Binary lattices

François Brucker, Célia Châtel, Pascal Préa

LIS, UMR 7020, Aix-Marseille Université, Centrale Marseille

July, 13, 2018

Decision trees

- easy to use,
- easy to understand,
- efficient.

Binary decision trees

Easier to :

- build,
- understand,
- use.

Binary lattice

Definition (Binary lattice)

 (L, \leq) is binary if $\forall x \in L$

- x covers at most 2 elements,
- x is covered by at most 2 elements.

Poset embedding

Definition

 (L,\leq) can be *embedded* into (L',\leq) if there exists $f:L\to L'$ such that :

$$\forall I_1, I_2 \in L, I_1 \leq I_2 \iff f(I_1) \leq f(I_2)$$

Poset embedding

Definition

 (L,\leq) can be *embedded* into (L',\leq) if there exists $f:L\to L'$ such that :

$$\forall l_1, l_2 \in L, l_1 \leq l_2 \iff f(l_1) \leq f(l_2)$$

Binarizable lattice

Definition (Binarizable lattice)

 (L, \leq) is binarizable if

 $\exists (L',\leq)$ binary lattice such that (L,\leq) can be embedded in (L',\leq) .

Binarizable lattice

Definition (Binarizable lattice)

 (L, \leq) is binarizable if

 $\exists (L',\leq)$ binary lattice such that (L,\leq) can be embedded in (L',\leq) .

Binarizable lattice

Definition (Binarizable lattice)

 (L, \leq) is binarizable if

 $\exists (L', \leq)$ binary lattice such that (L, \leq) can be embedded in (L', \leq) .

Crown-free lattices

Definition

A crown is a poset $(X_1, X_1', \dots, X_n, X_n')$ such that :

- $\forall i, X_i < X'_{i-1 \mod n}, X_i < X'_i$
- $\forall i, j, j \neq i, i-1 \mod n \implies X_i \parallel X'_i$.

3-crown

n-crown

At most $\mathcal{O}(n^2)$ elements.

Binarizable ⇒ crown-free

Binarization of a n-crown \implies (n-p)-crown

Equivalence with set systems

Definition

S is a set system on a set V if :

- $S \subset 2^V$
- \bullet $A \in S, B \in S \implies A \cap B \in S$
- S has a minimum and a maximum element.

Equivalence with set systems

Definition

S is a set system on a set V if :

- $S \subseteq 2^V$
- $A \in S, B \in S \implies A \cap B \in S$,
- S has a minimum and a maximum element.

Binarization of an element of a set system

Choose X_i, X_j among the elements covered by Y

Υ

Create $X_i \cup X_i$

For each element which covers more than two elements:

 While it covers more than two elements :

- While it covers more than two elements :
 - Chose two elements it covers

- While it covers more than two elements :
 - Chose two elements it covers
 - Create their union

- While it covers more than two elements :
 - Chose two elements it covers
 - Create their union

- While it covers more than two elements :
 - Chose two elements it covers
 - Create their union

- While it covers more than two elements :
 - Chose two elements it covers
 - Create their union

Choice of the elements to union

Definition (Maximal intersection elements)

 X_i, X_j of maximal intersection if

$$\nexists k, \begin{cases} X_i \cap X_j \subsetneq X_i \cap X_k, \\ X_i \cap X_j \subsetneq X_j \cap X_k \end{cases}$$

⇒ Get similar objects together

Crown-free \implies binarizable

L a crown-free set system X_i, X_j of maximal intersection :

- $\Rightarrow (X_i \cup X_j) \cap X_k \in L$
- $\Rightarrow \forall Z, Z \cap (X_i \cup X_j) \in L \cup \{X \cup Y\}$
- ⇒ resulting elements are still incomparable

Equivalence

Theorem (C., Brucker, Préa)

Let (L, \leq) finite lattice. (L, \leq) is binarizable iff (L, \leq) is crown-free.

Formal context example

	scale	teeth	Swim	fly	seed	feather	air
salmon	×		×				
shark		×	×				
barracuda	×	×	×				İ
frog			×				×
cro co di le		\times	\times				×
eagle				×		×	×
ostrich					×	×	×
duck			×	×	×	×	×

Formal context example

Associated concept lattice

Lower-binarized concept lattice

Binarized concept lattice

Thank you for your attention