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Tolerance Spaces

- tolerance relation: reflexive and symmetric relation τ ⊆ V × V
- tolerance space: T := (V, τ)
- formal context (V, V, τ)
- maximal rectangles and squares:

I : m1 m2 m3 m4

g1 0 0 1 0
g2 0 0 0 1
g3 1 0 0 1
g4 0 1 1 1

τ : a b c d

a 1 1 1 0
b 1 1 0 1
c 1 0 1 1
d 0 1 1 1

- set of all maximal squares: Sq(T) ⊆ B(T)
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Square and Rectangle Cover Number

- I =
⋃
{A×B | (A,B) ∈ B(K)}

- τ =
⋃
{S | S ∈ Sq(T)}

- the rectangle cover number of K:

rc(K) := min{#F | F ⊆ B(T), I =
⋃
F}

- the square cover number of T:

sc(T) := min{#S | S ⊆ Sq(T), τ =
⋃
S}

3 / 17



Square and Rectangle Cover Number

- I =
⋃
{A×B | (A,B) ∈ B(K)}

- τ =
⋃
{S | S ∈ Sq(T)}

- the rectangle cover number of K:

rc(K) := min{#F | F ⊆ B(T), I =
⋃
F}

- the square cover number of T:

sc(T) := min{#S | S ⊆ Sq(T), τ =
⋃
S}

3 / 17



Table of Contents

1 Introduction

2 Basic Definitions and Facts

3 Rectangle Covers of the Direct Product of Formal Contexts

4 Rectangle Cover Number vs. Square Cover Number

5 Square Cover Number of the Direct Product of Tolerance Spaces

6 Summary

4 / 17



Definitions and Facts I

- K = (G,M, I), B(K) and B(K) := (B(K),≤)
- complementary context:
Kc = (G,M, Ic) := (G,M, (G×M)− I)

- crossed and co-crossed contexts:

I m1 m2 m3

g1 0 1 0
g2 1 1 1
g3 0 1 0

I m1 m2 m3

g1 0 0 0
g2 0 1 1
g3 0 1 1

- K is crossed ⇐⇒ Kc is co-crossed
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Definitions and Facts II

- direct sum K1 ⊕K2 := (G1 ∪̇G2,M1 ∪̇M2, I1 ⊕ I2)

I1 ⊕ I2 : M1 M2

G1 I1 G1 ×M2
G2 G2 ×M1 I2

- B(K1 ⊕K2) ∼= B(K1)×B(K2)
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Definitions and Facts III

- direct product: K1 ×̌K2 := (G1 ×G2,M1 ×M2, I1 ×̌ I2 )

((g, h), (m,n)) ∈ I1 ×̌ I2 :⇐⇒ (g,m) ∈ I1 or (h, n) ∈ I2

- cardinal product K1 ×̂K2 := (G1 ×G2,M1 ×M2, I1 ×̂ I2 ),

((g, h), (m,n)) ∈ I1 ×̂ I2 :⇐⇒ (g,m) ∈ I1 and (h, n) ∈ I2

- (K1 ×̌K2)c = Kc
1 ×̂Kc

2

- K1 and K2 crossed: B(K1 ×̂K2) ∼= B(K1)×B(K2)
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Rectangle Cover Number

- it holds that:

I1 ×̌ I2 = (G1 ×M1) ×̂ I2 ∪ I1 ×̂(G2 ×M2)

- it follows that:

rc(K1 ×̌K2) ≤ rc(K1) + rc(K2)

cover problem ⇐⇒ intersection prob. ⇐⇒ lattice dimension

rc(K) = fdim2(Kc) = dim2(B(Kc))
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Theorem
Theorem
Let K1 and K2 be co-crossed contexts. For the rectangle cover
number of their direct product it holds that:

rc(K1 ×̌K2) = rc(K1) + rc(K2).

rc(K1 ×̌K2) = fdim2((K1 ×̌K2)c)
= fdim2(Kc

1 ×̂Kc
2)

= dim2(B(Kc
1 ×̂Kc

2))
= dim2(B(Kc

1)×B(Kc
2))

= dim2(B(Kc
1 ⊕Kc

2))
= fdim2(Kc

1 ⊕Kc
2)

= fdim2(Kc
1) + fdim2(Kc

2) = rc(K1) + rc(K2).
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Upper Bounds

- rc(K) ≤ min(|G|, |M |) =⇒ rc(T) ≤ |V |
- rc(T) ≤ sc(T)
- for |V | = 1, 2, 3, 4 : sc(T) ≤ |V |
- for |V | ≥ 4 : sc(T) ≤ b|V |2/4c
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Example

- 6 = sc(Kref
2,3) > rc(Kref

2,3) = 5

v1

v2

a

b

c
v1 v2 a b c

v1 1 0 1 1 1
v2 0 1 1 1 1
a 1 1 1 0 0
b 1 1 0 1 0
c 1 1 0 0 1
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Balanced Covering Property

Definition
We say that a tolerance space T has the balanced covering
property (in short BCP) if sc(T) = rc(T).

computational experiments:

- non-isomorphic tolerance spaces with |V | ≤ 10 : 12.293.433
- tolerance spaces with |V | ≤ 10 and BCP: 2.553.962
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Tolerance Spaces induced by irredundant
Coverings

τ : a b c d e

a 1 1 0 0 0
b 1 1 1 1 0
c 0 1 1 1 0
d 0 1 1 1 1
e 0 0 0 1 1
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Tolerance Spaces with the BCP

τ : a b c d

a 1 0 1 1
b 0 1 1 1
c 1 1 1 0
d 1 1 0 1

14 / 17



Tolerance Spaces with the BCP

- T := (K ∪̇Kd)ref with K = (G,M, I)

(I ∪̇ I−1)ref : G M

G EG I
M I−1 EM

- {a}, A ⊆ G and {b}, B ⊆M
- ({a}, {a} ∪AI), ({b}, BI ∪ {b}), ({a} ∪B, {a}), (A∪ {b}, {b})
- (A,AI), (B,BI) and ({a} ∪ {b}, {a} ∪ {b})
- |G|+ |M | < |I| ⇒ rc(T) = |G|+ |M | < sc(T) = |I|
- |G|+ |M | ≥ |I| ⇒ rc(T) = sc(T) ≤ |G|+ |M |
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Theorem

Theorem
Let T1 and T2 be tolerance spaces with the BCP, such that
rc(T1 ×̌T2) = rc(T1) + rc(T2). It follows that:

sc(T1 ×̌T2) = sc(T1) + sc(T2).

- sc(T1 ×̌T2) ≤ sc(T1) + sc(T2)
- sc(T1) + sc(T2) = rc(T1) + rc(T2) = rc(T1 ×̌T2) ≤

sc(T1 ×̌T2)
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Summary

- sufficient condition for additivity of the rectangle cover number
with respect to the direct product of formal contexts

- square cover number and rectangle cover number of tolerance
spaces

- example classes for tolerance spaces with the balanced covering
property

- sufficient condition for additivity of the square cover number
with respect to the direct product of tolerance spaces

Thank you for your attention!
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