
Leveraging Palladio for Performance Awareness in the

IETS
3 Integrated Specification Environment

Fabian Keller,1 Markus Völter,2,3 André van Hoorn,1 Klaus Birken3

1 University of Stuttgart, D-70569 Stuttgart
2 voelter — Ingenieurbüro für Softwaretechnologie, D-70327 Stuttgart
3 itemis AG, D-70565 Stuttgart

Abstract

Performance is an important concern when designing
and implementing software-intensive systems. Vari-
ous techniques are available for specifying and eval-
uating performance concerns throughout the system
life-cycle. However, there is a gap in terms of tooling
when moving between requirements, design, and im-
plementation artifacts. We address this gap by inte-
grating simulation-based and analytical performance
prediction tools into IETS

3 — an integrated spec-
ification environment for technical software systems
based on the JetBrains MPS language workbench.

In this paper, we provide an overview of our work
in progress on integrating performance awareness sup-
port into the IETS

3 editor and user interface. We
leverage Palladio’s prediction infrastructure by trans-
forming to Palladio’s modeling language to obtain per-
formance predictions, which are then fed back into the
IETS

3 user interface. The approach yields a tight inte-
gration of the requirements and the design of a system
strengthened by a real-time feedback loop.

1 Introduction

While the performance of a yet to be developed sys-
tem is hard to assess, it inevitably is an important
non-functional requirement to many applications that
is often underspecified. Designing systems with per-
formance in mind saves costs in the long run, as ar-
chitectural changes are often expensive to carry out
in an existing system.

Software performance research has developed ap-
proaches to predict the performance before the sys-
tems are actually built [10]. The predictions are
based on the component architecture enriched with
performance-specific annotations such as resource
consumption and typical use cases. Tooling support
is available, but is not deeply integrated with other
tools and artifacts produced in the software develop-
ment process, such as performance requirements or
variability models.

Performance awareness captures the (real-time)
availability of performance information in system de-
velopment environments to inform and assist develop-

ers [13]. Existing approaches (e.g., [2, 5, 8]) neglect
system specification, particularly the design and re-
quirements stages and do not support software prod-
uct lines (SPLs).

This paper provides a summary of our work in
progress on adding performance-awareness support
into IETS

3, an “Integrated Specification Environment
for the Specification of Technical Software-systems”,
based on performance predictions provided by the Pal-
ladio [3] tooling environment for model-based perfor-
mance prediction.

The JetBrains Meta Programming System
(MPS) [1] is an open-source language workbench [6],
that is, a system for defining, composing and using
languages and their IDEs. It supports concrete and
abstract syntax, type systems, and transformations,
as well as IDE aspects, such as syntax highlighting,
code completion, find-usages, diff/merge, refactoring,
and debugging. MPS is used widely in industry for
languages in a wide variety of domains, including
embedded software, insurance, health and medicine,
as well as aerospace.

In our IETS
3 research project, we develop an IDE-

like tool for writing specifications of software systems,
that seamlessly integrates informal, semi-formal and
formal specification languages. It relies on JetBrains
MPS and its facilities for language composition and
notational flexibility. At the core, the IETS

3 tool
suite comes with four languages: expressions, require-
ments, components, and feature models to support
SPLs. One of the first concrete tools built on top of
the IETS

3 languages is SimBench [4], a tool for dis-
crete performance simulation, which is the foundation
for our approach to introduce performance awareness
into the tool suite.

2 Related Work

Related work primarily addresses performance aware-
ness for developers during the implementation phase
of a project. Horký et al. [8] use performance unit
tests to generate performance documentation for the
developers using the components to make informed
decisions. Danciu et al. [5] employ Palladio to predict
the performance of Java EE components during their



Create 
component 
model

Choose 
configuration 
to analyze

Transform to 
prediction 
model

Choose 
approach and 
predict

Architect 
feedback

Figure 1: Conceptual overview of the approach. A user icon in the top right of a step indicates user interaction.

implementation within an IDE. Performance predic-
tion results are visualized next to the affected source
code. Beck at al. [2] integrate performance profiling
results directly into the code. Related work also cov-
ers awareness with respect to other quality attributes,
such as correctness [14]. Our approach integrates per-
formance awareness into a specification environment,
such that performance analyses are automatically re-
lated to specified requirements.

3 Conceptual Approach

The goal of the approach presented in this paper is
to add performance awareness to a specification envi-
ronment. Hence, the specification environment must
treat software performance as first-class citizen for
component developers, system architects, and domain
experts already during the requirements elicitation
and design phase of the software to be built.

IETS
3 provides several language concepts to ex-

press component specifications, system architectures
built with the components, planned allocations onto
hardware, and usage scenarios for the designed sys-
tem. On top, IETS

3 provides a feature model that
tightly integrates with the aforementioned concepts
to express variability points on all aspects of the
model. The IETS

3 DSL provides all information re-
quired by Palladio to conduct a performance predic-
tion for the system, thus a model-to-model transfor-
mation of the IETS

3 meta-model to the Palladio com-
ponent model has been implemented to leverage the
performance prediction features Palladio provides. A
general overview of the approach is depicted in Fig-
ure 1 and consists of the following steps:

1. Create component model: The architects and
domain experts model the system and its require-
ments. Component developers supply the com-
ponents with performance-related annotations to
specify the expected performance behavior. Fig-
ure 2 shows an example.

2. Choose configuration to analyze: If feature
modeling is used, the performance prediction can
only be performed for a certain configuration,
which is either chosen by the user or by heuristics.

3. Transform to prediction model: The chosen
variant is automatically transformed into an in-
stance of the Palladio component model. The
concepts and semantics of the IETS

3 model are
retained in PCM, although slight differences in

Figure 2: A sample component in the IETS
3 no-

tation, supporting calls (regular component connec-
tions), triggers (performance analysis specific meth-
ods) and variant specific resource demands. The yel-
low boxes show attached analysis results.

the two modeling languages exist (e.g. processor
configuration).

4. Choose and execute prediction approach:
In addition to the discrete event simulation im-
plemented in SimBench, our approach connects
to the performance prediction infrastructure pro-
vided by Palladio — currently focusing on the
Layered Queuing Network solver [11]. We plan
to investigate heuristics that help choosing an
approach to optimize the end-user experience in
terms of the trade-off between prediction preci-
sion and analysis runtime [15].

5. Architect feedback: The results of the predic-
tion are annotated to the affected parts in the
model inside IETS

3. Depending on the analy-
sis, the user may be able to see additional details
upon interaction with the prediction result.

4 Implementation

This section highlights selected parts of the current
implementation of the approach.

Model-to-Model Transformation: The transfor-



mation is built with the MPS Java language, which
contains language enhancements tailored to building
DSLs with MPS. An open-source builder API1 to con-
struct PCM models from Java has been built to ease
the writing of the transformation.

As the models of IETS
3 and Palladio are not se-

mantically identical, a mapping to retain the semantic
meaning of IETS

3 in the transformed PCM instance
was implemented. The sample component in Figure 2
shows a component defining performance analysis rel-
evant metadata under the sim keyword. Resource de-
mands of regular component interactions are defined
with the on call keyword and are directly mapped to
Palladio’s resource demanding service effect specifi-
cations (RDSEFFs). In addition to that, the trigger
concept allows components to define arbitrary com-
munication and invocation paths regardless of their
structure and hierarchy in order to model environ-
mental events and their performance impact (such as
the sudden re-routing while playing radio in a car in-
fotainment system). During the transformation the
triggers are mapped to artificial PCM interfaces which
are connected appropriately in the resulting PCM sys-
tem. The variable resource demand is evaluated for a
specific variant before transforming to the PCM, such
that the feature-specific resource demand is a regular
numeric value during the transformation.

Performance Prediction: Once transformed, the
Palladio component model is passed to the exist-
ing solver infrastructure for Palladio, particularly us-
ing the simulations and the PCM2LQN transforma-
tion [11]. The results of the performance prediction
are then lifted to the IETS

3 model in order to be
shown in the user interface.

As MPS is based on a JetBrains IDE, the Eclipse
environment required to run Palladio is not available.
To the best of our knowledge, Palladio does currently
not provide a headless runner to run analyses without
a graphical user interface. Hence, we added the abil-
ity to run Palladio analyses without a graphical user
interface outside Eclipse environments to our open-
source library.

5 Conclusions and Future Work

Our project is an early stage. Hence, we are not
able to provide quantitative results at this point in
time. One of the next steps is a systematic eval-
uation w.r.t. performance and scalability using an
industry-scale case study. Moreover, we plan to im-
prove the performance evaluation and awareness sup-
port for software product lines, leveraging existing
techniques from other contexts [7]. To improve the
real-time feedback loop we plan to support incremen-
tal performance predictions, as users typically only

1http://github.com/DECLARE-Project/

palladio-headless

change small parts of the model [12]. Also, a transpar-
ent selection of model-based and measurement-based
evaluation techniques are of high interest to improve
the usability [15].

Acknowledgment

This work is supported by the German Research Foun-
dation (HO 5721/1-1, DECLARE) and the German
Federal Ministry of Education and Research (IETS

3).
More details on this work are provided by Keller [9].

References
[1] Jetbrains MPS. http://www.jetbrains.com/mps.

[2] Fabian Beck, Oliver Moseler, Stephan Diehl, and
Günter Daniel Rey. In situ understanding of performance
bottlenecks through visually augmented code. In Proc.
ICPC ’13, pages 63–72, 2013.

[3] Steffen Becker, Heiko Koziolek, and Ralf H. Reussner. The
Palladio component model for model-driven performance
prediction. J. Syst. Software, 82(1):3–22, 2009.

[4] Klaus Birken, Daniel Hünig, Thomas Rustemeyer,
and Ralph Wittmann. Resource analysis of automo-
tive/infotainment systems based on domain-specific mod-
els: A real-world example. In Proc. ISoLA’10, Part II,
pages 424–433, 2010.

[5] Alexandru Danciu, Alexander Chrusciel, Andreas Brun-
nert, and Helmut Krcmar. Performance awareness in Java
EE development environments. In Proc. EPEW ’15, pages
146–160, 2015.

[6] Sebastian Erdweg, Tijs van der Storm, Markus Völter,
Meinte Boersma, Remi Bosman, William R Cook, Albert
Gerritsen, Angelo Hulshout, et al. The State of the Art in
Language Workbenches. In Proc. SLE ’13, 2013.

[7] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert
Siegmund, and Andrzej Wasowski. Variability-aware per-
formance prediction: A statistical learning approach. In
Proc. ASE ’13, pages 301–311, 2013.

[8] Vojtech Horký, Peter Libic, Lukás Marek, Antońın Stein-
hauser, and Petr Tuma. Utilizing performance unit tests
to increase performance awareness. In Proc. ICPE ’15,
pages 289–300, 2015.

[9] Fabian Keller. Introducing performance awareness in an
integrated specification environment, 2016. Master’s the-
sis, University of Stuttgart.

[10] Heiko Koziolek. Performance evaluation of component-
based software systems: A survey. Perform. Eval.,
67(8):634–658, 2010.

[11] Heiko Koziolek and Ralf H. Reussner. A model transfor-
mation from the Palladio Component Model to Layered
Queueing Networks. In Proc. SIPEW ’08, pages 58–78,
2008.

[12] Tamás Szabó, Sebastian Erdweg, and Markus Voelter.
IncA: A DSL for the definition of incremental program
analyses. In Proc. ASE ’16, 2016. To appear.

[13] Petr Tůma. Performance awareness. In Proc. ACM/SPEC
ICPE ’14, pages 135–136, 2014.

[14] Markus Voelter, Daniel Ratiu, Bernd Kolb, and Bern-
hard Schätz. mbeddr: Instantiating a language workbench
in the embedded software domain. Autom. Softw. Eng.,
20(3):339–390, 2013.

[15] Jürgen Walter, Andre van Hoorn, Heiko Koziolek, Dusan
Okanovic, and Samuel Kounev. Asking “what?”, automat-
ing the “how?”: The vision of declarative performance en-
gineering. In Proc. ACM/SPEC ICPE ’16, March 2016.

http://github.com/DECLARE-Project/palladio-headless
http://github.com/DECLARE-Project/palladio-headless
http://www.jetbrains.com/mps

	Introduction
	Related Work
	Conceptual Approach
	Implementation
	Conclusions and Future Work

