
Applying Deep Learning For Imitating Adaptive Agent Behavior
in Statistical Software Testing

André Reichstaller, Benedikt Eberhardinger, Hella Seebach, Alexander Knapp, and Wolfgang Reif

Institute for Software & Systems Engineering, University of Augsburg, Germany

{ reichstaller, eberhardinger, seebach, knapp, reif } @isse.de

Abstract Statistical test generation builds on profiles
which describe the estimated conditions of the system
under test’s environment. Such environmental profiles,
however, do not directly provide us with inputs for testing
particular system components, as those mostly depend
on the output of others. We thus additionally need to
estimate this output if we want to maintain statistical
accuracy. Instantiating this task for the isolated testing
of self-organization mechanisms between adaptive agents,
this paper investigates the application of deep learning
techniques for imitating the agents’ output. The proposed
technique is evaluated on a simulated self-organizing grid
of power plants.

1 Statistical Testing Self-Organization
Mechanisms Using Mock-ups

Statistical software testing applies stochastically gen-
erated sequences of test inputs to a system under test
(SuT) which represent its anticipated use. In doing so,
this approach allows the test engineer to reason about
the system’s expected field quality [1]. Furthermore,
the obtained models of the environment, in which the
SuT is expected to be employed, can be used to prior-
itize and thus to reduce test efforts in general. This
reduction is of particular interest when dealing with
very huge and ramified state spaces of the SuT’s en-
vironment, since, without prioritization, the so called
state space explosion is likely to give rise to test suites
of uncontrollable size.

In previous work, we explained this phenomenon
and consequential challenges with particular regard
to the class of self-organizing, adaptive systems [2].
This kind of software systems is usually composed
of an agent layer comprising a number of adaptive
agents that are associated with their environment,
and an organization layer including a self-organization
mechanism (SO mechanism) which is responsible to
reorganize the agents if necessary.

Providing an approach for isolated testing of the
self-organization mechanism within the organization
layer, we instantiated the idea of statistical testing by
branching the huge environmental state space using so
called environmental profiles. However, by means of a
case study considering a self-organizing energy grid, we
found that the environment itself and the underlying
probabilistic model does not directly determine the
searched test input sequences for the SO mechanism
under test, as this exclusively depends on the agent
layer. The implemented agent behavior maps the envi-
ronmental profile to an agent-specific state. Thus, in
order to obtain statistically relevant test inputs, one

needs to take an indirection: the output of environ-
mental profiles is piped in stochastic test mock-ups
imitating the estimated agent behavior – the so called
influence functions – the output of which can then be
applied to the SO mechanism as test input. Figure 1
visualizes this approach.

Figure 1: Proposed process for statistical testing SO mech-
anisms. Mock-ups simulate agent behavior in response to
environmental conditions which are provided by environ-
mental profiles. Outputs of the mock-ups serve as test
inputs for the SO mechanism.

While we usually have access to lots of statistical
data concerning the SuT’s environment, e.g., weather
data or other physical models, which can be used to
construct environmental profiles, it is rather unclear
how to obtain the mentioned influence functions for
constructing agent mock-ups from a limited set of
observations. This task can be characterized as follows:
Given a set of logs that report the agent behavior
under specific environmental conditions, we are seeking
a generalization that allows us to predict the agent
behavior even for previously unseen conditions.

Solving this task by employing heuristics of the test
engineer, as we proposed in [2] for a first proof of
concept, leads to even more effort and could cause sta-
tistical inadequacies in test inputs. These conclusions
would question the economic sense of a statistical soft-
ware testing method at all. Trying to overcome this
limitation, we investigated the use of machine learning
(ML) methodologies, in particular deep learning tech-
niques, for deriving influence functions from observed
agent behavior. The assumption behind is that those
techniques could automatically generalize over given
observations, leading to higher statistical adequacy at
lower costs. In fact, the literature shows several exam-
ples where ML approaches were successfully applied
in statistical software testing [3, 4, 5].

However, while the mentioned approaches used ML
to learn regularities within the SuT’s and the environ-
mental structure, we seek to map statistic information
about the environment to the expected behavior of
adaptive agents. We argue that this indirection leads
to statistically adequate test inputs for a higher level
organization algorithm. This kind of imitation learn-



ing was previously applied for activities like predictive
maintenance [6, 7] or anomaly detection [8, 9, 10].
However, to the best of our knowledge, it had not
been considered yet being useful for solving the task
with which we are concerned with: statistical testing
of higher level system components.

The following sections present the results of a first,
rough investigation. For evaluation, we considered a
simulated grid of heterogeneous power plants that are
hierarchically organized by an SO mechanism. Sec-
tion 2 introduces this case study in more detail. Sub-
sequently, we introduce our methodology for learning
the agent’s behavior from observations in Sect. 3. The
results will be finally compared with those of some
handmade heuristics in Sect. 4.

2 Case Study: Self-organizing Virtual
Power Plants in Smart Grids

The wide-spread installation of weather-dependent
power plants (PP) as well as the advent of new con-
sumer types like electric vehicles put a lot of strain
on power grids. To address the rising challenges of

Top-Level
AVPP

Figure 2: Hierarchical system structure of a future au-
tonomous and decentralized power management system:
Power plants are structured into systems of systems rep-
resented by AVPPs that act as intermediaries to decrease
the complexity of control and scheduling.

future power management systems, Steghöfer et al.
presented the concept of Autonomous Virtual Power
Plants (AVPPs) in [11]. AVPPs represent self-organiz-
ing groups of two or more power plants of various types
(cf. Fig. 2). The organizational structure represents a
partitioning, i.e., every PP is a member of exactly one
AVPP, which is established and maintained by a (par-
titioning-based) self-organization mechanism. Each
AVPP has to fulfill a fraction of the overall power
demand in the energy grid. For this purpose, each
AVPP autonomously calculates schedules for directly
subordinate dispatchable PPs. The calculation of the
schedule depends on different influence factors that
might effect the members of the AVPP. Foremost, ex-
ternal influence factors, e.g., the wind condition for
a wind turbine, are challenging to handle since they
introduce an uncertainty into the system. To cope
with the accruing uncertainties, AVPPs autonomously
adapt their structure to changing internal or environ-
mental conditions. Thus, they are able to live up to the
responsibility of maintaining an organizational struc-
ture enabling the system to operate reliably which is

measured by a numeric value called trust. In particu-
lar, if an AVPP repeatedly cannot satisfy its assigned
fraction of the overall demand or compensate for its
local uncertainties, it triggers a reorganization of the
partitioning.

3 Deriving Influence Functions

The agent layer of the present self-organizing, adap-
tive system is formed by the various power plants and
AVPPs. Affected by their environment each of these
agents produces output. This output not only com-
prises plain energy values, but also a trust value ∈ [0, 1]
assessing the reliability of the power plant’s forecast.
And exactly those trust values form test inputs for
the SO mechanism, as reorganization in the proposed
system is exclusively based on the notion of trust.
Figure 3 visualizes this data flow at the example of
weather dependent power plants.

Figure 3: The output of a weather-dependent power plant is
influenced by environmental conditions, such as wind speed
and solar radiation. A trust value signals the estimated
reliability of forecasts.

The task of generating statistical tests for the
present SO mechanism can thus be formulated as find-
ing trust vectors (one trust value per considered power
plant) which appear to be most likely within the real
world. In order to obtain such trust vectors, we need
to consider both, statistics concerning the environment
as well as the assumed agent behavior.

Let us consider this process for a solar power plant.
To obtain its most likely outputs we would first reg-
ister weather statistics in the region our PP will be
located. These statistics could be captured within an
environmental profile. Given such a profile we still
need to find a mapping from environmental states to
trust values the agent is supposed to return. This map-
ping, the influence function, can be seen as a mock-up
of the real system replicating its behavior. As we have
no unequivocal specification mapping weather states
to prognosticated trust values for our PP, we could
employ some handmade heuristics which operational-
ize our assumptions. For instance, we could assume
that the trust in the forecast of a solar power plant
descends with increasing variance in solar radiation.

Striving to reduce test effort, which arises when rea-
soning about heuristics, while maximizing statistical
accuracy, which might suffer from wrong assumptions
or subjective assessments of the tester, we investigated
a more automatable approach using ML for deriving
the influence function. Inspired by the state of the art
in related research fields, such as predictive mainte-



nance or anomaly detection, we decided to solve this
regression task by using and training deep artificial
neural networks (ANNs). This approach offers the
following advantages: (1) The popularity of training
such models resulted in lots of literature, frameworks
and tutorials. This kind of accessible support makes
the considered techniques applicable also for test engi-
neers which are no ML professionals. (2) It was shown
that ANNs are able to approximate arbitrary functions
(in dependence on the meta-parameters). It is thus
allowed to assume that using this kind of models we
are able to estimate almost all influence functions.

For the sake of brevity and with regard to advantage
(1), we will, in the following, not go into detail about
the various types, training algorithms and underlying
mathematics concerning regression with ANNs. The
interested reader may be referred to standard literature,
such as [12], and frameworks with related tutorials,
such as [13].

4 Evaluation

Though we have access to a fully integrated simulation
environment of the aforementioned system, for evalua-
tion purposes, we pretended to have only given the fol-
lowing artifacts: Environmental profiles which model
the most likely weather conditions for a considered
area within Markov chains, as well as log sequences for
a set of particular solar power plants describing their
output at a given time in response to particular envi-
ronmental states. For the time being, our evaluation
was exclusively concerned with estimating the effort
and measuring the accuracy of the learned, predictive
mock-ups emulating the behavior of considered power
plants. The desired generation of statistical tests for
the SO mechanism under the use of our models would,
however, additionally demand access to the SuT itself
as well as some kind of test oracle. As our methodol-
ogy can be easily plugged-in into the process described
in [2], we refer to this work for more details on those
mentioned test artifacts.

We based the search for adequate heuristics on the
following argumentation: In general, an influence func-
tion is meant to map one environmental state to the
expected output of the considered agent. In the present
case, this would mean to map the weather conditions
(we exclusively considered the prevalent wind speed
and solar radiations) at a particular time step t to
the trust value of a weather dependent power plant
observable at time step t + 1. However, even if it
seems natural that the performance of a weather de-
pendent power plant depends on the weather one time
step before, such a dependence seems not adequate
for the trust value, as this only assesses the quality
of a forecast. This forecast refers to the difference
between the expected and the actual output. It seems
likely to us that in case of the weather dependent PPs,
the energy output forecast depends on the quality of
accessible weather forecasts. As these are, however,

unknown to us, we introduced another assumption:
the quality of weather forecasts might depend on the
weather conditions observed at the last n time steps:
the more variance in weather, the more unreliable the
forecast. Another assumption was, that the loss of
weather forecasts can be approximated by a constant,
whose value however might differ between the different
power plants and locations.

Overall, we considered the following heuristics:

Heuristic 1 Constant trust value at 0.8. This con-
stant had been chosen based on the assumption that
weather forecasts might be inaccurate in 20% of cases.

Heuristic 2 Trust value at time step t + 1 depends
on weather conditions at time step t. The worse the
weather conditions for the energy output of the PP,
the worse the estimated trust.

Heuristic 3 Trust value depends on variance within
the weather conditions of the last 5 time steps. The
more variance, the worse the estimated trust value.

Apart from the mentioned heuristics, we trained
an ANN to represent the influence function. We used
the following methodology for training: We generated
logs by observing the agent behavior in response to
randomly generated environmental profiles within our
simulation. These logs then were used for training. For
this, we utilized a kind of on-the-fly batch training by
successively increasing the training set with alongside
generated logs, instead of writing the whole bunch of
logs in a file. Figure 4 shows the resulting learning
curve. One can see that training progress is rather low
in the first phase (450 epochs), but suddenly grows in
the following. After 500 epochs of training we achieve
a mean absolute error of < 0.1 on randomly generated
environmental profiles.

Figure 4: Learning curve describing the trend of mean
absolute error with increasing training time.

To compare these results to the presented heuristics,
we evaluated all of them together with the trained
ANN on a separate run of 100 time steps simulating
the environmental profiles we used in our previous work



KPI / Methodology Learned Model Heuristic 1 Heuristic 2 Heuristic 3

mean absolute error 0.08 0.3 0.3 0.25
standard deviation 0.07 0.08 0.17 0.18

Table 1: Comparison of ANN results with different heuristics.

[2] for evaluation. Table 1 shows the results. Note that
we did no parameter fitting on the heuristics as we
assume that the accuracy of a handmade heuristic can
be arbitrary optimized at the expense of time. Our
intention – to show that this job can be outsourced to
an ML algorithm – is confirmed by the high accuracy
of the ANN.

5 Conclusion & Outlook

The evaluation suggests that using deep learning tech-
niques for imitating adaptive agent behavior can pro-
vide us with good accuracy at low costs. However,
there still are several limitations. One interesting ques-
tion might, for instance, be the following: how to
imitate agents that implement a feedback loop? In this
case the agent output at time step t would (partially)
depend on the output at previous time steps t− n for
some positive n. We see two options to cope with that:
We could (1) fix a particular agent strategy, i.e., find
an influence function estimating agent reactions that
are in between the observations; or we could (2) decode
the feedback mechanism itself by considering historical
behavior within the influence function. On the other
hand, our approach to statistical testing covers the
average, main scenarios. A test engineer, however,
needs also to consider the risk of failures which might
be triggered by unforeseen environmental dynamics
at run-time, too. We will investigate an extension of
the presented approach for covering this kind of worst-
case scenarios in future work.

Acknowledgment This research is sponsored by the
research project Testing Self-Organizing, Adaptive Systems
(TeSOS) of the German Research Foundation.

References

[1] J. A. Whittaker and M. G. Thomason, “A Markov
chain model for statistical software testing,” IEEE
Trans. Software Engineering, vol. 20, no. 10,
pp. 812–824, 1994.

[2] B. Eberhardinger, G. Anders, H. Seebach,
F. Siefert, A. Knapp, and W. Reif, “An approach
for isolated testing of self-organization algorithms,”
in Software Engineering for Self-Adaptive Systems
III: Assurances (R. de Lemos, H. Giese, H. A.
Müller, and M. Shaw, eds.), vol. 9640 of Lect.
Notes Comp. Sci., Springer, 2017.

[3] C. Kallepalli and J. Tian, “Measuring and model-
ing usage and reliability for statistical web testing,”
IEEE Trans. Software Engineering, vol. 27, no. 11,
pp. 1023–1036, 2001.

[4] N. Baskiotis, M. Sebag, M.-C. Gaudel, and S.-
D. Gouraud, “A machine learning approach for
statistical software testing,” in Proc. Intl. Joint
Conf. Artifical Intelligence, pp. 2274–2279, 2007.

[5] S. Poulding and J. A. Clark, “Efficient soft-
ware verification: Statistical testing using auto-
mated search,” IEEE Trans. Software Engineer-
ing, vol. 36, no. 6, pp. 763–777, 2010.

[6] P. Wang and G. Vachtsevanos, “Fault prognos-
tics using dynamic wavelet neural networks,” AI
EDAM, vol. 15, no. 4, pp. 349–365, 2001.

[7] P. Jahnke, Machine learning approaches for fail-
ure type detection and predictive maintenance.
Master’s thesis, Technische Universität Darm-
stadt, 2015.

[8] A. Patcha and J.-M. Park, “An overview of
anomaly detection techniques: Existing solutions
and latest technological trends,” Computer Net-
works, vol. 51, no. 12, pp. 3448–3470, 2007.

[9] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel,
“Anomalous system call detection,” ACM Trans.
Information and System Security, vol. 9, no. 1,
pp. 61–93, 2006.

[10] S.-J. Han and S.-B. Cho, “Evolutionary neural
networks for anomaly detection based on the be-
havior of a program,” IEEE Trans. Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 36,
no. 3, pp. 559–570, 2005.

[11] J.-P. Steghöfer, G. Anders, F. Siefert, and W. Reif,
“A system of systems approach to the evolutionary
transformation of power management systems,” in
Proc. Informatik 2013 – Ws. “Smart Grids”, Lec-
ture Notes in Informatics, Bonner Köllen Verlag,
2013.

[12] S. Russell and P. Norvig, Artificial Intelligence:
A modern approach. Prentice Hall, 1995.

[13] F. Chollet et al., “Keras,” 2015.


