
From Reproducibility Problems to Improvements: A journey

Holger Eichelberger, Aike Sass, Klaus Schmid
{eichelberger, schmid}@sse.uni-hildesheim.de, sassai@uni-hildesheim.de

University of Hildesheim, Software Systems Engineering, 31141 Hildesheim, Germany

Abstract
Reproducibility and repeatability are key properties of
benchmarks. However, achieving reproducibility can
be difficult. We faced this while applying the micro-
benchmark MooBench [5] to the resource monitoring
framework SPASS-meter. In this paper, we discuss some
interesting problems that occurred while trying to repro-
duce previous benchmarking results. In the process of
reproduction, we extended MooBench and made improve-
ments to the performance of SPASS-meter. We conclude
with lessons learned for reproducing (micro-)benchmarks.

1 Introduction
A Benchmark is a standardized software system that
aims at measuring the performance of a System Under
Test (SUT) [5]. Benchmarks shall be representative,
repeatable, robust, fair, simple, scalable, comprehensive
and portable [5]. Repeatability requests statistically
equivalent results when the benchmark is repeated in
the same setup [3, 5]. Further, a benchmark shall be
reproducible [3], i.e., other parties observe similar results
in the same (or a similar) setup. Reproducibility is
fundamental to objective performance comparisons and
(scientific) validation of results.

SPASS-meter [4] is a flexible resource monitoring
framework, which supports efficient online aggregation of
raw monitoring data for user-defined components. In [5],
Waller presents a performance evaluation of SPASS-meter
using the response time micro-benchmarking framework
MooBench. Micro-benchmarks focus on individual, basic
concepts of the SUT [5], while macro benchmarks aim
at the entire SUT. The results measured by Waller
indicated continuous response time fluctuations caused
by SPASS-meter. To understand the cause(s) for these
fluctuations, we conducted a more detailed performance
analysis utilizing MooBench to identify the root cause(s).

In this paper, we discuss problems of reproducing re-
sults for the same benchmark and the same SUT in techni-
cally similar setups, here applying MooBench to SPASS-
meter on machines of our group. Despite significant
efforts, our experiments show that we were not able to re-
produce the original results. Further, our results indicate
different performance issues. For explaining the issues,
we use an extension of MooBench for simultaneous bench-
marking of response time and memory usage. This allows
us to explain the observed issues. While benchmarking is
typically (a late) part in the software lifecycle [2], we apply

micro-benchmarks for debugging performance issues.
We contribute a discussion of problems that occurred

while trying to reproduce original benchmarking results
and lessons learned for improving the reproduction. We
discuss how micro-benchmarking, in our case of two
performance dimensions can be utilized to explain and
solve performance issues.

In Section 2, we summarize the original results. We
discuss our experiments on reproducing the original
results and the issues that we found in Section 3. In
Section 4, we derive potential causes, apply the extended
MooBench to identify the root causes and to improve
SPASS-meter. In Section 5 we conclude.

2 Original Results
We base our performance analysis of SPASS-meter on the
results reported in [5]. There, Waller applies MooBench
to SPASS-meter for benchmarking the monitoring of
a test method of recursion depth 10 for 2.000.000 calls.
The first half of the executions is discarded as warm-up
phase. The experiment is executed 10 times using a fresh
JVM for each repetition.

Waller conducted the experiments on a Dell X6270
Blade Server with two Intel Xeon 2.53GHz E5540
Quadcore processors and 24 GByte RAM running
Debian Linux with kernel 3.2.57, some libraries (libc,
libdl and libpthread) upgraded to version 2.15 and an
Oracle Java 64-bit Server JVM version 1.7.0_55 with
4 GBytes heap space. We will call this setup S1.

Figure 1 depicts the results of the experiment for the
instrumentation libraries supported by SPASS-meter,
javassist and ASM. Waller noted the erratic behavior of
the response time and believes that this is caused by the
online analysis of SPASS-meter rather than just-in-time
compilation or garbage collection.

Figure 1: Response time results from [5].

3 Reproducing the Original Results
The first step of our performance analysis was to
reproduce the results from Section 2. We aim at a similar
behavior for identifying the reasons of the fluctuations.
However, no hardware with the same specification as in
setup S1 was available to us. As mitigation, we applied
an iterative process to narrow down the setup and the
differences to S1, starting with the most similar machine
available to us using also other machines if the original
results cannot be reproduced.

We started with the machine that we used for
the evaluation of SPASS-meter in [4], a slightly more
powerful machine than in S1. Setup S2 consists of a
Dell Optiplex 790 with an Intel Core i5-2500 CPU
3.30 GHz Quadcore processor and 8 GB RAM. For an
initial impression, we utilized the (archived) software
installation from [4], aiming at a more exact installation
in a later iteration. We utilized a Ubuntu Linux 12.04.1
LTS 64 bit server version (updates disabled, no virus
scanner/graphical user interface) with versions of JVM,
SPASS-meter and MooBench as in setup S1.

The middle plot of Figure 2 depicts the results. In S2,
the average response time is more than 10 µs better than
in S1 (Figure 1). Even after several repetitions of the ex-
periment, we were not able to reproduce the fluctuations
from Figure 1. S2 did not only produce significantly fewer
spikes, it did not show any of the downward-spikes visible
in Figure 1. However, the spikes we got were much larger
and as part of the reproduction effort, we noticed that
when comparing multiple result sets without changing
the setting, the spikes move randomly along the x-axis.

For excluding environment differences as root causes,
we tried to reproduce the software from setup S1 as accu-
rately as possible on our most similar machine to setup
S1 besides S2. In setup S3, we use a HP ProLiant ML150
with Intel Xeon 5130 Dualcore processor and 6 GBytes
RAM. According to the processor specification, S2 should
be three times faster than S3. As in S1, we used a Debian
7.5 system and upgraded the libraries. As the required
libraries of version 2.15 [5] were not available from the De-
bian archive, we installed the closest available version 2.23.

The top plot in Figure 2 depicts a representative result
for S3. Also in S3, we were not able to replicate the signif-
icant fluctuations from S1. Although we used a different

Number of method executions

0
20

40
60

80

 0 2500000 5000000 7500000 10000000

M
ea

n
re

sp
on

se
 ti

m
e

(µ
s)

Number of method executions

Mean response time of ...

SPASSmeter ASM (S2)
SPASSmeter Javassist (S2)
No instrumentation (S2)

SPASSmeter ASM (S3)
SPASSmeter Javassist (S3)
No instrumentation (S3)

Figure 2: Average results for S2 (middle) and S3 (top).

operating system version than in S2, the results are sim-
ilar to S2 and the response time is, as expected, roughly
three times higher. One may expect a linear scaling of
the S3 spikes along with the slower processor, e.g., around
90µs, but also the spikes may be of the same size and just
disappear in the higher average response time. The rather
huge spikes we see on S2 with ASM were surprising to us.

We believe that installing Debian 7.5 also in S2 would
not lead to results that are closer to S1.

4 Analyzing Performance Outliers
While we were not able to reproduce the significant
fluctuations shown in Figure 1, the spikes and smaller
fluctuations exhibited in setup S2 and S3 raised our
concern. Thus, we tried to identify the root cause of
these performance outliers. This happened in two phases:
(1) we tried to identify potential triggers for the spikes,
modify the setup or SPASS-meter and perform the
benchmarks with MooBench to analyze the effects. (2)
we extended MooBench for memory analysis in order to
identify whether the spikes where correlated e.g., with
garbage collection.

Due to our internal knowledge about SPASS-meter,
we hypothesized first several potential causes attributed
to the hardware, the operating system, the JVM,
MooBench or SPASS-meter. Examples are operating
system memory swapping, JVM garbage collection, the
MooBench benchmark itself, the instance pooling in
SPASS-meter or, as Waller notes, the online aggregation
of SPASS-meter. However, none of the changes in the
settings for swapping, garbage collection or the bench-
mark provided any insights into the origins of the spikes.
Although explicit object pooling does not seem to be ben-
eficial on modern JVMs [1], we equipped SPASS-meter
with optional object pools for performance experiments.
Disabling the object pools did not significantly affect
the response time spikes. Finally, we systematically
disabled parts of response time recording functionality of
SPASS-meter line-by-line to narrow down the cause. As
a result, it seems that a JMX call for obtaining the CPU
time consumption of a thread caused most of the spikes.

Based on the JMX hypothesis, we aimed at finding the
reason through micro-benchmarking more performance di-
mensions. As a first step, we extended the benchmark for
monitoring memory consumption. Similar to measuring
the response time, we obtained the overall JVM memory
use before and after executing the test method of the
benchmark and recorded the difference. We also collected
the number of garbage collections before and after execu-
tion to identify the points in time when garbage collection
happens. The results show that each spike corresponds to
a garbage collection after a phase of increasing memory
use. Profiling showed that the memory use can be at-
tributed to the JMX call, but also to a high number of list
elements created as part of the internal event processing.

As a resolution, we bypassed the JMX call by directly
calling the underlying native implementation in an own
library using internal JVM interfaces and enabled in-

Number of method executions

0
20

40
60

80

 0 2500000 5000000 7500000 10000000

M
ea

n
re

sp
on

se
 ti

m
e

(µ
s)

Number of method executions

Mean response time of ...

SPASSmeter ASM (S2)
SPASSmeter Javassist (S2)
No instrumentation (S2)

SPASSmeter ASM (S3)
SPASSmeter Javassist (S3)
No instrumentation (S3)

Figure 3: Results for the improved SPASS-meter.

stance pooling for the internal event processing. Figure 3
depicts the benchmarking results of the improved version
of SPASS-meter in setting S2. Additional experiments
indicate that the remaining spikes may be indicated
by thread synchronization issues. Macro benchmarking
with SPECjvm2008 as a follow-up of [4] shows that
we reduced the response time monitoring overhead of
SPASS-meter by half.1

5 Conclusions
Reproducing benchmarks is important to compare sys-
tems in similar settings and to validate scientific results.
This can be difficult, in particular if the required hard-
ware is not available in an identical setup or the software
environment cannot be replicated exactly for some rea-
son. While we were not able to reproduce the original
results faithfully, micro-benchmarking SPASS-meter with
MooBench indicated spikes in response time. Although
such spikes could be interpreted as random statistical devi-
ations of normal program execution, they can also indicate
performance issues, in our case symptoms in response
time caused by garbage collection. We identified a cause
for the spikes using an extended version of MooBench for
simultaneous micro-benchmarking of two performance di-
mensions and improved the performance of SPASS-meter,
but more optimization work remains to be done.

Based on our experience, we conclude some lessons
learned on reproducing micro-benchmarks: 1) If bench-
marks record response times in micro-seconds, small dif-
ferences in the setup can lead to huge differences in results,
but also small fluctuations may occur, e.g., due to operat-
ing system activities. 2) Replicating the setup of the oper-
ating system requires detailed information on the installed
components and their configuration. The performance
engineer must prevent unintended updates and replicate
the configuration of the original system. A detailed in-
stallation protocol (as part of standardized benchmarking
processes [2]) with a listing of all component versions
would be helpful. Also an archive (or downloadable boot-

1When comparing the results with [4], it must be taken into
account that besides the factor 2 due to the modifications also a
more recent JVM on an otherwise identical setup contributes a
factor of 2, leading to a total improvement factor of 4.

disk) of the entire installation would be even preferable
as some versions of components may become unavailable
over time (as happened to us). 3) Figures illustrating
benchmark analysis results can be misleading. In our
analysis we found that the scripts performed averaging
of the data, but the actual parameters used remained
unclear, but had a huge impact on the final figures. Thus,
replicating the analysis requires the raw benchmark data,
experiment protocols as well as the scripts/sheets used
during the analysis, ideally together with the figures in
a repository as a labeled release. It is also important to
publish script parameter settings, e.g., for averaging or
smoothing data as well as statistical summaries of the
obtained time series including information such as mini-
mum, maximum, and 95%-median for judging outliers. 4)
Automating experiments as far as possible, ideally rang-
ing from benchmarking to data analysis and archiving
even intermediary results can help reproducing and under-
standing results as it simplifies the replication process and
makes it less error-prone. 5) For an exact replication iden-
tical hardware is required. Small hardware differences can
lead to fluctuations of the response time recording, but
also hardware considered similar enough may lead to sig-
nificant differences. Here, publicly available benchmark-
ing hardware, e.g., in a cloud or standardized virtualized
benchmarks may help. Moreover, benchmarks reports
should include results for different hardware setups.

We believe that developing good practices for
conducting and documenting benchmarks is worth a
joint community effort. As contribution, all our software
including the extended MooBench and the native JMX
bypass, scripts and data are available online2.

6 Acknowledgments
This work was partially supported by grant 619525
(QualiMaster) funded by European Commission grants in
the 7th framework programme. Any opinions expressed
herein are solely by the authors and not of the EU.

References
[1] B. Goetz and T. Peierls. Java concurrency in practice.

Pearson Education, 2006.
[2] M. Woodside, G. Franks, and D. C. Petriu. “The fu-

ture of software performance engineering”. In: FOSE
’07. 2007, pp. 171–187.

[3] K. Kanoun et al. “Windows and Linux Robustness
Benchmarks with Respect To Application Errneous
Behavior”. In: Dependability Benchmarking for Com-
puter Sys. 2008, pp. 227–254.

[4] H. Eichelberger and K. Schmid. “Flexible resource
monitoring of Java programs”. In: J. Syst. Softw. 93
(2014), pp. 163–186.

[5] J. Waller. “Performance Benchmarking of Applica-
tionMonitoring Frameworks”. PhD thesis. University
of Kiel, 2014.

2https://doi.org/10.5281/zenodo.165513

	Introduction
	Original Results
	Reproducing the Original Results
	Analyzing Performance Outliers
	Conclusions
	Acknowledgments

