simulated and real imagery is demonstrated.
In the fourth chapter, the results of a sensitivity analysis of the entire system with
respect to the design assumptions are presented. Finally, in Chapter 5, some possible
applications of image registration are explored. Readers primarily interested in the
details of our registration algorithm, or already familiar with the fundamentals of

image registration, are encouraged to begin in Chapter 2.



source target correspondence map registered source

Figure 1.1: The goal of registration is to find corresponding points between a source
and target image (columns 1 and 2). Shown in column 3 are corresponding points
in the eye, nose and corpus-colusum regions between the two slices. Shown in the
last column is the registered source, obtained by warping the source image using the

correspondence map.

1.1 Problem description

1.1.1 Definition

Image registration can be defined as the process of finding a mapping that aligns one
image to another. With this mapping, a correspondence between pixels in a source
image with the pixels in a target image is established. More precisely, the goal of
registration is to find a correspondence function, or mapping, M (-), that takes each
spatial coordinate Z; from the target image and returns a coordinate ', for the source

image:

Fo=M(F). (1.1)

Once a registration map M (-) has been obtained, the source image may be brought
into registration with the target image by warping the source using interpolation, as

shown in Figure 1.1.}

!Note that in this figure, a sparse correspondence map is shown. If the mapping is found between
all source and target pixels, it is called a dense mapping. A sparse mapping can also be interpolated
to obtain a dense mapping.



1.1.2 Representation of the mapping

In order to visualize the registration mapping M (-), two approaches are used: a
warped grid approach and a flow approach. The warped grid approach takes a regular
grid and uses the mapping M (-) to warp it. The flow approach depicts the mapping
at a subset of discrete point with a translation vector. The vector at each source
pixel location describes the magnitude and direction to the corresponding target pixel
location. Figure 1.2 shows some examples of the grid and flow representations. In
the case of the grid representation, it is harder to see small translations (a translated
grid is still a grid). In the case of the flow representation, it is harder to visualize the
overall effect of the transformation. These two formats will be used interchangeably

throughout this thesis to depict the registration mapping.

1.1.3 Applications

Image registration has evolved independently in various research areas, ranging from
geo-surveying to medical imaging, each with a number of unique applications. Medical
image analysis, in particular, has many challenging and useful applications. The
need for registration can arise when images of a given piece of anatomy are taken
over a period of time and need to be compared, as is the case for the study of
tumor growth (e.g., longitudinal studies), or in functional magnetic resonance imaging
(fMRI) studies. In fMRI studies, many magnetic resonance (MR) images are taken
of the brain in quick succession, and need to be registered to a higher resolution
anatomic image, which is in turn registered to an atlas image. Registration can also
be used to characterize normal versus abnormal anatomical shape variations. For
example, tumors may be registered to normal or abnormal tumors within the same

class. Other applications include labeling and segmentation, in which the image to be
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Figure 1.2: Shown above are the grid and flow representations for some sample
mappings. Shown from the top to bottom are examples of a translation, rotation,
scaling, shear and a random correspondence map.



labeled /segmented is registered to a previously labeled /segmented image (the ’atlas’).
This atlas registration circumvents the need for explicit labeling /segmentation.

The images that need to be compared may also be obtained using different hard-
ware devices, each highlighting a specific part of the body (these images are also
referred to as multi-modality images). Examples of common multi-modality images
in medical imaging include Computed Tomography (CT), X-ray imaging, Positron
Emission Tomography (PET) Imaging, and Nuclear Magnetic Resonance (NMR or
MR) Imaging. If these images are registered, they can be combined in a more mean-
ingful way to provide an integrated view (image fusion). Applications that involve
multi-modality image registration include image-guided surgery, in which the surgeon
may be assisted with a 3-D view consisting of fused images of different modalities.
This information may also be integrated with positional information from the sur-
geon’s tool, providing further assistance. Another application for registration is ra-
diation therapy planning in nuclear medicine, in which a CT scan is used for dosage
calculations, while the contours of the target lesion are easier to outline using MRI.
Multi-modality registration between the CT scans and the MRI helps optimize the
dosage of radiation.

There are also a large number of applications outside the realm of medical imaging,
such as mosaicking and view rectification in remotely sensed data processing, target
tracking in defense, face/thumb/retinal recognition in security, video compression,
motion estimation and stereo in computer vision, to name just a few. As can be seen,
image registration is an important precursor to a wide range of practical applications,
each with their own specific challenges. Medical imaging, in particular, has some

unique challenges, which are explored next.



1.1.4 Difficulties

Medical image registration poses unique challenges, due to the rich variety of appli-
cation and the rapid growth of acquisition hardware. We believe that there are three
main reasons that make registration difficult. Firstly, the distortions may be both
large and small (see Figures 1.3(a)-(b)), making it difficult to find a simple model for
the distortion. Secondly, a difficulty arises as the images may be acquired using dif-
ferent hardware devices, or different settings within a given hardware device, leading
to multi-modality images, which vary in overall appearance. Note that each of these
modalities can be tuned to highlight different features within the body by varying
the acquisition parameters, acquisition protocol, or by the introduction of contrast
agents in the body. Since each of these modalities have different intensity character-
istics, registration becomes hard (Figure 1.3(c)). Thirdly, another difficulty occurs
in cases where only partial data is available for registration (Figure 1.3(d)). Many
registration algorithms are simply ill equipped to handle this situation, and are likely
to fail completely. For the above reasons, it is difficult for any single general-purpose
algorithm to perform effectively across the broad range of applications. However,
techniques exist that try to address one or more of these problems. Before discussing
some of these techniques, we first explore some of the design considerations that go

into a registration algorithm.

1.2 Design considerations

In this section, we explore some of the design considerations in formulating a regis-
tration algorithm. As discussed in Section 1.1.4, it is unlikely that a single algorithm
will completely solve the registration problem; instead there are a few standard tech-

niques and tools that can be used in combination in a registration algorithm. In this
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(a) Large nonlinear distortion

Large cross-population vari-
ability

(c) Multi-modality imagery

(d) Partial data

Figure 1.3: Shown above are some of the common difficulties encountered during
image registration. There may be both large overall distortions (a) as well as small
distortions (b). The images may vary in overall appearance (c). Finally, there may
only be partial data available for the registration (d).



section, we will also explore some of these existing tools. We will also discuss some

commonly used registration software.

1.2.1 Classification

A large body of literature exists in the field of image registration (surveys can be
found in [17, 69, 44, 74, 43, 41]). Our approach towards categorizing this literature
is to describe the design decisions that go into most registration algorithms.

In estimating the transformation between two images we must choose: 1.) to esti-
mate the transformation between a small number of extracted landmarks / features,
or between the complete unprocessed intensity images; 2.) a model that describes the
geometric transform; 3.) whether to and how to explicitly model intensity changes;
4.) an error metric that incorporates the previous three choices; and 5.) a minimiza-

tion technique for minimizing the error metric, yielding the desired transformation.

Feature Space

Feature-based approaches extract a (typically small) number of corresponding land-
marks or features between the pair of images to be registered. The overall trans-
formation is estimated from these features. Common features include corresponding
points [61, 26, 14|, edges [48, 38|, contours |45, 63| or surfaces |53, 28, 24]|. These
features may be specified manually or extracted automatically. Fiducial markers may
also be used as features; these markers are usually selected to be visible in different
modalities. Feature-based approaches have the advantage of greatly reducing compu-
tational complexity. Depending on the feature extraction process, these approaches
may also be more robust to intensity variations that arise during, for example, cross

modality registration. Also, features may be chosen to help reduce sensor noise. These



approaches can be, however, highly sensitive to the accuracy of the feature extraction.
Intensity-based approaches, on the other hand, estimate the transformation between
the entire intensity images. Such an approach is typically more computationally de-
manding, but avoids the difficulties of a feature extraction stage. Note that the choice
of a feature- or intensity-based technique does not restrict the geometric transform;
it merely filters the information that is to be used. Recent advances in feature based

registration include methods based on level sets [70, 51].

Geometric transform

Independent of the choice of a feature- or intensity-based technique, a model describ-
ing the geometric transform is required. A common and straightforward choice is a
model that embodies a single global transformation. The problem of estimating a
global translation and rotation parameter (referred to as the Orthogonal Procrustes
problem) has been studied in detail, and a closed form solution was proposed by
Schonemann [61] in 1966. Other closed-form solutions include methods based on sin-
gular value decomposition (SVD) [7], eigenvalue-eigenvector decomposition [36] and
unit quaternions [35]. One idea for a global transformation model is to use polynomi-
als. For example, a zeroth-order polynomial limits the transformation to simple trans-
lations, a first-order polynomial allows for an affine transformation, and, of course,
higher-order polynomials can be employed yielding progressively more flexible trans-
formations. For example, the registration package Automated Image Registration
(AIR) can employ (as an option) a fifth-order polynomial consisting of 168 param-
eters (for 3-D registration) |75, 76]. The global approach has the advantage that
the model consists of a relatively small number of parameters to be estimated, and
the global nature of the model ensures a consistent transformation across the entire

image. The disadvantage of this approach is that estimation of higher-order polyno-



mials can lead to an unstable transformation, especially near the image boundaries.
In addition, a relatively small and local perturbation can cause disproportionate and
unpredictable changes in the overall transformation. An alternative to these global
approaches are techniques that model the global transformation as a piecewise col-
lection of local transformations. For example, the transformation between each local
region may be modeled with a low-order polynomial, and global consistency is en-
forced via some form of a smoothness constraint. The advantage of such an approach
is that it is capable of modeling highly nonlinear transformations without the numer-
ical instability of high-order global models. The disadvantage is one of computational
inefficiency due to the significantly larger number of model parameters that need to
be estimated, and the need to guarantee global consistency. Low-order polynomials
are, of course, only one of many possible local models that may be employed. Other
local models include B-splines |68, 55, 58|, thin-plate splines [13, 14|, and a multitude
of related techniques. The package Statistical Parametric Mapping (SPM) uses the
low-frequency discrete cosine basis functions [8, 10|, where a bending-energy function
is used to ensure global consistency. At least one disadvantage with this particu-
lar basis is that it is unable to model, for example, local scale changes. Physics-
based techniques that compute a local geometric transform include those based on
the Navier-Stokes equilibrium equations for linear elasticity [16, 11, 31] and those

based on viscous fluid approaches [31, 29, 30].

Modeling intensity changes

Under certain conditions a purely geometric transformation is sufficient to model the
transformation between a pair of images. Under many real-world conditions, however,
the images undergo changes in both geometry and intensity (e.g., brightness and

contrast). Many registration techniques attempt to remove these intensity differences

10



with a pre-processing stage, such as histogram matching [47, 72| or homomorphic
filtering [49]. The issues involved with modeling intensity differences are similar to
those involved in choosing a geometric model. Because the simultaneous estimation of
geometric and intensity changes can be difficult, few techniques build explicit models
of intensity differences. A few notable exceptions include AIR |75, 76|, in which global
intensity differences are modeled with a single multiplicative contrast term, and SPM

[8, 10] in which local intensity differences are modeled with a basis function approach.

Error metric

Having decided upon a transformation model, the task of estimating the model pa-
rameters begins. As a first step, an error function in the model parameters must
be chosen. This error function should embody some notion of what is meant for a
pair of images to be registered. Perhaps the most common choice is a mean square
error (MSE), defined as the mean of the square of the differences (in either feature
distance or intensity) between the pair of images. This metric is easy to compute
and often affords simple minimization techniques. A variation of this metric is the
unnormalized correlation coefficient applicable to intensity-based techniques. This
error metric is defined as the sum of the point-wise product of the image intensities,
and can be efficiently computed using Fourier techniques [20, 25|. A disadvantage
of these error metrics is that images that would qualitatively be considered to be in
good registration may still have large errors due to, for example, intensity variations,
or slight misalignments. Another error metric (included in AIR) is the ratio of image
uniformity (RIU) defined as the normalized standard deviation of the ratio of image
intensities. Such a metric is invariant to overall intensity scale differences, but typi-
cally leads to nonlinear minimization schemes. Mutual information |21, 71, 65, 67|,

entropy [19, 66|, and the Pearson product moment cross correlation [40]| are just a

11



few examples of other possible error functions. Such error metrics are often adopted

to deal with the lack of an explicit model of intensity transformations [57].

Minimization

In the final step of registration, the chosen error function is minimized yielding the
desired model parameters. In the most straightforward case, least-squares estimation
is used when the error function is linear in the unknown model parameters. This
closed-form solution is attractive as it avoids the pitfalls of iterative minimization
schemes such as gradient-descent or simulated annealing. Such nonlinear minimiza-
tion schemes are, however, necessary due to an often nonlinear error function. A
reasonable compromise between these approaches is to begin with a linear error func-
tion, solve using least-squares, and use this solution as a starting point for a nonlinear
minimization. Minimization can be performed using multiscale approach, which helps

alleviate the problem of local minima.

Our choices

In developing our general-purpose registration algorithm, we have tried to find a
compromise between a flexible and robust technique and computational efficiency.
To begin, we have chosen an intensity-based approach so as to avoid the various
pitfalls involved in feature selection. Geometrically, we model the transformation
with a local affine model and a global smoothness constraint. Intensity variations
are explicitly modeled with local changes in brightness and contrast and a global
smoothness constraint. These model parameters are simultaneously estimated at
each pixel in the image, allowing us to capture nonlinear distortions (in both geometry
and intensity). We employ a standard MSE error metric on the intensity values. The

minimization involves two steps. First an error function that is linear in the model
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parameters is minimized using least-squares. This error function is then augmented
with a nonlinear smoothness constraint, and the least-squares solution is used to
bootstrap an iterative nonlinear minimization. This entire procedure is built upon a
differential multiscale framework, allowing us to capture both large- and small-scale
transformations, see also |57, 50| for related techniques. Details of our technique
begin in Chapter 2. Before this detailed description, we first explore some of the

earlier work and some techniques used in registration.

1.2.2 Related work

In this section, we explore some of the tools and ideas commonly employed in reg-
istration. These tools are often combined with other techniques to form a complete

registration algorithm.

Principal axes transform

The principal axes transform is also known as the Hotelling transform or Karhunen-
Loéve transform, and is used to align images where the geometric distortion is assumed
to be a rigid-body transformation (i.e., translations and rotations). Given a source

image f (z,y) and a target image g (x,y), this model takes the form:

f(z,y) = g((xcosf +ysinf) —t,, (—rsinf +ycosf) —t,). (1.2)

The translation is given by (¢,,t,) and the rotation angle is 6. In this technique, the
pixels (or features) of each image are modeled as points in an ellipse, characterized by
a mean position or centroid 7, along with the major and minor axes. The distance
between the centers of the two ellipses (corresponding to the two images) gives the

translation, while the angle between their major axes (the principal axes) gives the
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angle of rotation. The centroid m and unit vector @ that corresponds to the direction
of the principal axis of a single ellipse is computed as follows. Let #; denote the
coordinates of feature 7. The centroid m of the ellipse is computed as the mean of z;:

mzlzga, (1.3)

n -
=1

where n is the total number of features. We next need to find the vector « in the
direction of the principal axis. Let g; denote the set of points Z; with the mean
subtracted: ; = #; — m. The vector @ corresponding to the principal axis, by

definition, has the property that it maximizes the variance of the projection of the

T
points 3; onto it. The projection of y; onto the vector  is given by: (%Z) 1. We can

write an error function F (@) to express the variance of the projections as follows:

_ ur (Zz Z?ZT) u
B ulu
@’ Cyyil
= —. 1.4
=T (1.4)

In this equation, Cy, is the covariance matrix of the points y;. This function can be
maximized by differentiating F (%) with respect to u, setting the result to zero, and

solving for « as follows:

Tnyﬁ—) = 0. (1.5)
Rearranging terms yields:
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— B (1.6)

From this equation, we can observe that @ must correspond to an eigenvector of C,;
note also that E () must be an eigenvalue of C,,. Thus the maximum value of
E (1) corresponds to the largest eigenvalue of Cy,,, and the corresponding eigenvector
is ¥. In summary, the eigenvector u corresponding to the largest eigenvalue of the
covariance matrix Cy, is the principal axis of the ellipse, which gives us the direction
of maximum variance, and the mean of the points y; gives us the center of the ellipse.

Once we find the centroids and principal axes for the two ellipses corresponding to
both images, the difference between the centroids gives the desired translation vector
(tz,t,), while the angle between the principal axes gives the desired angle. This
technique is analytical and simple to compute. The main drawback is the simplicity
of the model. Because of this, the technique is widely used in registration problems
that do not require high degrees of accuracy, or when the distortion is simple. The
technique may be used as a coarse approximation or pre-processing step for other

methods.

Correlation-based matching

Correlation-based approaches are often used for template matching or pattern recog-
nition in which the location (translation) of a template or pattern f;(-) is found in

an image f; (-). The model used in this case is:

fs (x>y):ft($_tx>y_ty)‘ (17)
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The translation parameters (t,,t,) are determined by first writing a quadratic error

function in ¢, and ¢,:

E(tﬂmty) = Z [ft(x_twvy_ty> —fs(:c,y)]2

z,ye)
= Z ft(x_tmvy_ty)2+ Z fs(l’,y>2_
z,ye) z,yeN
2> fulw =ty — 1) fo(x,y). (1.8)
z,yeN

where the sum is over the spatial support €2 of f,(:). This error will be minimized

when

C(tty) = Y filw —te,y —t,) fula,y) (1.9)

z,ye)

is maximal, where C'(-) is defined as the correlation coefficient. The maximum of C'(-)
is therefore a reasonable approximation to the minimum of £ (-). This technique is
referred to as unnormalized correlation, matched filtering or template matching. The
correlation coefficient can be efficiently computed for all possible translations using
Fourier techniques |20]. Note that the model used is too simplistic for a general-
purpose registration algorithm, and is typically used only for a rough alignment of
images. Extensions to cope with rotations and scale changes have also been proposed,
but these are sensitive to other types of distortions. A technique that incorporates
rotations based on the method of De Castro and Morandi [20] is incorporated in
our earlier work [60]. The basic method can also be extended to detect changes in
scale (Fourier-Mellin Transform). Cox et al. [23] have implemented a real-time 3-D
registration algorithm for shifts and rotations based on the work of Eddy et al. [25],
used in the fMRI package AFNI.
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Mutual information error metric

Some registration techniques employ an error function that implicitly handles varia-
tions of contrast and brightness, the most popular being mutual information. Mutual
information is a measure of similarity derived from information theory [22, 71]. The
mutual information between two random variables X and Y is given by I(X;Y’) and
is defined as the relative entropy between the joint probability density p(X,Y") and

the product of the marginal probability densities p(X)p(Y') :

HXY) = 305 plsy) og, T2, (1.10)

S (z)p(y)’

where z, y are the discrete values of the random variables X, Y. In the context of image
registration, the images to be registered are assumed to be the pixel intensities drawn
from the random variables X and Y'; thus z, y represent the range of pixel intensities
drawn from random the variables X, Y. When two images are in perfect registration,
their mutual information measure is maximized. Registration is performed by first
expressing the chosen model (e.g., rotations, translations) using this error metric, and
then maximizing this error with respect to the model parameters. Mutual information
provides a mathematical basis for handling multi-modality images directly. In order
to obtain good estimates of the mutual information, however, it is necessary to have
good estimates of the probability density functions p(z), p(y) of the random variables
X and Y, and to have good estimates of the joint probability density p(z,y). Thus, a
large number of data points are required, making the measure less accurate in local
regions. Another drawback is that mutual information is computationally expensive.
Registration methods that use mutual information include those by Viola et al. [71]

and Collingnon et al. [21].
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Method of tiles for non-rigid registration

Many practical registration tasks require estimation of a non-rigid mapping between
images. One straightforward approach for non-rigid registration is to split the source
and target images into tiles of equal size, and estimate a rigid mapping between each
tile independently. The parameter estimates for each tile are treated as a coarse
sampling of the registration map, and interpolation (using a smooth function, such as
thin-plate splines) is used to obtain the full registration map at every pixel location.
A multiscale approach can also be used, starting the tiling at a coarse scale and
refining the results at higher scales. Kostelec et al. [56] use spline pyramids for the
hierarchical scheme, and estimate a rigid translation and rotation parameter for each
tile, using Bookstein’s thin-plate splines for the interpolation. Periaswamy et al. [60]
use tiles of different sizes, using a Fourier technique to estimate rigid translation and
rotation parameters at each tile. These techniques are straightforward to implement,
but have a drawback: since the transformations are estimated at each tile independent
of the surrounding tiles, it is possible to get non-smooth behavior between the tiles,

where tiles meet. These artifacts are undesirable.

Basis function approach for non-rigid registration

One drawback of the previous non-rigid registration scheme (method of tiles) is that
there is no way to impose smoothness of the registration map between tile boundaries
(since each tile is treated independently). One approach that avoids this problem is
the basis function approach. In this approach, the source coordinates (z,y) gets

mapped into the new coordinates (Z,¢) by a basis function as follows:
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Figure 1.4: Method of tiles, using a multiscale approach (from Periaswamy et al.

[60])-

N-1

= Azt ) bBiz,y) (1.11)
=0

N-1

Jo= Ay+ Y o(ny). (1.12)

=0

=>

where Az, Ay are shifts in  and y, §;(z,y) is the jth basis function for the a-
dimension at position (z,y) and v;(x,y) is the jth basis function for the y-dimension
at position (z,y). The coeflicients on these basis functions are b; and ¢;, respectively.
The basis functions used are typically smooth (for example, the fMRI toolbox SPM
uses the lower frequency terms of the DCT basis functions). One advantage of this
scheme is that smoothness is implicitly imposed by using smooth basis functions.
One disadvantage is that the choice of basis functions may restrict the allowable

deformations.
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1.2.3 Registration software
SPM

SPM (Statistical Parametric Mapping) is an fMRI toolbox developed by the method-
ology group at the Wellcome Department of Cognitive Neurology under the super-
vision of Karl Friston. The registration procedure used in SPM consists of three
steps. In the first step, a global affine transform is computed that registers the source
and target image to a template image of the same modality, using a Newton-like
least-squares method [8]. In the second step, the images are segmented according to
tissue types: gray matter, white matter and cerebral-spinal fluid. The gray and white
matter partitions are extracted from the images using a modified mixture model clus-
ter analysis method. The model assumes a spatially varying a priori probability of
each voxel belonging to a specific tissue type. In the third step, the image segments
obtained from step two are registered using a rigid body transformation that simulta-
neously matches both the gray and white matter partitions from the pair of images.
Elastic registration is achieved in the last step by assuming that the warp field can
locally be decomposed into a weighted sum of basis functions [9]. The basis functions
consist of the low frequency DCT components. A translation term is also estimated
at the location of each basis function. Low resolution images are used in the entire
process (images are heavily smoothed using a Gaussian window). Estimation of the
intensity distortion is also explored in [39, 9] (the current version of SPM - spm99 as

of this writing - can estimate these distortions during the segmentation phase).

AIR

AIR (Automated Image Registration) is a registration package developed by R. Woods

[77]. The guiding philosophy in AIR is the notion that if two images are in alignment,
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the ratio of their intensities remains fairly uniform. Even a slight mis-registration
leads to a substantial degree of non-uniformity. The standard deviation of the voxel
by voxel ratio measures this non-uniformity; this cost function is called the ratio
of image uniformity or RIU. An iterative procedure is used to minimize a normal-
ized form of this quantity in which the registration parameters (three rotation and
three translation terms) with the largest partial derivative is adjusted in each it-
eration [75]. In order to accommodate multi-modality registration (particularly for
registration of MRI and PET images), two modifications to the original algorithm
were performed [77]. The first modification is to segment the MR image to exclude
non-brain structures (e.g., scalp, skull, meninges). The second modification consists
of first performing a histogram matching? between the MR and PET images (with
256 bins), followed by a segmentation of the images according to the 256 bin values.
Each of the segmented MR and PET images (with corresponding bin values) are then
registered separately. In both within-modality and cross-modality algorithms, the
registration is performed on subsampled images, in decreasing order of subsampling.
The most recent versions of AIR (version 3.0 at the time of this writing) allows the
user to choose two more cost functions in addition to the RIU cost function [76]. The
first additional cost function consists of the mean square error on the raw intensity
images, minimized using least-squares. The second additional cost function is also a
mean square error on the raw intensity images, but allows global intensity rescaling of
the images relative to one another [32, 4]. In addition to improvements with respect
to the cost functions, higher order polynomial spatial models have also been imple-
mented (up to a 5th order 3-D spatial transformations, consisting of 168 parameters),

and a faster minimization technique has been employed [76].

2Denote the two images to be histogram matched as f; (-) and f5 (+), and c2(-) as the sampled
cumulative distribution function of image f2(-). The histogram of fo(-) is made to match that of

f1(-) by mapping each pixel fi(z,y) to ca (fi(x,y)).

21



1.3 Summary

In this chapter, we have introduced the problem of image registration, and highlighted
in detail some of the options and challenges faced when designing a registration algo-
rithm. Various aspects of registration have been discussed, beginning with a formal
description of the problem, followed by a detailed analysis of the choices we have
made, and ending with a discussion of various tools and packages currently used in
registration. In developing a registration algorithm, our design choices can be summa-
rized as follows. We choose an intensity-based approach and model the transformation
with a local affine model, which is globally smooth. Intensity variations are explicitly
modeled with local changes in brightness and contrast and a global smoothness con-
straint. Registration is performed using a multiscale pyramid scheme. These choices
allow us to build a non-rigid registration algorithm that can handle a large number of
distortions, including smooth changes in contrast and brightness implicitly, all within
a single framework. Details of our registration technique are explained in depth in

the next section.
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Chapter 2

Methods

2.1 Introduction

In this section, we describe the details of our registration algorithm. This section is
split into two main parts; the first part (Section 2.2) describes the basic registration
algorithm, while the second part (Section 2.3) explains an extension that allows us
to perform registration even when a portion of the images to be registered is oc-
cluded. As outlined earlier in Section 1.2, the following design choices have been
made. The algorithm is intensity-based; this helps avoid the various pitfalls associ-
ated with feature selection. The geometric transform is modeled as smoothly varying
affine transformations; this enables us to model a broad range of geometric transfor-
mations. Intensity variations are explicitly modeled as smoothly varying contrast and
brightness modulations; this avoids a pre-processing step for intensity corrections in
the registration, and allows a larger class of images to be registered. Both the geomet-
ric transformation and intensity modulation parameters are estimated simultaneously
for each pixel location. The error function used is the mean square error (MSE) on

the intensity values. With these design choices in mind, a framework for registra-
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tion is developed, including a discussion of the practical design issues necessary for a

successful implementation.

2.2 Registration algorithm

The problem of image registration between a source and target image is formulated
within a differential (non-feature-based) framework. This formulation borrows from
various areas of motion estimation [37, 42, 73, 2, 34, 3, 33, 12|. Estimation of the
registration parameters is described in three stages. In the first stage, the transfor-
mation is formulated as being purely affine (Section 2.2.1). In the second stage, this
purely affine geometric transform is extended to also implicitly account for contrast
and brightness modulations (Section 2.2.2). Finally, in the third stage, a smoothness
constraint is imposed on all the locally estimated geometric and intensity parameters
(Section 2.2.3). Following this description, we also explain the necessary details to
make the algorithm work in practice (Section 2.2.4), along with and extension for 3-D

volumes (Section 2.2.6).

2.2.1 Local affine

Denote f(z,y,t) and f(Z,9,t — 1) as the source and target images, respectively. !
We begin by assuming that the image intensities between images are conserved (this
assumption will be relaxed later), and that the motion between images can be modeled

locally by an affine transform:

f(z,y,t) = f(miz + mey + ms, max + myy + me, t — 1), (2.1)

1We adopt the slightly unconventional notation of denoting the source and target image with a
temporal parameter t. This is done for consistency within our differential formulation.
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where mq, mo, m3, my are the linear affine parameters, and ms, mg are the translation
parameters. These parameters are estimated locally for each small spatial neighbor-
hood, but for notational convenience their spatial parameters are dropped. In order
to estimate these parameters, we define the following quadratic error function to be
minimized:

E(m) = Y [f(x,y,t) = f(miz + may + ms, max + myy +me, t —1)°,  (2.2)

z,yeQ
T

where m = <m1 mﬁ) , and {2 denotes a small spatial neighborhood. Since
this error function is nonlinear in its unknowns, it cannot be minimized analytically.
To simplify the minimization, we approximate this error function using a first-order

truncated Taylor series expansion:

E(m) ~ Z (f(x,y,t) - [f(:v,y,t) + (m1$ + moy + ms — $)fx($7yvt) +

z,yef
(m3$+m4y+m6 _y)fy(x>y7t) - ft(l’vyvt)])2> (23)

where f.(-), fy(-), fi(-) are the spatial /temporal derivatives of f(-). This error func-

tion further reduces to:

E(T?L) ~ Z [ft(l’vyvt) - <m1$ + moy +ms — $)fx(x>y7t)_

z,yef
(mgllf + may + mg — y)fy($v Y, t)]2 . (24)

Note that this quadratic error function is now linear in its unknowns, . This error

function may be expressed more compactly in vector form as:

Em) = Y [k—cTm]’, (2.5)



where the scalar k£ and vector ¢ are given as:

k= fitafe+yf, (2.6)

(«fe yfe afy yfy fo f) (2.7)

oy
I

where again, for notational convenience, the spatial/temporal parameters of f,(-),
fy(+), and fi(-) are dropped. This error function can now be minimized analytically

by differentiating with respect to the unknowns:

4B (7) s
el Z —2¢ [k —c'm], (2.8)

z,yef)

setting this result equal to zero, and solving for m yielding:

mo= [Z a?Tr [Z 5k] . (2.9)

z,yed z,ye)

This solution assumes that the first term, a 6 X 6 matrix, is invertible. This can
usually be guaranteed by integrating over a large enough spatial neighborhood (2
with sufficient image content. With this approach a dense locally affine mapping can

be found between a source and target image.

2.2.2 Intensity variations

Inherent in the model outlined in the previous section is the assumption that the
image intensities between the source and target are unchanged, i.e., the assumption
of brightness constancy. This assumption is likely to fail under a number of cir-
cumstances. To account for intensity variations, we incorporate into our model an

explicit change of local contrast and brightness [59]. Specifically, our initial model,
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Equation (2.1), now takes the form:
mrf(z,y,t) +mg = f(miz+ moy + ms, msx + myy + mg, t — 1), (2.10)

where m; and mg are two new (also spatially varying) parameters that embody a
change in contrast and brightness, respectively. Note that these parameters have
been introduced in a linear fashion. As before, this error function is approximated

with a first-order truncated Taylor series expansion to yield:
Em) = Y [k-eTm]’, (2.11)
where the scalar k£ and vector ¢ are now given as:

k= fi—f+afatuyly (2.12)

(xfw Yfe xfy yfy fa fy —f _1)T- (2'13)

ol
I

Minimizing this error function is accomplished as before by differentiating F(m),
setting the result equal to zero and solving for 7. The solution takes the same form
as in Equation (2.9), with £ and ¢ as defined above.

Intensity variations are typically a significant source of error in differential motion
estimation. The addition of the contrast and brightness terms allows us to accurately
register images in the presence of local intensity variations. It is possible, of course,
to fully explain the mapping between images with only a brightness modulation. In

the next section we describe how to avoid such a degenerate solution.

2.2.3 Smoothness

Until now, we have assumed that the local affine and contrast/brightness parameters

are constant within a small spatial neighborhood, Equation (2.11). There is a natural
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trade-off in choosing the size of this neighborhood. A larger area makes it more likely

that the matrix ) ¢cT in Equation (2.9) will be invertible. A smaller area,

zyen ©
however, makes it more likely that the brightness constancy assumption will hold.
We can avoid balancing these two issues by replacing the constancy assumption with
a smoothness assumption [34]. That is, we assume that the model parameters m
vary smoothly across space. A smoothness constraint on the contrast/brightness
parameters has the added benefit of avoiding a degenerate solution where a pure

brightness modulation is used to describe the mapping between images. To begin, we

augment the error function in Equation (2.11) as follows:
E(m) = Ey(m)+ E,(m), (2.14)
where E,(m) is defined as in Equation (2.11) without the summation:
Eym) = [k—&Tm]", (2.15)

with k& and ¢ as in Equations (2.12) and (2.13). The new quadratic error term E()

embodies the smoothness constraint:

Em) = Y A [(85;”)2+ (88”;”)2] , (2.16)

p=1

where )\, is a positive constant that controls the relative weight given to the smooth-
ness constraint on parameter m,. This error function is again minimized by differ-
entiating, setting the result equal to zero and solving, dE (m) /dm = dE, (m) /dm +
dEg (m) /dni = 0. The derivative of Ej(mi) is:

dE, () I
0~ —oefk- i) (2.17)

To compute the derivative of d%r(ﬁm), we first use discrete approximations to the z—

and y— derivatives of m,, (as explained in [34]) as follows:
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. = my(i,5) —mp(t +1,7) (2.18)
dmz(yi’]) = my(i,j) —my(i,j +1). (2.19)

We can now express the smoothness error of a particular parameter m,, as follows:

Ey(my(i,5)) = Ay [(%W)Q - (ng;@j))z]

= N [(mp(i,§) = mp(i +1,0))% + (mp(i, ) — mp(i, j + 1))%] . (2.20)

The derivative of this smoothness error of term p with respect to the parameter can

now be written as:

dE, (my, (i, 7))

e = 2%y, ) = myli 1, 9)] 2y, ) = myli 1)

= ANy (1, 5) — 20 [my (i + 1,5) +my, (i, + 1)]
= AN [my (i) — 1y (i,5)], (2.21)
where m,, (i,7) denotes (m, (i +1,7) +m, (i,7+ 1)) /2, or the local average of m,

about the point (7, j). Using vector notation, we can succinctly represent the smooth-

ness derivative as:

= 2L(m — 1), (2.22)

where 77 is the component-wise average of 7 over a small spatial neighborhood, and

L is an 8 x 8 diagonal matrix with diagonal elements );, and zero off the diagonal.
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Setting dEy, (m) /dm~+dE, (m) /dm = 0, and solving for m at each pixel location yields
an enormous linear system which is intractable to solve. Instead m is expressed in

the following iterative form [34]:
Aot = @@+ ) @k L) (2.23)

On each iteration j, i estimated from the current 7). The initial estimate 17(*)
is estimated from the closed-form solution of Section 2.2.2.

The use of a smoothness constraint has the benefit that it yields a dense locally
affine but globally smooth transformation. The drawback is that the minimization is
no longer analytic. We have found, nevertheless, that the iterative minimization is
quite stable and converges relatively quickly (on the order of forty iterations, for the

results presented here).

2.2.4 Implementation details

While the formulation given in the previous sections is relatively straightforward there
are a number of implementation details that are critical for a successful implementa-
tion.

First, in order to simplify the minimization, the error function of Equation (2.15)
was derived through a Taylor-series expansion. A more accurate estimate of the actual
error function can be determined using a Newton-Raphson style iterative scheme [62].
In particular, on each iteration, the estimated transformation is applied to the source
image, and a new transformation is estimated between the newly warped source and
target image. As few as five iterations greatly improves the final estimate.

Second, the required spatial/temporal derivatives have finite support, thus fun-

damentally limiting the amount of motion that can be estimated. A coarse-to-fine
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scheme is adopted in order to contend with larger motions [42, 5|. A Gaussian pyra-
mid [1] is built for both source and target images, and the local affine and con-
trast/brightness parameters estimated at the coarsest level. These parameters are
used to warp the source image in the next level of the pyramid. A new estimate is
computed at this level, and the process repeated through each level of the pyramid.
The transformations at each level of the pyramid are accumulated yielding a single
final transformation. This multiscale approach is critical given the differential nature
of our measurements, allowing us to register images with large motions.

Finally, the estimation of the spatial/temporal derivatives is a crucial step. Spa-
tial /temporal derivatives of discretely sampled images are often computed as differ-
ences between neighboring sample values. Such differences are typically poor approx-
imations to derivatives and lead to substantial errors. In computing derivatives we
employ a set of derivative filters specifically designed for multi-dimensional differen-
tiation [27]. The spatial/temporal derivatives are estimated as follows. The images
are first pre-filtered in time (using the two-tap filter [0.5 0.5]). The derivative in
x is then estimated by first pre-filtering the result in y (using the 3-tap prefilter
[0.223755 0.552490 0.223755]), followed by differentiating in x (using the derivative
filter |[—0.453014 0.0 0.453014]). Similarly, the derivative in y is estimated by first
pre-filtering the result in x (using the 3-tap prefilter [0.223755 0.552490 0.223755]),
followed by differentiating in y (using the derivative filter [—0.453014 0.0 0.453014]).
The derivative in time is estimated by by first pre-filtering in space (in = and y) using
the 3-tap prefilter [0.223755 0.552490 0.223755]), followed by applying the two-tap
derivative filter [0.5 -0.5] in time to the result. These filters significantly improve
the resulting registration. With these implementation details in mind, the complete

system for the registration algorithm is presented next.
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Figure 2.1: System overview for the registration algorithm, split into three sections,
depicted by the three columns in the figure. The first column depicts the multiscale
estimation of the registration map, from a coarse to fine scale. The second column
depicts the estimation of the registration map within each scale. The final column
depicts the process by which a smooth registration map is obtained. In the first two
columns, the algorithm is bootstrapped with an initial registration map consisting
entirely of zeros.

2.2.5 System overview

The multiscale registration algorithm proceeds as follows (see first column in Figure
2.1). A Gaussian pyramid is first built for both the source and target images. The
source and target images at the coarsest scale are then registered to obtain an initial
estimation of the registration map. This initial estimate is used to warp the source
image at the next scale. The warped source image is then registered with its cor-

responding target image. This process is repeated at each level of the pyramid. A
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single registration map is maintained by accumulating successive estimated registra-
tion maps at each scale. This multiscale approach allows us to recover large motions
as well as small motions.

Within each scale, the registration map is determined in an iterative fashion as
follows (see the second column in Figure 2.1). After an initial estimation of the
registration parameters, the source image is warped with the estimated parameters,
and registered again with the target image. During each of these iterations (referred
to as accuracy-iterations), successive intermediate registration maps are accumulated
to form a single registration map. The iterations are stopped when the average
displacement of the estimated motion is less than 0.1 pixels. This iterative approach
(see also [62]) helps improve the accuracy of the registration, as it leads to a more
accurate Taylor-series approximation of the error function (Equation (2.3)).

Within each scale, and within each accuracy-iteration, a smooth registration map
is obtained as follows (see the third column in Figure 2.1). Given a source and target
image, an estimate of the registration map without smoothness is first obtained. This
initial estimate is used to bootstrap the nonlinear iterative estimation of a smooth
registration map. These iterations are referred to as smoothness-iterations. These
three components together form the complete registration algorithm. Note that the

algorithm is bootstrapped with an initial registration map consisting of all zeros.

2.2.6 Extension to 3-D

The extension of this algorithm from 2-D images to 3-D volumes is relatively straight-

forward.
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Local affine model

Denote f(z,y, z,t) and f(Z,9,2,t—1) as the source and target volumes, respectively.

Making the same local affine assumption as in Equation (2.1) yields:

flx,y,2,t) = fmiz+ mey + msz + myg, max + msy + mez + may,

m7x+m8y+m9z+mlg,t — 1), (224)

where 7. = (myq, ..., my2) consists of the linear affine parameters (my, ..., mg), and the
translation parameters (mg, mi1, m12). As before, we define an error function £(m),
approximate it with a first-order truncated Taylor series expansion, differentiate with
respect to the unknowns, set the result equal to zero and solve to obtain:
-1
m::[ w1 [z:%r (2.25)
x,1,2€8 z,y,2€0Q

where m is now of size 1 x 12, and k£ and ¢ are defined as follows:

k= fitafetyfy+af. (2.26)

(2fe yfe 2fe afy yfy 2fy afo yfo 2fo fo fy )7, (227)

oL
|

where the spatial/temporal derivatives of f(-) are f.(-), f,(-), f-(*), fi(-). Again for
notational convenience, the spatial parameters are dropped.
Intensity variations

The contrast and brightness terms (mj3 and m4) are derived as in the 2-D case,
Equations (2.10) and (2.11). The resulting solution is once again in the same form as

in Equation (2.25), with /7 now a vector with 14 elements, and k& and ¢ defined as:
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k= ft_f+xfm+yfy+xfz (228)

(xfm yf;v Zf;v xfy yfy ny xfz yfz Zfz f:ﬂ fy fZ _f -1 )T(229)

ol
Il

Smoothness

Smoothness is incorporated as before (Section 2.2.3) by augmenting the error function

E (m) with a smoothness term:
E(m) = E, (m) + Eg (m), (2.30)
where FEp () is the error function from Section 2.2.6 given by:
Ey(m) = [k—é&Tm]”, (2.31)
with k& and ¢ as in Equations (2.28) and (2.29), and E,(m) is:
B, () = éA [(8;;)2 + (857;)2 + (85?)2] . (2.32)

An estimate of m is obtained once again by differentiating E(n), setting the result

equal to zero, and solving, giving the same iterative solution as in Equation (2.23):
A R S AN LR S B (2.33)

with k& and ¢ given by Equations (2.28) and (2.29). L is a 14 x 14 diagonal matrix

with diagonal elements \;, and zero off the diagonal.
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2.3 Registration with partial data

2.3.1 Introduction

When performing registration in practice, it is possible that either the source or target
image has only partial data (i.e., some portion of the data is missing or occluded).
This situation arises commonly in many practical registration cases. For example if a
subject moves, certain regions may go out of the view of the scanning device, causing
an incomplete scan. Deliberate occlusions can occur when an image has been modified
so as to keep the patient’s identity anonymous, as shown in Figure 2.2 (the fMRI data
center? at Dartmouth College stores brain volumes in this format). Most registration
algorithms are simply ill equipped to handle missing data, and usually completely
fail. Given the common occurrence of this problem, it would be of great practical
importance to register such images. In this chapter, we provide an extension to
our basic registration algorithm that implicitly handles missing data. The extension
involves the well known Expectation Maximization (EM) algorithm. We first outline

the EM algorithm, and then describe its incorporation into our registration algorithm.

2.3.2 The Expectation Maximization algorithm

Expectation Maximization (EM) is a useful technique that can be applied to maximum-
likelihood parameter estimation problems. The algorithm was discovered and em-
ployed independently by several different researchers. A seminal paper written by
Dempster [6] brought all these ideas together, proved convergence, and coined the
term “EM algorithm”. Since then, EM has become a staple of maximum-likelihood-

based techniques. In this section, we first briefly outline the EM algorithm in the

2http://www.fmridc.org
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source

Figure 2.2: In some applications, the images to be registered may only contain
partial data. For example, the source image shown above consists of a sagital image
with the skull stripped, while the target image consists of a complete sagital image
from a different person. It would be useful if registration could still be performed
under these circumstances.

context of a simple example, and then show how this technique can be used to regis-
ter images that contain only partial data.
EM Example

We are given a set of n data points ¢(i) = (z(i),y(i)), i = 1,--- ,n, and are told that

the points come from two lines of the form:

y(i) = arx(i) + by +ni (i) or y(i) = agx(i) + ba + na(i), (2.34)
where the model parameters for each line are M; = (ay,b1), and My = (ag, by);
n1(i), no(i) consists of white Gaussian noise.  Figure 2.3 shows a sample instance

of data points. The problem is to estimate the model parameters My, M, (i.e., fit
the data) and determine which model each data point belongs to (i.e., segment the
data). Note that if we are given the model parameters, we can easily segment each

of the data points ¢(i) by computing a residual (i) = |axx(i) + bx — y(7)| for each
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Figure 2.3: Data from two line models corrupted with noise.

model k£, and choosing the model that minimizes this residual for that point. On the
other hand, if we were told which points belonged to which model, then the model
parameters can be fit using its corresponding points by solving the over-constrained

set, of linear equations:

Ik( ) | {obl: } _ yk( ) ’ (2.35)
zp(n) 1 Yr(n)

where all z;(-) and yx(-) belong to model & (k = 1,2). This yields the following

least-squares solution:

[ aj, ] [ >a(i)? 2 w(i) ]1 [ > w(i)y(i) ]
- . (2.36)

S B D SO O > y()
However, in our sample problem, we need to simultaneously estimate the parameters
as well as segment the data, making this a much harder problem to solve. One ap-
proach to solving this problem is to use EM, a two-step iterative procedure described
as follows. Initially, a set of random model parameters are chosen. In the first step,

the probability that each point ¢(i) belongs to model k is estimated as weight wy (7).
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In the second step, the model parameters are updated using a weighted least-squares
estimate. These two steps are iterated until convergence of the estimated parameters.

A detailed derivation of this process follows.

Complete data likelihood

The complete data likelihood L (M, Ms) of observing all n points ¢(1), ¢(2), ¢(3), ---

¢(n) with model parameters M; and M, is given by:

L(My, My) = Hp (@ = qd)), (2.37)

where each point is considered independent of each other. Here, p(Q = ¢(i)) is the
probability of observing point ¢(i); @ is a random variable. Using the law of total

probability, we can rewrite this probability as:

p(Q = q(i)) =p(Q =q(i)|Q € My) P(Q € M) +p(Q = q(i)|Q € M2) P(Q € M>),

(2.38)
where p (QQ € My) is the probability of model k. Assume for simplicity that in our
example, it is equally likely that the points came from either model. We assume the

distributions of the residuals are Gaussian, which leads to the following probabilities:

P(Q=qli)|My) = e @Oy /et _ =i (2.39)

(@ = J0)My) = e-lomlisy()od _ orat?, (2.40)
Here, p (Q = ¢(i)| M) is the probability of observing point ¢(7) assuming that it came

from model Mj, and oy is a constant and is proportional to the amount of noise in

model k. The log-likelihood function (which is easier to maximize) can be written as:
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log][r(@ =

21;g (p(Q = (4)))

Zlog )|Q € Mi) P(Q € My) +p(Q = q(i)|Q € M) P(Q € Ma))
log (P (Q € My)) + Zlog (P (Q@=d()|Q € M1) +p(Q = §(§)|Q € M2))

ot ZlOg( (a1 z)+b1 v(@)? 4 o~ (aawitbr—y(i))? ) (2.41)

The last two equations assume the priors P (Q) € M;) = P(Q € M;) and ¢ =

log P(Q € M).

Solving for model parameters

In order to determine the model parameters M) = (ax,by), we maximize the log-

likelihood function by differentiating with respect these parameters, setting equal to

zero, and solve for the parameters. Differentiating the log-likelihood function with

respect to a; yields:

dlog L (M, Ms)

—22(7) (a2 (i) + by — y(i)) e~ (@2 +be—y( )’

dak

e—(@1z() +br—y(D)® 1 e—(aza(i)+be—y(i))>

—22(i) (arz (i) + b — y(i)) e
e—r1()? 4 p—r2(i)?

—22(3) (my(4) + by — y(i)) wy (4), (2.42)

Q.M @.M Q.M

*"‘k( ) /o'k

where wy (i) =

e (@ y)2/01 4e 2@ w?/o3

>, and is the probability that point ¢ belongs to

model k. Differentiating the log-likelihood function with respect to b yields:
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dlog L (M, Ms) Z —2 (apx(i) + by, — y(3)) o~ (arz (i) +by—y(i))?
dby, e—(arz()+br—y(i)* | p—(a2a(i)+br—y(i)”
S —2 (az(i) + by, — y(i)) e’
B e emr2(i)’

i

= Z =2 (axx(i) + by, — y(i)) wy, (7). (2.43)

)

Setting Equations (2.42) and (2.43) to zero and rearranging terms yields the following

weighted least-squares problem:
St wn () S wn () ] [ o] _ [ S, - we () .44
Do i we (1) >0, 1wy (i) Tl v wk(d) 0 '
from which the model parameters ay, b, can be determined as:

Note that this equation is similar to Equation (2.36) without the weights wy, (7).

EM algorithm

The EM algorithm that estimates the model parameters M; and M, along with the
probability assignments for each point can now be explained as a two step process as

follows:

1. Initialization: Assign values for the fixed constants o2, 02. Assign initial esti-
mates for the model parameters ay, as, by, bo.
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2. E-Step: Compute the weights:

e—m1()?/0F

N2, 2
e—2()?/03
e 102 /0] 4 mr1(D)? /05 z:

102 /0F | —ra(D)? /]

wy (i) = and wy(i) =

This corresponds to the segmentation step.

3. M-Step: Use the weights wq (i) and ws(7) to estimate the least-squares solutions
for ag, bki

)= [Fem Rl ] ]

This corresponds to the estimation step.

Steps 1 and 2 are repeated until convergence of the estimated parameters. Though
this algorithm is guaranteed to converge [6], it is susceptible to local minima. In order
to increase the likelihood of finding the correct global minimum, the algorithm can be
restarted with different starting points. In this manner, both the model parameters
can be found along with a fit of the data. In the next section, we explain how this

EM algorithm is employed to deal with registration in the presence of partial data.

2.3.3 Extension for registration with partial data

In the previous sample problem, we showed how to simultaneously segment the data
and find the model parameters that fit the data. In this section, we show how this
problem is mapped to our registration problem, i.e., registration in the presence of an
occlusion or missing data. Inherent to the registration algorithm is the assumption
that each region in the source image has a corresponding match in the target image.
As illustrated in Figure 2.2, this need not always be the case. Under such situa-
tions, our registration algorithm typically fails. One way to contend with partial or

missing data is to employ a pre-processing segmentation step. We propose, however,

42



a more unified approach in which the registration and segmentation are performed
simultaneously.

We begin by assuming that each pixel in the source and target are either related
through the intensity and geometric model of Equation (2.10), denoted as model M,
or cannot be explained by this transformation and therefore belongs to an “outlier”
model M. Pixels belonging to the outlier model are those that do not have a corre-
sponding match between the source and target images. Assuming that the pixels are
spatially independent and identically distributed (iid), the likelihood of observing a
pair of images is given by:

I1 P, y)). (2.46)

z,yeN
where, ¢(z,y) denotes the tuple of source and target image intensities (m;f(x,y,t)+
ms, f(mix + may + ms, max + myy + me,t — 1)), Equation (2.10). To simplify the

optimization of the likelihood function, we consider the log-likelihood function:

log[L(mi)] = log | [] P(cf(:v,y))]
z,yeN)
= Zlog Gz, )| M) P(My) + P(q(, y) | M) P(Ms)] . (2.47)

Assuming that the priors on the models, P(M;) and P(M;), are equal, the log-
likelihood function simplifies to:
log[L = Y log[P(q(x, y)|My) + P(qlz, y)| Ma)], (2.48)
z,yen
where the factored additive constant is ignored for purposes of maximization. We
assume next that the conditional probabilities take the following form.

log[L Z log [e L 6_02] : (2.49)

z,y€ef)
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For model M; we assume a Gaussian distribution (with variance o), where r(z,y) is

the residual error between the source and target defined as:
r(x,y) = [(maf(z,y,t) +mg) — (f(m1z +may +ms, maz +may +me, t — 1)) (2.50)

For model M, we assume a uniform distribution (i.e., ¢ is a constant). The log-
likelihood function is maximized by differentiating, setting the result equal to zero

and solving for m:

dlog[L(m)] _ ~ “gge MO0 G~ dr(ay) o s
i = g e 2 g vy =0, (251)
z,y€ed z,ye)

where w(-) is defined to be the ratio of the exponential distributions. As in the
previous sections, the residual r(-) is linearized with respect to the model parameters
m. The derivative of the residual, dr?(z,y)/dm, is then substituted into the above to
yield:

> —2¢k - éTmw = 0, (2.52)

,yen
with @ and k given by Equations (2.12) and (2.13), and, as before, all spatial param-
eters are dropped for notational convenience. Solving for the model parameters then
yields the maximum likelihood estimator:

—1
mo= [Z (a?T)w] [Z (Ek)w] . (2.53)
z,ye z,ye

Note that this solution is a weighted version of the earlier least-squares solution,
Equation (2.9), where the weighting, w, is proportional to the likelihood that each
pixel belongs to model M;. As before (Section 2.2.3), a smoothness constraint can

be imposed to yield the following iterative estimator:
Mot = ((@ETw+ L) ((Ek:)w + Lﬁ“)) . (2.54)
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This estimator for m, however, requires an estimate of the weight w which itself
requires an estimate of 7. The expectation/maximization algorithm (EM) is used to

resolve this circular estimator, and proceeds as follows.

EM algorithm

1. Initialization: Assign the fixed constants o2, ¢?>. Assign initial estimates for 7.

e—(@y)?/ o>

e r@y?/o? o-c2

2. E-Step: Compute the weights w(x,y) =

3. M-Step: Use the weights w(z,y) to estimate the solution for 7 as:

Ut ((55T)w + L)_l ((5k)w + Lﬁ(j)> ) (2.55)

The last two steps are repeated until the difference between successive estimates of
m is below a specified threshold.

The E-step is the segmentation stage, where pixels that do not have a correspond-
ing match between source and target images have a close to zero weight w. These
pixels are therefore given less consideration in the M-step which estimates the regis-
tration parameters m. The EM algorithm allows for simultaneous segmentation and

registration, and hence allows us to contend with missing or partial data.

2.3.4 Modification to the basic algorithm

From the previous section, we can see that the only modification necessary to handle
partial data in the registration is to use a weighted least-squares solution instead of
the original least-squares solution. Note that we have to carefully choose the initial
parameters for 02, ¢, which are determined empirically. Recall from Section 2.2.4 that
the original implementation is iterative in nature. The iterative EM algorithm can

be integrated with the original iterative algorithm (Section 2.2.5) by simply updating
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the weights between each Taylor-series iteration, and using these updated weights to

estimate the registration parameters in the accuracy iterations.

2.3.5 Extension to 3-D

The generalization of the algorithm from 2-D images to 3-D volumes is relatively
straight-forward. Briefly, to accommodate a 3-D affine transformation, an additional
six affine parameters are added to the geometric and intensity transformation model
of Equation (2.10). Linearization and minimization of this constraint proceeds as in
the 2-D case. The smoothness constraint of Equation (2.16) takes on an additional
(Om;/0z)? term, and the iterative estimator of Equation (2.23) is of the same form,
with k& and ¢ accommodating a different set of, now 3-D, spatial/temporal deriva-
tives. The solution of Section (2.3.3) proceeds in a similar manner, with the initial
constraint of Equation (2.46) updated to accommodate the 3-D geometric and inten-

sity transformation model.

2.4 Summary

In this chapter, we have explained in detail our registration algorithm, using a dif-
ferential framework. Our registration model incorporates both a geometric mapping
that is locally affine and globally smooth, and contrast/brightness modulations that
are globally smooth. This flexible model makes it practical to register images in many
real-world applications. We have also shown how the basic registration algorithm can
be extended to handle missing data using an EM framework, further extending the
usefulness of the technique. This extension is simple and easily integrated within our
original framework. In the next section, we demonstrate the efficacy of our algorithm

on a broad range of both synthetic and clinical imagery.

46



Chapter 3

Results

3.1 Introduction

The previous section described the theory and implementation details of our regis-
tration algorithm. In this section examples of 2-D and 3-D registration results are
presented for a broad range of medical images, demonstrating the efficacy of the algo-
rithm. Synthetic images with known geometric and intensity maps are used to quan-
tify the results. In addition to these synthetic registration examples, many clinical
registration cases are also presented. Though the registration algorithm has several

tunable parameters, they are all help fixed across all experiments.

3.2 2-D registration examples

In all of the 2-D examples shown here (Figures 3.2-3.27), the source and target are
256 x 256, 8-bit grayscale images with intensity values scaled into the range [0, 1].
In order to contend with border effects, each image is padded with zeros to a size

of 288 x 288. A four-level Gaussian pyramid is constructed for both the source and
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target image. Each level of the pyramid is obtained by convolving the previous level
using a separable 5-tap lowpass filter [0.05 0.25 0.4 0.25 0.05], followed by down-
sampling by a factor of two. The finest scale consists of the original image. At each
pyramid level a single global affine map is first estimated as in Section 2.2.2, with
), the spatial integration window, defined to be the entire image. The local affine
and contrast/brightness parameters m are then estimated as in Section 2.2.2, with
) = 5 x 5 pixels. This estimate of m is used to bootstrap the smoothness iterations,
Equation (2.23). In each iteration, \; = 1 x 10", i = 1,...,8 and m; is computed by
convolving with the 3 x 3 kernel [1 4 1 : 4 0 4 : 1 4 1] /20. After forty
iterations (inner loop, smoothness iterations), the source is warped according to the
final estimate, and this process is repeated five times (outer loop, Taylor-series it-
erations). The final estimate is then up-sampled, and used as an initial estimate in
the next finer level of the pyramid (by initially warping the source image at the new
pyramid level according to this estimate). This entire process is repeated at each
level of the pyramid. Although a contrast/brightness map is estimated, it is not ap-
plied when warping the source image. In order to minimize artifacts during warping
(due to interpolation), we accumulate successive maps and apply a single map to the
original source image at each scale. In order to minimize edge artifacts, all convo-
lutions are performed with a mirror-symmetric boundary. Most of the parameters
described above were empirically chosen and are generally consistent with commonly
used parameters in the motion estimation literature - they were held fixed in all of the
examples shown here. In general we find that the particular choice of these parame-
ters is not crucial. The algorithm has been implemented using MatLab, and requires

approximately 4 minutes per 256 x 256 image on a 2.8 GHz Linux machine.
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3.2.1 Synthetic experiments

To test our registration algorithm, we generated synthetic data by applying a locally
smooth geometric and contrast/brightness map to a target image. These smooth maps
were generated by specifying a random displacement parameter at equally spaced
points along a coarse rectilinear grid. On average each pixel was transformed by
+8 pixels (not including a possible global affine map), the multiplicative contrast
variation was between 0.8 and 1.0, and the additive brightness variation between 0.0
and 0.2 (with image intensities in [0, 1]).

Shown in Figures 3.2-3.7 are a set of sample results. Shown in panels (a) and (b)
is a synthetically generated source and target image, respectively. Shown in panel
(c) is the source image after registration. Shown in panels (d) and (e) are the error
images (showing the edges only) before and after registration respectively. Shown
in panels (f) and (g) are the applied synthetic contrast and brightness maps, and
shown in panels (i) and (j) are the estimated maps. Note that while there is a
trade-off between the estimated contrast and brightness maps, errors in this estimate
do not impact the estimated geometric map. Shown in panel (h) is the synthetic
registration map as applied to a rectilinear grid. Shown in panel (k) is the result of
applying the inverse of the estimated map to panel (h). If the estimate was perfect,
the result should be a rectilinear grid. Notice that in the areas of image content,
this is nearly the case. Shown in Figure 3.1 are the results from an extreme and
completely unrealistic synthetic map, which we show to illustrate the robustness and
flexibility of our registration technique. Unlike the previous examples, the model used
here is one of translation only (i.e., no affine or contrast/brightness terms), and the
smoothness parameters on these translation terms were reduced to 1 x 1072. These

small changes were necessary to accommodate the extreme nature of the synthetic
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intensity geometry
figure | description pre | post | mean | median
3.2 Mammograms 0.25 | 0.02 | 0.88 0.18
3.3 Chest x-ray 0.39 | 0.05 | 3.12 0.28
3.4 MRI axial 0.15 | 0.01 | 0.92 0.06
3.5 MRI sagital 0.13 | 0.01 | 0.43 0.10
3.6 MRI axial T1/T2 | 0.16 | 0.01 | 0.10 0.07
3.7 MRI tumor 0.06 | 0.01 | 0.12 0.02

Table 3.1: Results of 2-D synthetic experiments showing the intensity errors before
and after registration, and the error in the estimated geometric map. Shown in
the intensity column are the mean square error in intensities before and after the
registration. The source and target intensities are orinally in the range [0, 1]. Shown
in the geometry column are the mean and median (in pixels) of the error between
the estimated registration map and the applied registration map.
map. Table 3.1 quantifies these results, in both intensity- and geometry-space. The
error in intensity is reported as the mean square error (MSE) in pixel intensities before
and after registration, with the contrast and brightness maps applied. The error in
geometry is obtained by computing the error between the estimated registration map
and the applied registration map. Recall that the registration map is represented as

a displacement vector at each pixel location. The error in registration maps at each

pixel location is computed as the euclidean distance, or L*-norm, given by ||v; — vs]|.

3.2.2 Clinical experiments

In the previous section results using a synthetic map were presented. The random
geometric and intensity distortions were chosen to represent a large class of possible
practical distortions. In this section, the registration algorithm is run on a number of
real clinical images. Note that in this case, the actual registration map is unknown,
hence the results cannot be verified directly. Visual comparison is used to judge the

results. The parameters used in these examples are all kept fixed, and are the same

90



as in the previous section.

Shown in Figures 3.8-3.27 are a set of sample results, for pairs of source and target
images, (a) and (b). Shown in panel (c) is the result of registration. Shown in panels
(d) and (e) are the error images (showing the edges only) before and after registration
respectively. Shown in panels (f) and (g) are the estimated contrast/brightness maps,
and shown in panel (h) is the estimated map. These results demonstrate the efficacy
of the algorithm over a broad range of imaging hardware (e.g., MRI, X-rays, photos,
ultrasound). Even in the presence of significant intensity variations, the registered
source is in good agreement with the target image. Table 3.2 quantifies these results
in intensity space. The error in intensity is reported as the mean square error (MSE)
in pixel intensities before and after registration, with the contrast and brightness

maps applied.

3.3 3-D registration examples

In all of the 3-D examples shown here (Figures 3.28-3.35), the source and target are
64 x 64 x 64, 16-bit grayscale volumes with intensity values scaled into the range [0, 1].
These experiments closely follow the 2-D experiments, with the following parameters:
a two-level Gaussian pyramid, ten inner loop iterations, four outer loop iterations,
Q=5x5x5and \; =1 x 10", i =1, ...,14. The current MatLab implementation
requires approximately 30 minutes on a 2.8 GHz Linux machine with 1 GB of memory.
Figures 3.28-3.35 show 3-D registration results for both synthetic and clinical cases.

Iso-surface views for all these volumes are presented in Figures 3.36 and 3.37.
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MSE MSE
figure | description pre-registration | post-registration
3.8 MRI sagitals, different subjects 0.17 0.05
3.9 MRI axials, different subjects 0.20 0.09
3.10 | MRI axials T1/T2, same subject (1) 0.12 0.06
3.11 | MRI axials T1/T2, same subject (2) 0.12 0.06
3.12 | MRI axials T1/T2, same subject (3) 0.14 0.06
3.13 | MRI axials T1/T2, same subject (4) 0.22 0.08
3.14 | MRI axials T1/T2, same subject (5) 0.09 0.04
3.15 | Mammograms 0.14 0.03
3.16 | Chest X-rays 0.17 0.04
3.17 | Pelvic tumor 0.09 0.04
3.18 | Lung tumor 0.14 0.07
3.19 | Ultrasound 0.11 0.03
3.20 | Photo during brain operation (1) 0.09 0.08
3.21 | Photo during brain operation (2) 0.27 0.09
3.22 MRI sagitals pre/post operation 0.26 0.08
3.23 | EPI experiment 0.03 0.02
3.24 | Photon density/MRI T1 0.09 0.02
3.25 | CT/photo, axial (1) 0.19 0.08
3.26 | CT/photo, axial (2) 0.27 0.10
3.27 | CT/photo, axial (3) 0.14 0.07

Table 3.2: Results of 2-D clinical experiments showing the MSE in intensity before
and after registration (with the contrast and brightness maps applied).

3.3.1 Synthetic experiments

Shown in Figure 3.28 are results using a synthetically warped volume with only local

geometric distortions along with an intensity distortion. Shown in the first and second

columns are source and target volumes, respectively. Shown in the third column

is the registered source. Each row corresponds to a specific z-slice in the volume.

Shown along the top row are results from a synthetically generated grid volume,

which illustrate the extent of the synthetic map and the results of registration.

Shown in Figure 3.29 are results using a synthetically warped volume with inten-

sity and both local and global geometric distortions. These results demonstrate the
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MSE MSE
figure | description pre-registration | post-registration
3.28 | local distortions 0.05 0.01
3.29 | local and global distortions 0.12 0.01

Table 3.3: Results of 3-D synthetic experiments showing the MSE in intensity

before and after registration.

figure | description MSE pre-registration | MSE post-registration
3.30 | MR brain volume (1) 0.10 0.04
3.31 | MR brain volume (2) 0.09 0.03
3.32 | MR brain volume (3) 0.11 0.05
3.33 | MR brain volume (4) 0.11 0.04
3.34 | MR brain volume (5) 0.10 0.04
3.35 | MR brain volume (6) 0.10 0.05

Table 3.4: Results of 3-D clinical experiments showing the MSE in intensity before

and after registration.

ability of our technique to register volumes with both large and small overall differ-

ences. Shown in Table 3.3 are the MSE in intensities before and after the registration

for these results.

3.3.2 Clinical experiments

Shown in Figures 3.30-3.35 are clinical examples of registration between different
subjects. Shown in the first and second columns are the source and target volumes,
respectively. Shown in the third column is the registered source. These results demon-
strate the ability of our technique to register clinical images, even in the presence of

significant within-subject differences. Shown in Table 3.4 are the MSE in intensities

before and after the registration for these results.
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3.4 Partial data registration examples

Section 2.3 describes in detail an extension of the registration algorithm that can
handle images with missing data using Expectation Maximization. In this section,
registration results are presented for such images and volumes. As before, all pa-
rameters are kept constant (same as in Section 3.2 for 2-D and Section 3.3 for 3-D)
for all the results presented. In addition to the regular registration parameters, two
additional parameters are used in the extension: o2 and b?. For all the examples
shown, 02 = 0.01 and b = €% In this case, the algorithm is sensitive to these two
constants. There is no guarantee that these same constants would work for other

examples.

3.4.1 2-D synthetic and clinical experiments

In this set of synthetic results (Figures 3.38-3.42), images with known distortions
and missing data are used. The ability of the algorithm to recover these known
distortions, even in the case of severe occlusions, is demonstrated. The geometric
model used in these examples is global affine, in order to better illustrate the ability
of the algorithm to handle these wide range of distortions. Shown in Table 3.5 are the
MSE in intensities before and after registration. Table 3.6 show the affine parameters
before and after registration. In the next set of clinical results (Figures 3.43- 3.54),
clinical data containing missing data are registered, and the results presented. In
this case, the distortions are not known in advance and cannot be quantitatively
verified. Figures 3.43 and 3.44 use a global affine geometric model. Figures 3.45-3.54
contain both global and local geometric distortions. Figures 3.45-3.50 are results
with missing data, while Figures 3.51-3.54 show the result of applying the algorithm

to images without missing data (these images have also been registered previously in
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MSE pre- | MSE post-
figure | description registration | registration
3.38 | sagital images with missing data + noise 0.26 0.18
3.39 | partial sagital images 0.14 0.15
3.40 | sagitals, white+black squares 0.30 0.20
3.41 | sagitals, white squares 0.41 0.40
3.42 | segmented brain with MR 0.27 0.25

Table 3.5: Results of 2-D synthetic experiments with partial data, with global
distortions, showing the MSE in intensity before and after registration.
Section 3.2.2). This demonstrates that the algorithm remains effective in registration
even when there are no occlusions. It can be seen that the registration algorithm
can recover clinical distortions even in the presence of missing data. In particular,
the results for Figure 3.45, with more than half the brain missing, highlight clearly
the effectiveness of the registration algorithm. Shown in Table 3.7 are the MSE in

intensities before and after registration.

3.4.2 3-D synthetic and clinical experiments

In Figures 3.55 and 3.56, a portion of the brain volume has been removed, and a
global distortion applied (synthetic experiments). Figures 3.57 and 3.58 demonstrate
the ability of the algorithm to recover unknown distortions in clinical images. In
Figure 3.57, a head volume that has been segmented and the brain extracted is
registered with another complete head volume from a different subject. Figure 3.58
shows the result before and after an operation on a pig within an MRI coil. As
demonstrated by these results, the algorithm can effectively register in synthetic and
clinical settings with partial data. Table 3.8 shows the MSE in intensities before
and after the registration. Iso-surface views for all these volumes are presented in

Figure 3.59.
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affine parameters affine parameters

figure pre-registration post-registration
338 128 —0.23 ][ 1.91 ] (128 —023 ][ 1.87 ]
' 023 1.28 | | —2.20 | 023 1.28 || —2.27 |
3.39 128 —023 ][ 191 ] 128 —023 ][ 1.82

' 023 128 || —2.20 | 023 128 || —2.28 |
3.40 128 —023 ][ 191 ] 128 —023 ][ 1.82

' 023 1.28 | | —2.20 | 023 1.28 || —2.27 |
341 0.99 —0.17 ] [ 0.00 [ 1.00 —0.17 ] [ —=1.00 ]
' 0.17 0.99 || 0.00 013 097 || 3.30
3.49 082 —0.19 ][ 2.08 0.82 —0.19 2.02
' —-0.43 118 || —5.00 —0.43 1.18 —5.02

Table 3.6: Results of 2-D synthetic experiments with partial data, with global dis-
tortions, showing affine parameters before and after registration. The six parameters

ms3 1My me
the affine parameters and ms, mg are the translation parameters.

. . mi1 Mmeg m
are represented in matrix form as follows:[ ] [ 5 }, where mq...my are

3.5 Registration failures

In all of the above examples, only successful registration examples are shown. In this
section, we present examples where the registration is unsuccessful. These failures are
usually caused by a violation of one or more of the design assumptions (see Section 4
for a detailed analysis). Some common violations are as follows. In the first example,
Figure 3.60, the target image consists of the source image rotated by 90 degrees. In
this case, the distortion is too large and cannot be detected even in the coarsest scale,
causing the algorithm to fail. In the next example, Figure 3.61, a PET image is
registered to an MR image. In this case, the likely cause of failure is the large non-

smooth intensity distortions. In panel (d) of this figure, the estimated brightness and
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MSE pre- | MSE post-
figure | description registration | registration
3.43 | Segmented brain, different subjects, global 0.28 0.26
3.44 | MR/MR coil, global 0.20 0.19
3.45 | Segmented brain, different subjects, sagital 0.26 0.24
3.46 | Segmented brain, different subjects, axial 0.29 0.22
3.47 | MRI coil, pig experiment 0.04 0.03
3.48 | MRI sagitals, with missing data 0.16 0.10
3.49 | MRI sagitals, with noise 0.20 0.14
3.50 | Chest X-rays, with noise 0.24 0.19
3.51 | MRI sagitals, different subjects 0.17 0.09
3.52 | MRI axials, different subjects 0.20 0.13
3.53 | Mammograms 0.14 0.05
3.54 | Chest X-rays 0.17 0.26

Table 3.7: Results of 2-D clinical experiments with partial data, showing the MSE
in intensity before and after registration.

figure | description MSE pre-registration | MSE post-registration
3.55 | MR partial brain (1) 0.16 0.13
3.56 | MR partial brain (2) 0.14 0.08
3.57 | MRI stripped brain 0.15 0.12
3.58 | MRI coil pig experiment 0.05 0.03

Table 3.8: Results of 3-D experiments with partial data, showing the MSE in
intensity before and after registration.

contrast maps (shown in panels (g) and (h) respectively) are applied to the registered

source from panel (c); note that this image appears similar to the target. This shows

that the registration algorithm has chosen to explain most of the distortion with the

brightness/contrast maps. In the final example, Figure 3.62, the source and target

images consists of two photographs of the same brain, taken at different times during

an operation. It can be seen that in the source image, a portion of the image in the

top left half has been covered up, but exposed in the target image. In the region of

the occlusion, there are no corresponding points, causing the algorithm to fail (note

that in all these examples, the registration algorithm is run without the extension
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source target transformed source

Figure 3.1: Shown is a target image, a source image exposed to an extreme trans-
form, and the result of our registration.
for missing data, to illustrate specific failures). These three examples illustrate only
a few of the many possible cases where a design assumption is violated. However,
note that the design assumptions are reasonable and cover many practical cases, as

illustrated by the large number of clinical registration examples.

3.6 Summary

In this section, a large number of registration examples were presented for 2-D images
and 3-D volumes with known and unknown distortions, with and without missing
data, demonstrating the efficacy of the algorithm. As can be seen, the algorithm
remains relatively robust in the presence of various types of intensity distortions as
well as occlusions. The algorithm is able to successfully capture a broad range of
distortions over a broad range of imagery. The carefully chosen design assumptions,
as outlined in Section 1.2, along with a careful implementation, has proven to work
well. In the next section, the extent of distortions (both in geometry and intensity)
that can be estimated is analyzed, highlighting and quantifying the capabilities and

limits of the registration algorithm.
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(a) source (b) target (c) registered source

(d) error before registration (e) error after registration

(f) applied contrast (g) applied brightness (h) applied geometric map
7 ’
“ ~y
\
EEAtwaz
(i) estimated contrast (j) estimated brightness (k) rectified geometric map

Figure 3.2: Synthetic result: Mammograms with random warp.
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Figure 3.3: Synthetic result: Chest X-ray with random warp.
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Figure 3.4: Synthetic result: MRI axials with random warp.
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(a) source (c) registered source

(d) error before registration (e) error after registration

(f) applied contrast (g) applied brightness (h) applied geometric map
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Figure 3.5: Synthetic result: MRI sagitals with random warp.
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Figure 3.6: Synthetic result: MRI T1/T2 axials with random warp.
63



(a) source (b) target (c) registered source

N N

(d) error before registration (e) error after registration

(f) applied contrast (g) applied brightness (h) applied geometric map

R
|

-
\
[
\
[l
[
\

[ ]
[ ]
LT

T

(i) estimated contrast (j) estimated brightness (k) rectified geometric map

Figure 3.7: Synthetic result: MRI tumor.
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(a) source (b) target (c) registered source

(d) error before registration  (e) error after registration

(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.8: Clinical result: MRI sagitals, different subjects.
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(a) source

(d) error before registration  (e) error after registration

(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.9: Clinical result: MRI axials, different subjects.
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(a) source (c) registered source

(d) error before registration  (e) error after registration
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(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.10: Clinical result: MRI axials T1/T2, same subject (1).
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(d) error before registration  (e) error after registration

(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.11: Clinical result: MRI axials T1/T2, same subject (2).
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(h) estimated geometric map

Figure 3.12: Clinical result: MRI axials T1/T2, same subject (3).

69



(a) source

@1 9N /@ ®N
= \\\ (=Y "
y Py A

{ o \I LTy | / \ ;
.'_\ \ fﬁ 5\ ]
A /' G

(d) error before registration  (e) error after registration

(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.13: Clinical result: MRI axials T1/T2, same subject (4).
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Figure 3.14: Clinical result: MRI axials, T1/T2, same subject (5).
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(c) registered source
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Figure 3.15: Clinical result: Mammograms.
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(a) source (b) target (c) registered source

(d) error before registration  (e) error after registration
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(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.16: Clinical result: Chest X-rays.
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(d) error before registration
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(e) error after registration

(h) estimated geometric map

Figure 3.17: Clinical result: Pelvic tumor.
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(a) source (b) target (c) registered source
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Figure 3.18: Clinical result: Lung tumor.
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(e) error after registration

(f) estimated contrast

]
A Iy
RN RS,
RN i.
H AT
(g) estimated brightness

(h) estimated geometric map
Figure 3.19: Clinical result: Ultrasound of baby, same subject.
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Figure 3.20: Clinical result: Photographs of brain during operation (1).
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(d) error before registration
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Figure 3.21: Clinical result: Photographs of brain during operation (2)
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Figure 3.22: Clinical result: MRI sagitals pre/post operation.
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(a) source (c) registered source

(d) error before registration  (e) error after registration

(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.23: Clinical result: EPI expermiment.

80



(a) source

(f) estimated contrast

(d) error before registration

(g) estimated brightness

(c) registered source

'/. .“‘I
ﬁ f\
" ,. % I

(e) error after registration

=

EREREE

T
] = =

.EII'IIIIII
T~
N
SEees

T
7

Figure 3.24: Clinical result: Photon-density/MRI T1.
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Figure 3.25: Clinical result: CT /photograph, axial (1).
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(a) source

(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.26: Clinical result: CT /photograph, axial (2).
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Figure 3.27: Clinical result: CT/photograph, axial (3).
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Figure 3.28: 3-D synthetic result: MR brain volumes (1). See also Figure 3.36.
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v/ source target corrected source
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Figure 3.29: 3-D synthetic result: MR brain volumes (2). See also Figure 3.36.
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Figure 3.30: 3-D clinical result: MR brain volumes (1). See also Figure 3.36.
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Figure 3.31: 3-D clinical result: MR brain volumes (2). See also Figure 3.36.
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Figure 3.32: 3-D clinical result: MR brain volumes (3). See also Figure 3.37.
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Figure 3.33: 3-D clinical result: MR brain volumes (4). See also Figure 3.37.
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Figure 3.34: 3-D clinical result: MR brain volumes (5). See also Figure 3.37.
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Figure 3.35: 3-D clinical result: MR brain volumes (6). See also Figure 3.37.
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Figure source target registered source
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3.29

3.30

3.31

Figure 3.36: 3-D results (iso-surface view). Figure numbers in the first column
refer to the corresponding slice views.
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Figure source target registered source
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Figure 3.37: 3-D results (iso-surface view). Figure numbers in the first column
refer to the corresponding slice views.
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(a) source

(d) error before registration  (e) error after registration

(f) appled geometric map (g) estimated geometric map (h) rectified geometric map

Figure 3.38: EM Synthetic global result: Sagital images with missing data and
noise added.
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(a) source

(c) registered source

(d) error before registration  (e) error after registration

(f) appled geometric map (g) estimated geometric map (h) rectified geometric map

Figure 3.39: EM Synthetic global result: Partial sagital image.
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(a) source

(d) error before registration  (e) error after registration

(f) appled geometric map (g) estimated geometric map (h) rectified geometric map

Figure 3.40: EM Synthetic global result: Sagital images with white and black
squares.
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(f) appled geometric map (g) estimated geometric map (h) rectified geometric map

Figure 3.41: EM Synthetic global result: Sagital imges with white squares.
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(b) target (c) registered source

(a) source

(e) error after registration

(d) error before registration
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Figure 3.42: EM Synthetic global result: Segmented MR
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Figure 3.43: EM Clinical global result: Segmented MR, different subjects.
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(a) source
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(d) error before registration (e) error after registration

(f) estimated registration map

Figure 3.44: EM Clinical global result: MR with MR coil, sagitals.
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Figure 3.45: EM Clinical result: MRI sagitals, stripped skull.
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Figure 3.46: EM Clinical result: MRI axials, stripped skull.
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(d) error before registration

(g) estimated brightness

(c) registered source

(h) estimated geometric map

Figure 3.47: EM Clinical result: MRI coil with pig experiment.
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(a) source (c) registered source

(d) error before registration  (e) error after registration

(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.48: EM Clinical result: MRI sagitals, missing data.
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(a) source

(d) error before registration  (e) error after registration

(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.49: EM Clinical result: MRI sagitals, with noise.
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Figure 3.50: EM Clinical result: Chest X-rays, with noise.
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(a) source (b) target

(d) error before registration  (e) error after registration
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Figure 3.51: EM Clinical result: MRI sagitals, different subjects.
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Figure 3.52: EM Clinical result: MRI axials, different subjects.
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Figure 3.53: EM Clinical result: Mammograms.
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Figure 3.54: EM Clinical result: Chest X-rays.
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Figure 3.55: 3-D EM result: MR partial brain (1). See also Figure 3.59.
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Figure 3.56: 3-D EM result: MR partial brain (2). See also Figure 3.59.
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Figure 3.57: 3-D EM result: MR segmented brain. See also Figure 3.59.
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Figure 3.58: 3-D EM result: MR coil, pig experiment. See also Figure 3.59.
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figure source target registered source

3.57 % @
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Figure 3.59: 3-D EM results (iso-surface view). Figure numbers in the first column
refer to the corresponding slice views. In the first and second rows, the brighter
regions shown with the registered source are the portions of the target that are
missing in the source - these regions are superimposed to show the accuracy of the
registration.
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(a) source

(d) error before registration  (e) error after registration
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(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.60: Failure 1: MRI sagitals, large 90 degree rotation
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(g) estimated contrast (h) estimated brightness (i) estimated geometric map

Figure 3.61: Failure 2: PET and MRI. Shown in panel (d) is the result of applying
the estimated contrast (panel (g)) and brightness (panel (h)) maps to the registered
source in panel (c).
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(a) source

(d) error before registration  (e) error after registration

(f) estimated contrast (g) estimated brightness  (h) estimated geometric map

Figure 3.62: Failure 3: Photos of brain during operation
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Chapter 4

Simulations and analysis

4.1 Introduction

The previous section illustrated results of the registration algorithm on many syn-
thetic and clinical images, demonstrating the efficacy of the algorithm. This section
contains a sensitivity analysis of the algorithm with respect to the design assumptions.
The extent to which distortions can be recovered is analyzed and quantified, along
with a study of the various trade-offs that occur during the registration. This analysis
will help to better understand the system as a whole, especially its limitations. We
begin with a description of how the synthetic images and registration maps used in

all the experiments are generated.

4.2 Synthetic random data

Synthetic images and registration maps are used for all the simulations in the analysis.
While these images/maps capture only certain aspects of medical images, they allow

for a large testbed, and avoid biasing the results towards specific images/maps.
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Synthetic images

Consistent with a simple model for natural images [54|, the images synthesized for
the simulations are fractal in nature and modeled with a (2)“ power spectrum and
random phase. The value of « is determined as follows. For a set of sample images,
the 2-D power spectrum is first computed. For each discrete frequency w in the 2-D
power spectrum, the median value is computed, thus reducing the 2-D spectrum to
1-D. This 1-D spectrum is then modeled as (%)a, and « is estimated using a simple
least-squares estimation. Note that in this process, directional information is lost
(since we use the median value in each frequency), along with the phase correlations
(since the model uses only the power spectrum). The estimated value of « is 1.4,
averaged over a set of ten clinical images (MRI, chest X-rays, mammograms, and
CT).

Given the value of «, each synthetic image s (z,y) is generated in the Fourier

domain as follows. Let S {-} denote the Fourier operator, and 37! {-} the inverse

Fourier operator. Then:

s(z,y) =S H{S{r (2,9} H (we,wy)} (4.1)

where 7(z,y) is a random image of size 128 x 128, with pixel values chosen from
a normal distribution with zero mean and unit variance. The response H (w,,w,)

corresponds to the model of the desired power spectrum in 2-D, given by:

H (waw,) = (ﬁ) | (4.2)

The intensity values of the image s (z,y) are scaled into the range [0, 1]. A sample

synthetic image is shown in Figure 4.1(a).
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Synthetic registration map

A registration map consists of a displacement vector v(z,y) = (v.(z,y),vy(x,y))
at each pixel location (z,y). The displacement fields v, (-) and v, (-) are modeled
independently as two Gaussian distributions, and are synthesized independently as
follows. All parameter values used were estimated from known registration maps,
as in the previous section. First, two random images of size 32 x 32 are generated,
with pixel values drawn from a normal distribution with zero mean and a standard
deviation of 5.0 pixels. Each image is then up-sampled to a size of 128 x 128, after
which a 3 x 3 low-pass filter with coefficients [12 1;242;121]/16 is repeatedly applied,
until a smoothness value of 0.3 is obtained. Smoothness is computed as follows:

(%) (J 5 ((801(;39))2_1_<avz{§z,y)>2> +J > ((awa(z,y)er(avyéz,y)>2>)’ ws)

z,YEQ z,y€Q

where (2 is over the entire image, and N is the total number of pixels. Finally, a global
affine [mq my; ms my| and translation [ms; mg] map is applied to each of the images.
The affine parameters vary with a uniform distribution; parameters m; and m, (the
scale parameters) vary from 0.9 to 1.1, parameters my and m3 (the shear parameters)
vary from 0 to 0.2, and parameters ms and mg (the translation parameters) vary from

—10 to +10. A sample synthetic registration map is shown in Figure 4.1(b).

4.3 Simulations

The simulations are designed to determine the range of geometric and intensity dis-
tortions that can be recovered, as well as analyze the algorithm with respect to the
design assumptions. Geometric distortions include both global distortions (transla-
tion, rotation and scale changes), as well as local distortions. Intensity distortions

include variations in contrast, brightness, and noise levels. All these distortions (ex-
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Figure 4.1: (a) Sample random synthetic image; (b) sample random synthetic reg-
istration map ; (c) result of applying the synthetic registration map to the synthetic
image.

cluding noise) are assumed by the algorithm to vary smoothly. The effects of differing

resolutions are also analyzed. Since it is impractical to study the combined effect of

all these distortions, each distortion is analyzed independently.

4.3.1 Global geometric distortions

The ability of differential techniques to handle large distortions is generally a concern.
Therefore, in the first set of simulations, the extent to which global translations,
rotations and scale changes can be recovered is analyzed. In these simulations, the
target image consists of a random synthetic image, while the source image consists of
the target image with a random global distortion applied.

In the first simulation, the global distortions consists of only translations, varied
from 0 to 30 pixels. Sample source and target images are shown in Figure 4.3. Shown
in Figure 4.2 are the errors in both intensity and motion, where the dotted lines depict
the errors before registration, and the solid lines depict the errors after registration.
Each data point is the result of averaging over 100 independent trials. Note that
the algorithm is successful up to a translation of 24 pixels, and then fails abruptly.

The sudden failure is due to the finite-length derivative filters used in estimating
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the spatio-temporal derivatives. These filters are of size 3 x 3, limiting the range
of motion that can be found to 3 pixels. However, the multiscale implementation
of the algorithm allows us to capture a larger range, essentially doubling the range
at each scale. Thus, a three-level pyramid would allow us to capture a range of 12
pixels. Another important factor that helps improve the range (as well as accuracy)
is the Taylor-series iterations. Recall that the registration is performed iteratively at
each level of the pyramid, and at each iteration the source is warped according to
the previously estimated registration map, bringing the source closer to the target.
These two factors contribute together to allow us to capture a range of 24 pixels.

In the second set of simulations, the global distortions consists of only rotations,
applied from 0 to 90 degrees. Sample source and target images are shown in Figure
4.5. Shown in Figure 4.4 are the errors in both intensity and motion, where the dotted
lines depict the errors before registration, and the solid lines depict the errors after
registration. Each data point is the result of averaging over 100 independent trials.
Note that there is first a jump in errors from 0 to 5 degrees. This is due to effects of
interpolation (this is not an issue with translations because the integer translations
do not require interpolation). The errors remain constant until about 45 degrees,
after which the algorithm fails, and the errors jump. At this rotation, the average
translation is 24 pixels, which is also the limit in the global translation simulation.
Beyond 45 degrees, the errors are large, but remain fairly constant. The differential
filters fail to find the correct rotation at this point, and instead simply find the closest
rotation to 0 degrees, maximizing the overlap between the images. Thus, beyond 45
degrees, the error values are equivalent to the errors between two different random
fractal images.

In the final set of global simulations, the global distortions consists of only scale

changes, varying from a factor of 1.0 to 2.0. Sample source and target images are
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shown in Figure 4.7. Shown in Figure 4.6 are the errors in both intensity and mo-
tion, where the dotted lines depict the errors before registration, and the solid lines
depict the errors after registration. Each data point is the result of averaging over
100 independent trials. Note that there is once again first a jump in errors from a
scale change of 1.0 to 1.1, caused by interpolation effects. The errors then increase
gradually up to a scale change of 1.6, after which the algorithm fails completely. This
behavior is different from the behavior of the rotation simulation, in which the errors
were constant for a range of rotations before increasing. At a scale change of 1.6, the
computed average translation is 19 pixels, with a maximum translation of 38 pixels.
From the simulation with global translations, we know that an average translation of
24 pixels can be accommodated, so it reasonable for this scale change to work. At
a scale change of 1.7, the computed average translation is 22 pixels, with a maxi-
mum translation (at the boundaries) of 44 pixels. In this case, the large maximum

translations begins to dominate the results, causing the algorithm to fail.

4.3.2 Smoothness of local geometric distortions

In this simulation, the ability of the registration algorithm to recover local geometric
distortions of varying smoothness is analyzed. The target image consists of a synthetic
fractal image, while the source image consists of the target image, with a known
synthetic geometric distortion applied to it. The smoothness of this distortion field
is varied from 0.1 to 0.6, rounded to one decimal place, and is generated similar to
the synthetic registration map, as described in Section 4.2; the only two differences
being that 1) there is no global distortion applied to the registration map, and 2) the
smoothness of the registration map is varied. Sample target images with the local

geometric maps applied are shown in Figure 4.9. Shown in Figure 4.8 are the errors in
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Figure 4.2: Global translation vs. registration error. Shown are errors in intensity
(left) and motion (right). The dotted lines depict the errors before registration, and
the solid lines depict the errors after registration. See also Figure 4.3.

Figure 4.3: Sample source and target images, with a global translation applied.
The top label is the amount of translation. The first and second rows show the
source and target images, respectively. See also Figure 4.2.
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Figure 4.4: Global rotation vs. registration error. Shown are errors in intensity
(left) and motion (right). The dotted lines depict the errors before registration, and
the solid lines depict the errors after registration. See also Figure 4.5.

Figure 4.5: Sample source and target images, with a global rotation applied. The
top label is the amount of rotation. The first and second rows show the source and

target images, respectively. See also Figure 4.4.
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Figure 4.6: Global scale change vs. registration error. Shown are errors in intensity
(left) and motion (right). The dotted lines depict the errors before registration, and
the solid lines depict the errors after registration. See also Figure 4.7.

Figure 4.7: Sample source and target images, with a global scale change applied.
The top label is the amount of scale change. The first and second rows show the
source and target images, respectively. See also Figure 4.6.
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both intensity and motion, where the dotted lines depict the errors before registration,
and the solid lines depict the errors after registration. Each data point is the result
of averaging over 100 independent trials. Note that a smoothness distortion of less
than or equal to 0.3 corresponds to errors less than 0.05 in intensity, indicating the
registration algorithm is successful at this smoothness value (and below). Note also
that this is the chosen smoothness value for the synthetic registration map, estimated

over known registration maps obtained using clinical images.

4.3.3 Brightness sensitivity

In this simulation, the sensitivity of the registration algorithm to brightness variations
is analyzed. The source image consists of a synthetic fractal image (with intensities in
the range [0, 1]), with a synthetic registration map applied. The target image consists
of the same synthetic image used in the source, with a random fractal brightness
map added to it, so that the intensities range from [0,1 + b]. Examples of these
source and target images for different values of b are shown in Figure 4.11. Shown in
Figure 4.10 are the errors in both intensity and motion, where the dotted lines depict
the errors before registration, and the solid lines depict the errors after registration.
Each data point is the result of averaging over 100 independent trials. Note that the
error increases with brightness as expected. Reasonable errors are observed below a
brightness value of 0.5. The small errors observed in this range are largely due to

interpolation.

4.3.4 Contrast sensitivity

In this simulation, the sensitivity of the registration algorithm to contrast variations

is analyzed. The source image consists of a synthetic fractal image (with intensities in
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Figure 4.8: Smoothness of geometric registration map vs. registration error. Shown
are errors in intensity (left) and motion (right). The dotted lines depict the errors
before registration, and the solid lines depict the errors after registration. See also

Figure 4.9.
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Figure 4.9: Sample source and target images, with a geometric distortion of varying
smoothness applied. The top label is the smoothness value. The first and second
rows show the source and target images, respectively. See also Figure 4.8.
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Figure 4.10: Brightness vs. registration error. Shown are errors in intensity (left)
and motion (right). The dotted lines depict the errors before registration, and the
solid lines depict the errors after registration. See also Figure 4.11.
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Figure 4.11: Sample source and target images, with a brightness map applied. The
top label is the brightness value. The first and second rows show the source and
target images, respectively. See also Figure 4.10.
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the range [0, 1]), with a synthetic registration map applied. The target image consists
of the same synthetic image used in the source, with a random fractal contrast map
multiplied to it, so that the intensities range from [c, 1]. Examples of these source and
target images for different values of ¢ are shown in Figure 4.13. Shown in Figure 4.12
are the errors in both intensity and motion, where the dotted lines depict the errors
before registration, and the solid lines depict the errors after registration. Each data
point is the result of averaging over 100 independent trials. Note that the contrast
value c is varied first from 0.01 to 0.1 in steps of 0.01 (up to the vertical dashed line),
and then from 0.1 to 1.0 in steps of 0.1. The errors are reasonable for contrast values
greater than 0.2, after which the errors become constant. The small errors observed

in this range are largely due to interpolation.

4.3.5 Noise sensitivity

In this simulation, the ability of the registration algorithm to perform in the presence
of additive uniform noise is analyzed. The target image consists of a synthetic fractal
image, and the source image consists of the target image with uniformly distributed
noise added to it. The intensity of the noise is modulated within the range [0, n],
where n varies from 0 (no noise) to 1.0 (100% noise). Sample source and target images
for different values of n are shown in Figure 4.15. Shown in Figure 4.14 are the errors
in both intensity and motion, where the dotted lines depict the errors before regis-
tration, and the dark solid lines depict the errors after registration. Each data point
is the result of averaging over 100 independent trials. Note that reasonable errors
are obtained for noise modulations greater than or equal to 3dB. It is hypothesized
that the registration is successful in this range because the estimated contrast and

brightness terms absorb the errors caused by the noise. This hypothesis was tested
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Figure 4.12: Contrast vs. registration error. Shown are errors in intensity (left)
and motion (right). The dotted lines depict the errors before registration, and the
solid lines depict the errors after registration. See also Figure 4.13.

Figure 4.13: Sample source and target images, with a contrast map applied. The
top label is the brightness value. The first and second rows show the source and

target images, respectively. See also Figure 4.12.
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by repeating the simulation, estimating only the geometric terms in the registration
map. The results of this simulation are shown in Figure 4.14 using the solid lines with
squares. Note that in this case, the registration is mostly unsuccessful, validating the

hypothesis.

4.3.6 Resolution sensitivity

In this simulation, the ability of the registration algorithm to perform in the presence
of differing resolutions is analyzed. The target image consists of a synthetic fractal
image, while the source image consists of the target with a synthetic registration map
applied, along with a change in resolution. The resolution of the source is varied
by first applying a global scale change «, (reducing the image), followed by a global
scale change of é (enarging the image), for « varying from 1 to 3. Sample source and
target images for different values of o are shown in Figure 4.17. Shown in Figure 4.16
are the errors in both intensity and motion, where the dotted lines depict the errors
before registration, and the dark solid lines depict the errors after registration. The
resolution ratio is defined as the ratio of the source resolution to the target resolution.
Each data point is the result of averaging over 100 independent trials. Note that errors

increase linearly with respect to the resolution ratio.

4.3.7 Smoothness of contrast /brightness maps

In all the previous simulations, a particular distortion (e.g., global translation) was
analyzed independent of all other distortions. In this simulation, a combination of
geometric, contrast and brightness distortions is applied, over a range of different
contrast /brightness smoothness values, and the results analyzed. The source image

consists of a synthetic fractal image with a synthetic registration map applied to it.
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Figure 4.14: Additive uniform noise vs. registration error. Shown are errors in
intensity (left) and motion (right). The dotted lines depict the errors before regis-
tration, and the solid lines depict the errors after registration. The solid line with
the squares depict the errors after registration when using a geometry-only model
(i.e., without estimating the brightness/contrast terms). See also Figure 4.15.
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Figure 4.15: Sample source and target images, with uniform noise added. The top
label is the brightness value. The first and second rows show the source and target

images, respectively. See also Figure 4.14.
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Figure 4.16: Resolution ratio vs. registration error. Shown are errors in intensity
(left) and motion (right). The dotted lines depict the errors before registration, and
the solid lines depict the errors after registration. See also Figure 4.17.

Figure 4.17: Sample source and target images, with differing resolutions. The
top label is the resolution ratio (defined as the ratio of the source resolution to the
target resolution). The first and second rows show the source and target images,
respectively. See also Figure 4.16.
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The target image consists of the the same synthetic fractal image used in the source,
with a contrast and brightness distortion both applied to it. These maps are gener-
ated as described in Sections 4.3.3 and 4.3.4, with a fixed brightness of 0.2, and a
fixed contrast of 0.8. The smoothness of both the maps is then varied together from
0.1 to 0.9 for each experiment in the simulation. Sample source and target images
are shown in Figure 4.19. Shown in Figure 4.18 are the errors in both intensity and
motion, where the dotted lines depict the errors before registration, and the solid
lines depict the errors after registration. Each data point is the result of averaging
over 100 independent trials. Note that the errors are relatively constant, and inde-
pendent of the smoothness values of the intensity distortion. Similar results were
observed for different values of the brightness and contrast modulation, indicating
that the algorithm is indeed insensitive to the smoothness of the contrast/brightness

modulations.

4.4 Summary

In this section, the registration algorithm was analyzed with respect to various geo-
metric and intensity distortions. Distortions studied include global geometric distor-
tions (translation, rotation and scale changes), local geometric distortions of varying
smoothness, smoothly varying brightness and contrast modulations, as well as noise
modulations. While these distortions are only a subset of possible distortions, they
form a reasonable and interesting subset, and help test the design assumptions of the
algorithm. In most of these simulations, a single distortion was applied and varied
until the algorithm failed. In most cases, the failure is gradual (and not exponential,
which is undesirable). An exception occurs when the failure is caused by the inability

of the differential filters to see the motion, as in the case of large global changes. In
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Figure 4.18: Smoothness of contrast/brightness maps vs. registration error. Shown
are errors in intensity (left) and motion (right). The dotted lines depict the errors
before registration, and the solid lines depict the errors after registration. See also

Figure 4.19.

Figure 4.19: Sample source and target images, with smoothness of con-
trast/brightness maps varied. The top label is the smoothness value. The first
and second rows show the source and target images, respectively. See also Figure

4.18.
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Distortion Range

Global translation up to 24 pixels
Global rotation up to 45 degrees
Global scale change up to a factor of 1.6
Smoothness of geometric distortion | up to 0.3
Brightness sensitivity up to 50%

Contrast modulation greater than 50%
Additive uniform noise greater than 4dB

Table 4.1: Ranges of various distortions which can be recovered by the algorithm.

these cases, the failures are abrupt, as expected. In the last simulation, a combina-
tion of geometric, contrast and brightness distortions was applied, and the algorithm
analyzed with varying levels of contrast/brightness smoothness. It is shown that
the registration remains unaffected in general to the amount of contrast/brightness
smoothness. Table 4.1 shows a summary of the range of distortions which can be
recovered by the algorithm.

Note that empirically, the distortions encountered while registering clinical images
(results shown in Chapter 3) fall within the range of recoverable distortions, allowing
for successful registration.

While the emphasis of this algorithm is on medical images, it is by no means lim-
ited to these types of images. In the next section, we explore possible applications to
both medical and non-medical image registration. We also explore possible extensions

to the algorithm, such as an extension to deal with differing resolutions.
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Chapter 5

Conclusions

5.1 Introduction

In the preceding chapters, we described the registration algorithm in detail and
demonstrated its robustness over numerous synthetic and clinical examples. In this
final chapter, we briefly explore possible extensions to the algorithm, and describe

some potential applications beyond medical imaging.

5.1.1 Quantifying tumor growth

Given two images of a tumor taken at different times, it is possible to quantify the
change in area, thus providing valuable information about its growth. For example,
consider the images shown in Figure 5.1. The source and target images (panels (a)
and (b)) are CT images of a tumor, taken at two different points in time. Upon
registration of the images, the change in the region of the tumor becomes apparent
in the estimated geometric map (panel (e)). This map can be used to quantify the
change in area as follows. Consider a 2 x 2 square neighborhood of pixels located in the

source image at position (7, j). After registration, let this neighborhood correspond
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to a polygon with coordinates (z;,y;), (Tit1,v;), (i, Yj+1) , (Tig1, yYj+1) in the target

image. The area of this polygon is given by the sum of the area of the two triangles

formed by (xh y]) ) (xi—i-lv yj) ) (xiv yj—i—l) and (xi—i-h y]) ) (xiu yj+1) ) (xi+17 yj—i-l), given by

Tip1 oy 1
T Yipr 1
Tit1 Yj+1

xX; yj 1
Ty y; 1
i Yj+1 1

1

42 : (5.1)

N —

where |-| denotes the determinant operator. This measure is computed for every
2 x 2 region in the source image. The results of this computation for the CT tumor
source and target images are shown in panels (f) and (g) respectively. Panel (f)
depicts regions that have decreased in area, while panel (g) depicts regions that have
increased in area. The images are color-coded such that the intensity is proportional
to the change in area; in panel (f), the brighter the intensity, the larger the decrease
in area, while in panel (g), the brighter the intensity, the larger the increase in area.
Note that we are computing the change in area locally for the entire image; in order
for us to find the change in area in the region of the tumor, the tumor must first be

outlined, and the changes in that region summed.

5.1.2 Super-temporal resolution

Super-temporal resolution refers to the process of increasing the temporal resolution
in video sequences by introducing additional intermediate frames. A simple way to
introduce an intermediate frame is to interpolate pixel intensities between the frames.
In this approach, if the video sequence consists of, for example, a translating square,
the intermediate frames would look like two overlapped squares. Instead, we would
like the intermediate frame to have the square at an intermediate position. This can
be achieved using image registration. In particular, consider two sequential frames, f;

and f;,q. First, the two frames are registered, and a registration map M, is obtained.
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Figure 5.1: Quantifying tumor growth. Shown are the results of registering CT

scans of a pelvic tumor taken over a period of time.
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Figure 5.2: An application of super-temporal resolution - filling in of key frames in

a cartoon animation. Frames 1 and 8 are the key frames, while frames 2-7 are frames

generated using the super-temporal resolution technique.

In order to generate an intermediate frame f;,5, where ¢ is a scalar between 0 and 1,
all the vectors in M, are scaled linearly by ¢, and then applied to f;.

One application of super-temporal resolution is the filling in of key frames in a
cartoon animation. Currently, animators first establish key frames in the cartoon, and
later work on the frames that go between them. Generating these in-between frames
automatically (using the super-temporal resolution technique) would greatly reduce
their workload. Shown in Figure 5.2 is an example of this; frames 1 and 8 are the key
frames, while frames 2-7 have been synthetically generated using the super-temporal

resolution technique described.
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5.1.3 Digital aging

Another interesting application for image registration is digital aging. Given an image
of a person’s face, can we predict what it might look like after 10 years? One approach
to this problem is to start with a database, which consists of images of faces of people
at various ages. By registering each young face to its corresponding older face in the
database, we could determine an average face, and an average geometric registration
map. Precisely how to obtain these averages is in itself a subject of research. Then,
in order to age a face, we first register the average face to it, and use the resulting
geometric map to warp the average registration map. The resulting warped map can
then be applied to the face to age it.

Given images of a face taken at two different ages, we can also estimate what the
face would have looked like at intermediate ages [18|. Shown in Figure 5.3 are the
results of registering faces of the same person taken at two different ages'. The super-
temporal resolution technique from the previous section (Section 5.1.2) can then be
applied to get faces at intermediate ages. Shown in Figure 5.4 are six intermediate
faces generated in this manner, using the faces from Figure 5.3.

The results shown in Figure 5.3 can also be extended to make a young face younger,
or an old face older, as shown in Figure 5.5. In this figure, the top row depicts the
original young and old faces. The bottom row depicts a younger and older face, gen-
erated as follows. First, the young and old faces are registered to obtain a registration
map (Figure 5.3). The inverse of this registration map is then applied to the young
face to obtain a younger face, and the registration map is applied to the old face to

get an older face.

Images provided courtesy of Dave Perrett and Michael Burt, School of Psychology, University
of St. Andrews, UK.
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Figure 5.3: Results of registering a young face to an older face.
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Figure 5.4: Faces with intermediate ages. Frames 1 and 8 are the key frames, while
frames 2-8 are generated synthetically using the super-temporal resolution technique
described in Section 5.1.2. The registration results from Figure 5.3 are used in this
example.

Figure 5.5: Reversing the effects of aging, and aging a face further. The top
row shows a younger face and an older face of the same person. The bottom row
shows an even younger face and an even older face synthetically generated using the
registration results shown in Figure 5.3.
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5.1.4 Cartoon motion capture

Cartoon motion capturing [15] is a technique used to capture the motion of a cartoon
character in an animation, which can then be re-targeted to other characters. This
allows a complex sequence of motions artistically created by a master animator to
be captured and transferred. We are currently exploring the use of registration to
capture motion?. Shown in Figure 5.6 are sample results, in which the motion between
each frame is determined using registration, and the results applied to a stick figure
overlayed on the original sequence. The motion from the stick figure can now be
transferred to another character.

Note that there are limitations to using image registration for this technique.
When an object disappears and reappears into view, the motion captured using the
registration algorithm is most likely incorrect. The ability of the algorithm to deal
with missing data will help alleviate this problem, but it still does not guarantee a
correct solution. Another problem that needs to be addressed is the re-targeting mech-
anism, as it will usually be the case that the original character and the re-targeted

characters are completely different entities, thus requiring some manual process.

5.1.5 Validation/Improvement of physics based registration
models

The non-rigid deformation of the brain during an operation can be modeled using
finite element modeling [52, 46]. We are currently looking to validate and improve

current brain deformation models by using the deformation field obtained by register-

2This is collaborative work with Lorie Loeb and Siwei Lyu from the Image Science Group at
Dartmouth College.
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Figure 5.6: Cartoon motion capture. The motion captured is applied to a stick
figure overlayed on the original sequence. This motion can now be re-targeted to
another character.
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ing volumes of a pig®. A balloon catheter is inserted between the skull and the brain
of the pig, and the region is imaged before and after inflating the balloon, using an
MR surface coil. The initial deformation model is built based on the coarse tracking
of a few beads strategically placed in the brain region of the pig. Using the registra-
tion algorithm, a dense and accurate deformation field can be obtained, as shown in
Figure 5.7. Note that the MR surface coil images produce an intensity gradient field,

which is difficult to register directly using other standard techniques.

5.2 Optimizations for specific applications

The registration algorithm currently does not assume anything about the images
being registered. However, given a large set of registered images of a specific type
and modality, the resulting registration maps can be analyzed, and this additional
information can be used to drive the registration. One approach is to use a prior on
the smoothness of the registration maps, which can then be used to help constrain
the possible solutions. These priors could also be used to drive a spatially varying
smoothness constant. Priors can also be used directly on the motion vectors, choosing
more likely solutions with respect to the existing registration results [64]. When
registering images that have occlusions or partial data (using the EM extension), the
constant parameter o can also be estimated based on the existing registration maps.
Note that the use of prior information (when available) should only strengthen the

robustness of the algorithm.

3This is collaborative work with John West and Keith Paulsen, from the Biomedical Computation
Group at the Thayer School of Engineering, Dartmouth College.
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Figure 5.7: 3-D registration results of the pig experiment. Shown in columns 3 and
4 are the differences in the image edge-maps before and after registration.
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5.3 Summary

In this chapter, a few sample applications are explored, some of them not related
to medical imaging. The examples illustrate only a handful of potential applications
for registration, and demonstrate the generality of the algorithm. Note that the
algorithm has both its weaknesses and strengths. It is unable to deal with very
large distortions, and is computationally intensive. However, it addresses a variety
of clinical problems: it can find non-rigid distortions, explicitly deal with global
and local intensity distortions, and also explicitly deal with occlusions or missing
data. In Section 3 numerous results, both synthetic and clinical, have been presented,
validating the assumptions made in the algorithm. In Section 4, the algorithm was
analyzed using simulations to understand how it behaves with respect to the design
assumptions. In summary, the algorithm is able to successfully capture a broad range
of distortions over a broad range of imagery. This work is not meant to supplant the
multitude of existing techniques; it merely provides an alternative approach and is

meant to provide a basis for further research.
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