
Performance Modelling of Message-Oriented Middleware with

Priority Queues

Snigdha Singh
snigdha.singh@kit.edu

Karlsruhe Institute of Technology

Larissa Schmid
larissa.schmid@kit.edu

Karlsruhe Institute of Technology

Anne Koziolek
koziolek@kit.edu

Karlsruhe Institute of Technology

Abstract

Message-Oriented Middleware (MOM) with priority
queues reduces the latency of critical events. In gen-
eral, MOM uses a FIFO queuing methodology. But,
different application scenarios require certain critical
events with higher priority to be served earlier over
low-priority events, so that the subscriber of the event
consumes the high-priority event with less delay. In
the context of the Palladio Component Model (PCM),
MOM-based systems have been modelled considering
message queue length and latency as metrics for per-
formance prediction and simulation. However, the ap-
proaches did not consider modelling MOM with prior-
ity queues and their impact on performance. We will
first, discuss the existing approaches in PCM which
support performance prediction for MOM-based sys-
tems and then propose how they can be extended to
support performance predictions for MOM with pri-
ority queuing. We will then conclude which approach
is best suited to extend by assessing their capabilities
to predict performance metrics relevant for priority
queuing, especially the delay of individual events at
the subscriber end.

1 Introduction

RabbitMQ is a widely used message-broker which uses
a first-in-first-out (FIFO) strategy for message queue
consumption. That means messages are consumed at
the receiver end in the exact order that they were
posted to the queue at the sender. RabbitMQ is based
on AMQP protocol that generates queues with several
properties to define the behaviour of the queue. Such
properties are queue name, queue durability, queue
message length limit. These properties of the queue
determine the performance of the system.

However, in case of a messaging scenario in which
a consumer receives more important messages (high-
priority) and less important messages (low-priority)
in the same queue, the message-broker is not designed
to schedule and process these priority messages. This

introduces the processing delay of high-priority mes-
sages and increases the latency. Increased latency re-
duces system performance.

RabbitMQ has started supporting the priority
queue implementation from its core version of 3.5.0.
Implementing the priority queue as an additional
quality attribute of the queue can help maximize ap-
plication performance by separating messages based
on processing priority. For example, higher-priority
messages can be prioritized to be handled by con-
sumers first, while less important messages can be
handled by the consumer later. Thus improving the
overall performance of the message-oriented system.

Palladio Component Model (PCM) is an approach
to predict the system performance at design time,
without access to the application implementation.
PCM has already been extended to model event-
driven service-oriented systems to evaluate the per-
formance and other quality attributes of the system.

The ”event-extension” approach added new model
elements to PCM for modelling the event-driven sys-
tems for performance prediction [2]. With the help of
extended model elements, architects can configure the
message-based communication using the PCM meta-
model language based on different messaging patterns
(publish-subscribe / point-to-point) and can predict
the performance and other quality attributes at the
design phase.

The ”message-queuing-simulation” approach fur-
ther extended the PCM to model and simulate MOM
in a more detailed manner [4]. It uses a separate mes-
saging simulation which enables the explicit queuing
strategies and asynchronous calls.

Both modelling approaches are based on FIFO mes-
saging strategies. In both meta-model languages, they
did not consider the priority of the messages and how
to process them with minimum delay.

In our approach, we explored the possibility of
extending the PCM so as to support the modelling
and simulation of priority queues. We compared
the event-extension approach and message-queuing-



simulation approach to figure out how the messages
can be served based on their priority number at the
subscriber end. Among other things, theoretically, we
discussed, how much delay can be occurred due to
the priority scheduling at the run time for both the
approaches.

In the next section, we discussed in detailed, the
already existing queue-based modelling and simula-
tion approaches in PCM to predict the performance of
event-driven communication. Followed by modelling
a further extension of PCM to support priority queue.
In the last section, we conclude the paper by suggest-
ing the best possible PCM-extension to support mod-
elling priority queues comparing queuing strategies.

2 Event-Extension

Rathfelder introduced events as first-class elements in
PCM [1]. In event-based systems, the business logic
is implemented and executed in the EventHandler
method. The communication between sender and re-
ceiver happens via events that can be sent and re-
ceived. In the PCM an EventGroup was introduced
for this purpose. This group behaves similar to an in-
terface. An EventGroup can have one or more Event-
Types. An EventTypes can have a payload. The com-
ponent that sends events from an EventGroup needs a
SourceRole. The component, that receives the events
of an EventGroup, has a SinkRole. The SinkRole
and SourceRole behave similar to a RequiredRole and
ProvidedRole. The components can send and receive
events. In order to do that, model elements are needed
to enable the sending and receiving. The sender can
be activated with an EmitEvent action that sends
an EventType within a SEFF (Service Effect Speci-
fication) via the SourceRole. The receiver requires a
SourceRole and a SEFF, which serves as event han-
dler.

The PCM offers two possibilities to handle messag-
ing models. If components have to communicate in
point-to-point methods, then events are sent directly
to the components. If components have to communi-
cate with each other in a publish-subscribe scenario,
an EventChannel is required. An EventChannel refers
to exactly one EventGroup. The sending assembly
context connects its SourceRole to the EventChannel.
The receiving assembly context connects its SinkRole
to the EventChannel.

A model-transformation method is then used to en-
able performance analysis of the event-driven system
[2]. The interactions between the messaging compo-
nents and performance attributes are captured and
modelled with PCM for performance completion.

The limitation of the work is that queues of the
middleware are not explicitly considered and certain
effects are not evaluated for messaging middleware.
For example, in case of increased latency in a message
queue, the delay can not be predicted accurately using
the existing approach. The impact of message priority

Figure 1: Priority scheduling for the events extension

Figure 2: Priority scheduling for the messaging simu-
lation

on performance is also not considered in the current
methods.

In order to enable priority messaging in the event-
extension approach, a number of the message can be
added as a new attribute to the EmitEvent action.
Furthermore, the messaging middleware components
(MOM) would need to be extended to forward the
priority-number to the receiver side. As mentioned in
Fig. 1, the queues are then scheduled to be processed
with the PCM extension of the preemptive-priority
scheduling approach [3]. In their approach, the pri-
orities have been assigned statically at the processing
end, however, we want to extend to assign priorities
dynamically on the sender side. At the receiver end,
the SEFF of the receiver calls the IPriority interface
of the resource container. This schedules the messages
and processes them at the receiver end based on the
priority-number.

The latency and queue length are the metrics of
interest here. Latency can be measured as the total
time between emitting the event at the sender and
processing the message at the receiver. The queue
length can be determined by the length of the queue
in front of the resource container. However, if a com-
ponent is consuming from more than one queue at a
time, the length of individual queues cannot be deter-
mined because they result in a single queue in front
of the resource the component is located on. This is
one of the limitations of the discussed approach.

3 Message-Queuing-Simulation

Building on the event-extension by Rathfelder, we
proposed an extension of the PCM to support truly
asynchronous calls and explicit queuing [4]. Compo-
nents can send messages via the SendMessageAsync
action which inherits from the EmitEvent action. In
the assembly view, brokers and routers are explicit
modelling elements connected to components by mes-
sage channels, which can be either point-to-point or



publish-subscribe. They route incoming messages
based on their EventGroup and routing key to outgo-
ing message channels. Each message channel contains
a QueuingProperties model element where details of
the resulting queue in the simulation can be specified.
Supported attributes are the maximum queue length
and whether the queue should be durable. Further-
more, a scheduling policy that determines in which
order messages are taken out of the queue and for-
warded to consumers can be chosen. However, until
now, only FIFO is supported as scheduling strategy.

The messaging infrastructure is transformed into
entities of the messaging simulation model prior to
the execution of the simulation. When the SendMes-
sageAsync action is executed, a simulation interface is
invoked, storing all PCM-relevant data and forward-
ing message ID and size to the messaging simulation.
The message is then routed by the specified broker and
router to one or more queues. Receiving components
can specify a per-queue prefetch, defining how many
messages they accept without acknowledging the pre-
vious ones. Components can acknowledge messages
directly after receiving them or after they have pro-
cessed them. Whenever a message arrives at a queue,
it is checked whether the consumer of the queue is
ready to receive the message. Otherwise, it is queued
up and delivered when the consumer is available again.

For supporting priority queuing, the SendMes-
sageAsync action needs to support the specification of
a priority. This could be achieved by a VariableChar-
acterisation for the priority which is then handed to
the messaging simulation. It is the same as adding the
number to the EmitEvent action. Furthermore, pri-
ority queuing must be added as available scheduling
policy for the queuing properties of a message chan-
nel. Simulation-wise, this new scheduling strategy
must be considered during the transformation of the
PCM model to entities of the messaging simulation
model. Since queues are separate simulation entities
which forward messages to consumers, they also need
to support priority queuing. This can be achieved
by implementing a multi-level queue for each logical
queue, where one level defines a certain priority. The
possible extension can be realised as in Fig. 2. Similar
to the event-extension approach, latency and queue
length can be measured here as well.

4 Discussion

In the event-extension approach, the queues are out-
side of the resource container, however, in the case of
the message-queuing-simulation extension the queues
are inside the message broker. In the case of a compo-
nent consuming from more than one queue at a time,
queues being located on the message broker have the
advantage that the length of all individual queues can
be measured. This is because they do not end up in
a single queue in front of the resource container. The
queues are processed based on their priorities in the

message-broker as compared to outside of the resource
container in case of the event-extension.

The modelling of the message-queuing-simulation
priority extension will be much easier and semanti-
cally more clear as compared to the event-extension.
This is because of the reason that priority queuing can
directly be modelled in the assembly view type instead
of in the resource environment view type. The major
limitation with the event-extension approach to sup-
port priority queue is its lack of ability to measure the
individual queue length at the receiving end.

In addition, it would be difficult to have a compo-
nent to consume from two different queues if one is
using priority queuing and the other one is not. For
example, in case of a real-time scenario where there
is a queue with alarm messages of different priorities
and a queue with maintenance messages with no pri-
ority, that should be processed with FIFO scheduling.
It may so happen that the maintenance messages with
no priority may never get processed. This is because
the messages are queued and processed based on the
priority on the resource level at receiving end and not
in the message-broker in separate queues.

5 Conclusion

In this paper, we proposed the possible extension of
PCM to support priority queuing in message queues
for MOM to predict the performance. We discussed
the two existing approaches for modelling MOM and
how they could be extended. We concluded that the
message-queuing-simulation approach will be a bet-
ter alternative compared to the event-extension ap-
proach. As the future work, we plan to implement
the extension approach with a real-time case study
and measure the latency and queue length for valida-
tion.

References

[1] C. Rathfelder. Modelling Event-Based Inter-
actions in Component-Based Architectures for
Quantitative System Evaluation. Karlsruhe Se-
ries on Software Design and Quality / Ed. by
Prof. Dr. Ralf Reussner. KIT Scientific Publish-
ing, 2013.

[2] C. Rathfelder et al. “Modeling event-based com-
munication in component-based software archi-
tectures for performance predictions”. In: Soft-
ware & Systems Modeling 13.4 (2014), pp. 1291–
1317.

[3] J. Fernández-Salgado et al. “Integration of a pre-
emptive priority based scheduler in the Palladio
Workbench”. In: Journal of Systems and Soft-
ware 114 (Apr. 1, 2016), pp. 20–37.

[4] L. Schmid. “Modeling and Simulation of
Message-Driven Self-Adaptive Systems”. MA
thesis. Karlsruher Institut für Technologie (KIT),
2020.


	Introduction
	Event-Extension
	Message-Queuing-Simulation
	Discussion
	Conclusion

