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Abstract

Discrete-time fractional derivative filters (1-D and 2-D) are shown to be well approximated from
a small set of integer derivatives. A fractional derivative of arbitrary order (and, in 2-D, of arbitrary
orientation) can therefore be efficiently computed from a linear combination of integer derivatives of the
underlying signal or image.

I. INTRODUCTION

The theory of non-integer order (fractional) derivatives dates back to Leibniz’s correspondence with
L’Hospital in 1695 [1]. For many decades afterwards, the theory of fractional derivatives was developed

primarily as a theoretical field of mathematics (see [2], [3], [4], [5] for general surveys). More recently,
however, this branch of mathematics has found applications in a number of different areas ranging from

control theory [6] to electrochemistry [7] to neuronal modeling [8], and more – see [9] for both a general
theoretical survey and more applications of fractional differential equations.

As fractional derivatives find more applications, it is natural to consider the design of efficient and

accurate discrete-time filters The design of discrete fractional derivative filters are described in [10], where
the author considers a Taylor series expansion of the underlying function to be differentiated. In [11],

the authors take a similar approach by replacing the Taylor series expansion with a Newton series. See
also [12] for general numerical methods.

In this paper, I will describe how discrete-time integer derivatives can be used to efficiently compute
fractional derivatives of any order. Specifically, for one-dimensional signals, a small linear basis of integer

derivatives is shown to approximately span the space of fractional derivatives of arbitrary order. For two-
dimensional images, a linear basis is shown to approximately span the space of fractional directional

derivatives of arbitrary order and orientation. This approach places no explicit constraints on the form
of the underlying signal/image to be differentiated.

II. FRACTIONAL DERIVATIVES

Fractional differentiation is formulated in the Fourier domain, for both discrete-time one-dimensional

signals and two-dimensional images. This formulation is particularly convenient with respect to the
design of discrete-time fractional derivative filters.
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Fig. 1: Fractional and integer derivatives of a 1-D Gaussian (top-left panel). For display, each derivative is
normalized to a common scale.

A. One-Dimensional

The Fourier series of a one-dimensional discrete-time function f [x] of length l is given by:

f [x] =
1

l

l−1
∑

ω=0

F [ω]eiωx/σ, (1)

where σ = l
2π , and F [ω] =

∑l−1
x=0 f [x]e−iωx/σ is the discrete Fourier transform. Differentiation in the

Fourier domain takes on a particularly simple form (there are, of course, many complicating issues in
designing compact and accurate derivative kernels that are not addressed here – see [13] for a discussion

of these issues). The first-order derivative, for example, is given by:

f (1)[x] =
1

l

l−1
∑

ω=0

iω
σ F [ω]eiωx/σ. (2)

The nth-order derivative is given by:

f (n)[x] =
1

l

l−1
∑

ω=0

(

iω
σ

)n
F [ω]eiωx/σ. (3)

With n taking on any real value, Eq. (3) defines both the integer and fractional derivative. With this formu-

lation, a discrete-time filter, h[x], can be designed by simply inverse Fourier transforming
H(ω) = (iω/σ)n. The (regularized) fractional or integer derivative of a signal f [x] is then given by

g[x] = f [x] ? h[x], where ? denotes the convolution operator. Shown in Fig. 1, for example, are fractional
and integer derivatives of a 1-D Gaussian computed in this manner.

B. Two-Dimensional

The Fourier series of a two-dimensional discrete-time function f [x, y], of size l × l, is given by:

f [x, y] =
1

l2

l−1
∑

ωx=0

l−1
∑

ωy=0

F [ωx, ωy]e
i(ωxx+ωyy)/σ , (4)
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Fig. 2: Fractional and integer derivatives of a 2-D Gaussian (top-left panel) oriented at θ = π/4. For display,
each derivative is normalized to a common scale.

where σ = l
2π , and F [ωx, ωy] =

∑l−1
x=0

∑l−1
y=0 f [x, y]e−i(ωxx+ωyy)/σ is the discrete Fourier transform. The

first-order directional derivative in the horizontal, f
(1)
0 [x, y], and vertical, f

(1)
π/2[x, y], directions are given

by:

f
(1)
0 [x, y] =

1

l2

l−1
∑

ωx=0

l−1
∑

ωy=0

iωx

σ F [ωx, ωy]e
i(ωxx+ωyy)/σ , (5)

and

f
(1)
π/2[x, y] =

1

l2

l−1
∑

ωx=0

l−1
∑

ωy=0

iωy

σ F [ωx, ωy]e
i(ωxx+ωyy)/σ . (6)

The nth-order derivative at an arbitrary orientation, θ, is given by:

f
(n)
θ [x, y] =

1

l2

l−1
∑

ωx=0

l−1
∑

ωy=0

(i[cos(θ)ωx + sin(θ)ωy ]/σ)nF [ωx, ωy ]e
i(ωxx+ωyy)/σ. (7)

With n taking on any real value, Eq. (7) defines both the integer and fractional directional derivative.
As in the one-dimensional case, a discrete-time filter, h[x, y], can be designed by simply inverse Fourier

transforming H(ωx, ωy) = (i[cos(θ)ωx + sin(θ)ωy ]/σ)n. The (regularized) fractional or integer derivative
of an image f [x, y] is then given by g[x, y] = f [x, y] ? h[x, y], where ? denotes the convolution operator.

Shown in Fig. 2, for example, are fractional and integer derivatives of a 2-D Gaussian.

III. FRACTIONAL DIFFERENTIATION FROM INTEGER DERIVATIVES

A. One-Dimensional

Let h[x] be a lowpass filter, and h(n)[x] denote its nth-order derivative. We ask, can an arbitrary fractional

derivative filter be approximated from a linear combination of the first N integer derivatives, a lowpass
filter, and a constant:

h(n)[x] ≈

N
∑

k=1

αkh
(k)[x] + αN+1h[x] + αN+2c[x], (8)
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where c[x] = 1. Note that, unlike a Taylor series expansion, h(n)[x] is being expressed with respect to
integer derivatives of the underlying function h[x], and not derivatives of h(n)[x]. Re-writing the above

in matrix form yields:

~h(n) = B~α, (9)

where the columns of the matrix B contain the basis filters, ~h(1), . . . ,~h(N), ~h, ~c, and the vector

~α =
(

α1 . . . αN+2

)

. The unknown basis weights, ~α, are determined using standard least-squares to

yield ~α = (BtB)−1Bt~h(n).
Consider now convolving an arbitrary signal f [x] with each of the filters in the basis set:

g(1) = f ? h(1) . . . g(N) = f ? h(N), gh = f ? h, gc = f ? c, (10)

where, for notational convenience, the spatial parameter, [x], is dropped. Given the linearity of the convo-
lution operator, convolution with an arbitrary filter, h(n)[x], can be computed from a linear combination
of the above filter responses:

g(n)[x] =

N
∑

k=1

αkg(k)[x] + αN+1gh[x] + αN+2gc[x]. (11)

While this formulation obviates the need to convolve the signal f [x] with the desired filter h(n)[x], it does
require a least-squares solution, for a given n, to obtain the scalar weights ~α, Eq. (9). As I will describe

below, however, for a specified set of derivative filters, a closed-form approximation for ~α, as a function
of n, can be determined.

1) Gaussian-Based Filters: Consider a 1-D Gaussian filter h[x] = e−x2

with unit variance. Denote the
nth-order derivative as h(n)[x]. Shown in the upper panel of Fig. 3 (filled circles) are 11-tap fractional and

integer differentiating filters synthesized by inverse Fourier transforming (iω/σ)nH(w), Eq. (3), where
H(ω) is the Fourier transform of h[x]. Also shown in this figure (open circles) are the same differentiating

filters synthesized from a linear combination of five basis filters (first- through third-order derivatives
plus a lowpass and constant function), Eq. (8). Notice that the original and synthesized filters are nearly
identical – there is, of course, no error in synthesizing the integer derivatives. Shown in the lower panel

of Fig. 3 is the 1/2-order derivative filter approximated with a basis set of size two through six.
Shown in Fig. 4 are the scalar weights, ~α, as a function of derivative order, n, for the filters shown

in the upper panel of Fig. 3. Note that these coefficients are well fit with a fifth-order polynomial (solid

lines). These functions provide the required coefficients for estimating an arbitrary fractional derivative
from a linear combination of integer derivatives, Eq. (11).

Fractional derivatives can be approximated from filters other than the Gaussian-based filters. For
example, we consider a truncated sinc filter with a boxcar impulse response, the lowpass filter with
a raised cosine impulse response, H [ω] = 1/2(1 + cos(ω)), and the derivative filters described in [14].

In each case 11-tap fractional and integer differentiating filters were synthesized as described above.
The same differentiating filters were synthesized from a linear combination of the corresponding first-

through third-order derivatives plus a lowpass and constant function, Eq. (8). The average root mean
square (RMS) error between the actual and approximate filters of order 0.1 to 3.0 (in steps of 0.1) was

0.34 for the sinc-based filters, 0.20 for the cosine filters, 0.12 for the filters of [14] – the Gaussian-based
filters have an RMS error of 0.18. As with the Gaussian filters, these other filters are reasonably well

approximated with an integer basis, with the sinc-based filters having a slightly higher error.
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Fig. 3: Shown in the upper panel are 11-tap derivative filters of varying orders (filled circles) and synthesized
filters (open circles) from a basis set of size five (N = 3). Shown in the lower panel is the 1/2-order derivative
along with synthesized filters with a basis set of size two (N = 0) to six (N = 4). For display, each derivative
order is normalized to a common scale.

B. Two-Dimensional

For integer derivatives, the nth-order directional derivative can be synthesized at any orientation from

a linear combination of 1st- through nth-order derivatives (within the Computer Vision community, this
property of directional derivatives has been termed steerability [15]). 1 Let h[x, y] be a lowpass filter. The

first-order directional derivative at an arbitrary orientation θ can be expressed as a linear combination of
the axis derivatives:

h
(1)
θ [x, y] = cos(θ)h

(1)
0 [x, y] + sin(θ)h

(1)
π/2

[x, y]. (12)

Similarly, the second-order directional derivative is given by:

h
(2)
θ [x, y] = cos2(θ)h

(2)
0 [x, y]− 2 cos(θ) sin(θ)h

(1)
0 [x, y]h

(1)
π/2[x, y] + sin2(θ)h

(2)
π/2[x, y]. (13)

1While the integer directional derivatives are steerable, the fractional derivatives are not. Consider the Fourier-based
formulation of directional differentiation, Eq. (7). For integer values of the derivative order, n, the impulse response H(ωx, ωy) =

(i[cos(θ)ωx + sin(θ)ωy]/σ)n can expanded into a finite number of terms, each corresponding to an integer derivative. With non-
integer values of n, however, the same expansion yields an infinite number of terms. In practical terms, the fractional derivative
is, therefore, not steerable. Note also that, unlike the integer derivatives, the two-dimensional fractional derivatives are not x−y

separable.



6

0 1 2 3

−0.4

0

0.4

0.8

derivative order

α
0

α
1

α
2

α
3

α
4

Fig. 4: Shown are the scalar weights, α0, . . . , α4, Eq. (11), for the one-dimensional 11-tap filters of Fig. 3
(upper panel). The solid lines correspond to fifth-order polynomial fits to the data points that are computed
in 1/10 increments between a 1/10th- and 3rd-order derivative.

Given this property of directional derivatives, we now ask, similar to the one-dimensional case, can an

arbitrary derivative filter be approximated from a linear combination of integer derivatives, a lowpass
filter and a constant:

h
(n)
θ [x, y] ≈

N
∑

k=1

(

k
∑

l=0

k
∑

m=0

αk,l,mh
(l)
0 [x, y]h

(m)
π/2

[x, y]

)

+ αN̂+1h[x, y] + αN̂+2c[x, y], (14)

where the inner pair of summations is over all l and m such that l + m = k, h
(0)
0 [x, y] = h

(0)
π/2

[x, y] = 1,

c[x, y] = 1, and N̂ = N + N(N + 1)/2. By reshaping each 2-D filter into a 1-D vector, the above can be
expressed in matrix form as follows:

~h
(n)
θ = B~α, (15)

where the columns of the matrix B contain the basis filters, Eq. (14), and ~α contains the scalar weights,
Eq. (14). For notational convenience, the basis filters will be denoted as ~h1 . . .~hN̂ , ~h, ~c, and the scalar
weights as ~α =

(

α1 . . .αN̂+2

)

. As in the one-dimensional case, the basis weights are given by

~α = (BtB)−1Bt~h
(n)
θ .

Consider now convolving an arbitrary image f [x, y] with each of the filters in the basis set:

g1 = f ? h1 . . . gN̂ = f ? hN̂ , gh = f ? h, gc = f ? c, (16)

where, for notational convenience, the spatial parameters, [x, y], are dropped. Given the linearity of
the convolution operator, convolution with an arbitrary filter, h

(n)
θ [x, y], can be computed from a linear

combination of the above filter responses:

g
(n)
θ [x, y] =

N̂
∑

k=1

αkgk[x, y] + αN̂+1gh[x, y] + αN̂+2gc[x, y]. (17)

As I will describe below, for a specified set of derivative filters, a closed-form approximation for ~α, as a
function of n and θ, can be determined.

1) Gaussian-Based Filters: Consider a 2-D Gaussian filter h[x, y] = e−(x2+y2) with unit variance along both

axes. Denote the nth-order directional derivative as h
(n)
θ [x, y]. Shown in Fig. 5 are 11-tap fractional and inte-

ger differentiating filters synthesized by inverse Fourier transforming (i[cos(θ)ωx+sin(θ)ωy ]/σ)nH(ωx, ωy),

Eq. (7), where H(ωx, ωy) is the Fourier transform of h[x, y]. Also shown in this figure are the same
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differentiating filters synthesized from a linear combination of eleven basis filters (first- through third-
order derivatives plus a lowpass and constant function), Eq. (14). In this figure the label in the upper-left

corner of each plot corresponds to the derivative order, and the label in the lower-right corner corresponds
to the orientation. Note that the synthesized derivative filters of order less than one do not fully capture

the desired filter shape. These errors could be relieved by augmenting the basis set with the filters
cx[x, y] = |x|0.5 and cy [x, y] = |y|0.5 which capture the “valley” along the directional axes.

Shown in Fig. 6 are a subset of the scalar weights, α4, α5, α6, as a function of derivative order, n, and
orientation, θ. These and the other coefficients are well fit with an eight-order polynomial surface. These

functions provide the required coefficients for estimating a fractional derivative, at any orientation and
order, from a linear combination of integer derivatives, Eq. (17).

As with the 1-D filters, fractional derivatives can be approximated from filters other than the Gaussian-

based filters. We consider again a truncated sinc filter with a boxcar impulse response, the lowpass filter
with a raised cosine impulse response, and the derivative filters described in [14]. Each of these 2-D

filters were synthesized from an outer product of the 1-D filters described in Section III-A.1. In each
case 11-tap fractional and integer differentiating filters were synthesized as described above. The same

differentiating filters were synthesized from a linear combination of the corresponding first- through third-
order derivatives plus a lowpass and constant function, Eq. (8). The average root mean square (RMS)

error between the actual and approximate filters of order 0.1 to 3.0 (in steps of 0.1) and at orientations
0◦ to 180◦ (in steps of 10◦) was 2.44 for the sinc-based filters, 0.99 for the cosine filters, 1.64 for the

filters of [14] – the Gaussian-based filters have an RMS error of 1.51. As with the Gaussian filters, these
other filters are reasonably well approximated with an integer basis, with the sinc-based filters having a
slightly higher error.

IV. DISCUSSION

Discrete-time fractional derivative filters (1-D and 2-D) can be approximated from a linear combination
of integer derivatives. An arbitrary fractional derivative can, therefore, be efficiently computed from a
simple linear combination of the result of convloving a signal/image with a fixed set of filters.

There is, of course, no inherent reason why the integer derivatives are necessarily the best basis for the
fractional derivatives. One may wonder if a principle components analysis (PCA), for example, would

yield a smaller and more accurate basis. When applied to the one-dimensional 11-tap fractional derivative
filters of Section III-A.1, PCA yields a linear basis of size five that captures nearly all of the variance; this

is the same size basis as that used in Fig. 3. And when applied to the two-dimensional 11-tap fractional
directional derivative filters of Section III-B.1, PCA yields a basis of size eleven that captures nearly all

of the variance; this is the same size basis as that used in Fig. 5. There are, nevertheless, some benefits to
using the integer derivatives as a basis: (1) an integer basis ensures that synthesized filters at and around

integer values will be accurate; (2) the two-dimensional integer derivatives are x− y separable, and thus
computationally efficient; (3) with an integer basis the interpolating scalar weights, Eq. (11) and (17), are
more likely to vary smoothly, thus lending themselves to closed-form approximation, Fig. 4 and 6; and

(4) there is a large literature on designing derivative filters [13] that can be leveraged in creating a filter
basis set for fractional derivatives.
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Fig. 5: Shown are two-dimensional 11-tap directional derivative filters of varying orders and orientations
(columns 1, 3, 5). Also shown in columns 2, 4, 6, are synthesized filters from a basis set of size eleven (1st-
through 3rd-order integer derivatives). For display, each derivative order is normalized to a common scale.
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