
Towards a Better Understanding of

Software Product Line Evolution

Christian Kröher, Klaus Schmid

University of Hildesheim, Institute of Computer Science

Universitätsplatz 1, 31141 Hildesheim

{kroeher, schmid}@sse.uni-hildesheim.de

Abstract

In contrast to traditional software systems, the evo-
lution of a Software Product Line (SPL) a�ects not
only artifacts like source code or requirements, but
also variability information, which supports the cus-
tomization of these artifacts across di�erent products
of the SPL. While some work exists that aims at char-
acterizing the state and evolution of a product line
from a feature perspective, this abstracts away the
details of code evolution, hence, ignoring aspects like
the di�erence in size of features. In this paper, we
present an approach for the extraction and analysis
of changes introduced to code, build, and variability
model artifacts. This approach has been developed
for and applied to the Linux product line.

1 Introduction

Traditional software systems consist of di�erent types
of information like program and build process de�-
nitions contained in code and build artifacts, respec-
tively. In a Software Product Line (SPL) these arti-
facts are extended by variability information in order
to develop generic artifacts that can be reused in dif-
ferent products [4]. These generalized artifacts thus
provide con�guration options that allow the adapta-
tion of their capabilities for a speci�c product. For ex-
ample, in C-code this is typically done by augmenting
the implementation with pre-processor statements. Be-
sides these generalized artifacts, typically a SPL-speci�c
artifact exists: the variability model, which is an ab-
stract representation of the often complex and dis-
tributed con�guration options and their relations [4].

The evolution of SPLs thus a�ects not only artifact-
speci�c information as in traditional software systems,
but also variability information. Hence, a particular
focus of research in the area of SPLs is on understand-
ing the evolution of variability information [1, 3, 2].
However, to the best of our knowledge, there is so far
no research on how artifact-speci�c and variability in-
formation in di�erent types of artifacts co-evolve in
real-world, mature SPLs over time. In particular, the
distribution and intensity of changes to the di�erent
types of information and artifacts are unknown. We
argue that such information contributes to the un-

derstanding of SPL evolution at large and provides a
basis for future work on supporting SPL evolution.

This paper describes an approach to extract and
analyze the evolution of the Linux kernel (and SPLs
relying on the same technologies), which is one of
the largest open-source SPLs. The approach analyzes
662.110 commits of the Linux kernel repository span-
ning 11 years of active development. The focus of this
analysis is on the largest groups of artifacts: source
code, build, and variability model artifacts. The re-
sult is an evolution data set containing commit-wise
numbers on the changed artifact types and, for each
artifact type, the numbers on changed lines containing
artifact-speci�c information and changed lines con-
taining variability information.

2 Approach

The evolution analysis consists of two distinct pro-
cesses: the Commit Extraction (ComEx) and the Com-
mit Analysis (ComAn) process. As the repository un-
der analysis relies on the git version control system,
the ComEx process executes a set of git commands
to extract the commit history in terms of individual
�les for each commit. The �rst line of such a com-
mit �le contains the commit date, while the following
lines describe the changes to individual �les. Change
descriptions always start with a git di�-header de�n-
ing basic properties of a changed �le, like the relative
path of that �le or the number of lines before and
after the change. After that header, the full content
of the changed �le is listed. Leading �+� (addition)
or �-� (deletion) symbols mark changes to individual
lines of that content.

The ComAn process investigates each commit �le
to identify changes to the artifacts in the focus of the
approach and to count the number of changed lines
containing artifact-speci�c information and variabil-
ity information for each of these artifacts separately.
The �rst step is therefore to determine the type of
the changed �le by checking the name and �le exten-
sion. In the Linux kernel source code artifacts are
identi�ed by an �.h�, �.c�, or �.S� �le extension, while
build artifacts are named �Make�le� or �Kbuild�. Vari-
ability model artifacts are named �Kcon�g�. For each

1



Figure 1: Evolution of the Linux kernel

type of artifact the ComAn process performs a special-
ized analysis. This analysis ignores changes to empty
lines and comments as they neither constitute artifact-
speci�c capabilities nor variability information. The
remaining lines are categorized as follows:

Source code and build artifacts: Changed lines,
that either contain references to con�guration options
or statements closing a control structure, which de-
pends on a con�guration option, are counted as changes
to variability information. All other changed lines are
counted as changes to artifact-speci�c information.

Variability model artifacts: In contrast to the
other artifact types, the focus is on �nding artifact-
speci�c information instead of variability information.
This is due to the fact that for a variability model the
artifact-speci�c information is variability information.
However, some information, like help texts for con�g-
uration options, does not in�uence the variability per
se. Thus, changes to help texts are counted as changes
to artifact-speci�c information, while all other changes
are counted as variability information.

3 Results

The numbers provided by the analysis enable di�er-
ent types of evaluations. Figure 1 shows one exam-
ple of these evaluations: an overview of the evolu-
tion of the Linux kernel by summarizing the num-
bers of commits and changed lines by year. For each
year, the bar illustrates the number of commits in-
cluding the actual number. The lines visualize the
number of changes to di�erent types of artifacts, like
the solid line with empty circles representing the num-
ber of changed source code lines without variability
impact. This is the largest set of changes. Variabil-
ity information in code artifacts changes signi�cantly
less, while these changes occur more often than to the
build system or to variability model artifacts. By far
not all changes to the variability model impact the

variability, which may appear surprising. There are
about as many changes to the variability model with
variability impact as there are without. The latter
ones typically make descriptive changes, e.g., modify-
ing help information. The build artifacts change the
least with more relating to non-variability-related in-
formation than to variability-related information.

The results of our evolution analysis show that a
signi�cant amount of changes apply to variability in-
formation regardless of the type of artifact. In the
future we will extend this analysis to further SPLs in
order to compare the results with those derived from
Linux. Our goal is to draw more general conclusions
about the evolution of SPLs and to provide them as
input for future work on supporting SPL evolution.

Acknowledgment

This work was partially supported by the DFG under
Priority Program SPP1593 and by the BMBF, FKZ:
01S16042H: project REVAMP2, ITEA3-15010.

References

[1] N. Dintzner, A. van Deursen, and M. Pinzger.
FEVER: Extracting feature-oriented changes from
commits. In Conference on Mining Software

Repositories, pages 85�96, 2016.
[2] R. Lotufo, S. She, T. Berger, K. Czarnecki, and

A. Wasowski. Evolution of the linux kernel vari-
ability model. In Intern. Software Product Line

Conference, pages 136�150, 2014.
[3] L. Passos, J. Guo, L. Teixeira, K. Czarnecki,

A. Wasowski, and P. Borba. Coevolution of vari-
ability models and related artifacts: A case study
from the linux kernel. In Intern. Software Product

Line Conference, pages 91�100, 2013.
[4] K. Schmid and E. S. Almeida. Product line engi-

neering. IEEE Software, 30:24�30, 2013.


