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Abstract 
In view of the fact that the current high efficiency video coding standard does 
not consider the characteristics of human vision, this paper proposes a per-
ceptual video coding algorithm based on the just noticeable distortion model 
(JND). The adjusted JND model is combined into the transformation quanti-
zation process in high efficiency video coding (HEVC) to remove more visual 
redundancy and maintain compatibility. First of all, we design the JND model 
based on pixel domain and transform domain respectively, and the pixel do-
main model can give the JND threshold more intuitively on the pixel. The 
transform domain model introduces the contrast sensitive function into the 
model, making the threshold estimation more precise. Secondly, the proposed 
JND model is embedded in the HEVC video coding framework. For the 
transformation skip mode (TSM) in HEVC, we adopt the existing pixel do-
main called nonlinear additively model (NAMM). For the non-transformation 
skip mode (non-TSM) in HEVC, we use transform domain JND model to 
further reduce visual redundancy. The simulation results show that in the case 
of the same visual subjective quality, the algorithm can save more bitrates. 
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1. Introduction 

Nowadays, high definition video is becoming more and more popular. However, 
the growth of storage capacity and network bandwidth cannot meet the de-
mands for high resolution for storage and transmission. Therefore, ITU-T and 
ISO/IEC worked together to release a new generation of efficient video coding 
standard—HEVC [1]. HEVC still follows the traditional hybrid coding frame-
work and uses statistical correlation to remove space and time redundancy in 
order to achieve the highest possible compression effect. However, as the ulti-
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mate receiver of video, Human Visual System [2] has some visual redundancy 
due to its own characteristics. In order to get the perceptual redundancy, re-
searchers have done a lot of work, of which the widely accepted model is the just 
noticeable distortion model. Video encoding based on perceptible distortion is 
mainly to use the human eye’s visual masking mechanism. When the distortion 
is less than the human sensitivity threshold, the human eye is imperceptible [3]. 
In recent years, the JND model has received wide attention in the aspects of 
video image encoding [4] [5], digital watermarking [6], image quality evaluation 
[7] and so on. At present, several JND models have been proposed: the JND 
model based on pixel domain and the JND model based on transform domain. 

For the JND model based on pixel domain, it usually considers two main fac-
tors including luminance adaptive masking and contrast masking effect. C. H. 
Chou and Y. C. Li [8] proposed the pixel domain JND model for the first time. 
The lager one of the calculated luminance adaptive masking value and contrast 
masking effect value was used as the final JND threshold. Yang [9] and others 
proposed the classical nonlinear additively masking model. The two kinds of 
masking effects were added together to get the corresponding JND values. To 
some extent, the interaction between the two masking effects was considered. To 
solve the problem of lack of precision in the calculation of the contrast masking 
value for the above methods, Liu [10] assigned different weights to texture re-
gion and edge region in the image through texture decomposition on the basis of 
NAMM model, which made the JND model have better calculation accuracy. 
Wu [11] proposed a JND model based on luminance adaptive and structural si-
milarity, which further considered the sensitivity of human eyes to different reg-
ular and irregular regions when computing texture masking. 

The JND model based on transform domain could easily introduce the con-
trast sensitivity function into the model with high accuracy. Since most image 
coding standards adopt DCT transform, the JND model based on DCT domain 
has attracted much attention of researchers. Ahumada et al. [12] obtained a JND 
model of a grayscale image by calculating the spatial CSF function. Based on 
this, Waston [13] proposed the DCTune method, further considering the fea-
tures of luminance adaptation and contrast masking. Zhang [14] made the JND 
model more accurate by adding a luminance adaptive factor and a contrast 
masking factor. Wei et al. [15] introduced gamma correction to the JND model 
and proposed a more accurate video image JND model. 

2. Nonlinear Additively Masking Model 

The NAMM model is simulated in pixel domain from the aspects of luminance 
adaptation and texture masking to obtain the JND threshold of pixel domain. 
The JND estimation based on the pixel domain can be written as the nonlinear 
additively of the luminance adaptation and the contrast masking, as shown in 
Equation (1): 

( ) ( ) ( ) ( ) ( ){ }pixelJND , , , min , , ,l t lt l tx y T x y T x y C T x y T x y= + − ⋅      (1) 
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where, ( ),lT x y  and ( ),tT x y  denote the basic threshold of adaptive back-
ground luminance and texture masking; Clt represents the overlapping part of 
two kinds of effects, and it is used to adjust the two factors. The larger the Clt 
value is, the stronger superposition between the adaptive background luminance 
and texture masking is. When Clt is 1, the superposition effect between the two 
factors is the greatest; when Clt is 0, there is no superposition effect between the 
two effects. In fact, the superposition is between the maximum and the mini-
mum, where Clt is equal to 0.3. 

Figure 1 shows the curve of the background luminance and the visual thre-
shold obtained from the experimental results. It simulates the background lu-
minance model and shows the distortion threshold that the human eye can tole-
rate under a certain background luminance. 

( ),lT x y  can be determined according to the visual threshold curve in Figure 
1. 

( )

( ) ( )

( )( )

,
17 1 3 , , 127

127,
3 , 127 3, others

128

Y
Y

l

Y

I x y
I x y

T x y
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  
  − + ≤

   = 


− +


           (2) 

where ( ),YI x y  is the average background luminance value. 
Due to the characteristics of HVS itself, distortion that occurs in plain and 

edge areas is more noticeable than texture areas. In order to estimate the JND 
threshold more accurately, it is necessary to distinguish the edge and non-edge 
regions. Therefore, considering the edge information, the calculation method of 
the texture masking threshold ( ),tT x y  is: 

( ) ( ) ( ), , ,tT x yGx y x y Wθ θβ=                   (3) 

where β is the control parameter and its value is set as 0.117. ( ),G x yθ  donates 
the maximal weighted average of gradients around the pixel at (x, y); ( ),W x yθ  
is an edge-related weights of the pixel at (x, y), and its corresponding matrix Wθ  
is detected by the Gaussian low-pass filter. 
 

 
Figure 1. Background luminance and visual threshold. 
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( ),G x yθ  is defined as: 

( ) ( ){ },1,2,3,4
, max ,kk

G x y grad x yθ θ=
=                    (4) 

with 

( ) ( ) ( ),

5 5

1 1
   3 , 3 ,1,

16k k
i j

I x igrad y y jx g i jθ θ
= =

= − + − + ×∑∑          (5) 

where, ( ),kg i j  are four directional high-pass filters for texture detection, as 
shown in Figure 2. 

3. Improved JND Model Based on DCT Domain 

A typical JND model based on DCT domain is expressed as a product of a base 
threshold and some modulation factors. Assume that t is expressed as the frame 
index in the video sequence, n is the block index in the tth frame, and (i, j) is the 
DCT coefficient index. Then the corresponding JND threshold can be expressed 
as: 

( ) ( ) ( ) ( )DCT Lum ContrastJND , , , , , , , , , ,n i j t T n i j t a n t a n i j t= × ×       (6) 

where ( ), , ,T n i j t  is the spatial-temporal base distortion threshold, which is 
calculated from the spatial-temporal contrast sensitivity function; ( )Lum ,a n t  
denotes the luminance adaptation factor; ( )Contrast , , ,a n i j t  is expressed as a con-
trast masking factor. 

3.1. Spatial-Temporal Contrast Sensitivity Function 

In psychophysics experiments, the visual sensitivity of the human eye is re-
lated to the spatial frequency and time frequency of the input signal. The 
contrast sensitive function is usually used to quantify the relationship be-
tween these factors. It is defined as the inverse of the distortion perceived by 
human eye, when the contrast changes. The spatial-temporal contrast sensi-
tivity function curve is shown in Figure 3. If we consider the (i, j) th in the 
nth DCT block in the tth frame, then the corresponding CSF function can be 
written as: 

( ) ( )( )( ) ( ) ( )
( )( )( )

3 2
0 1 2 .

. 1 3

, , , log , 3 , 2π

exp 2π , 2

i j

i j

G n i j t c k k n t n t

c n t k

ε ν ν ρ

ρ ε ν

= + ⋅ ⋅ ⋅

⋅ − ⋅ ⋅ ⋅ +
      (7) 

where ( ),n tν  depicts the associated retinal image velocity; the empirical 
constant 1k , 2k  and 3k  are set as 6.1, 7.3 and 23. 0c  and 1c  control the 
magnitude and the bandwidth of a CSF curve; .i jρ  is the spatial subband 
frequency: 

( ) ( )22
.

1
2i j x yi j

N
ρ ϖ ϖ= +                    (8) 

where, xϖ  and yϖ  are the horizontal and vertical sizes of a pixel in degrees 
of visual angle, respectively. They are related to the viewing distance l and the 
display width Λ of a pixel on the monitor, as follows: 

https://doi.org/10.4236/jcc.2018.64005


Q. M. Yi et al. 
 

 

DOI: 10.4236/jcc.2018.64005 57 Journal of Computer and Communications 
 

 
  (a)                  (b)                (c)                 (d) 

Figure 2. Directional high-pass filters for texture detection. 
 

 
Figure 3. Spatial CSF at different retinal velocities. 

 

2 arctan , ,
2

h
h h x y

l
ϖ

Λ = ⋅ = ⋅ 
                  (9) 

when Equation (7) is used for predicting distortion threshold due to spa-
tial-temporal CSF, several factors needs to be considered: 1) the sensitivity 
modeled by Equation (7) represents the inverse of distortion threshold; 2) the 
CSF threshold represented in the luminance needs to be scaled into the gray 
levels for digital image; 3) since Equation (7) comes from experimental data 
of one-dimensional spatial frequency, for any subband, the threshold is ac-
tually higher than the one given by Equation (7), and therefore a compensat-
ing needs to be introduced for a DCT sub-band. With all consideration men-
tioned above, the base threshold for a DCT sub-band is determined as: 

( ) ( ) ( ) ( ) 2
max min ,

1 1, , ,
, , , 1 cosi j i j

MT n i j t
G n i j t L L r r θ

= × ×
Φ Φ − + −

   (10) 

where, maxL  and minL  represent the display luminance values correspond-
ing to the maximum and minimum gray levels, respectively; M is the number 
of gray levels, which is generally valued at 256; iΦ  and jΦ  belong to the 
DCT normalization factor; ,i jθ  accounts for the effect of an arbitrary sub-
band; r is set to 0.6. 
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3.2. Luminance Adaptive Factor and Contrast Masking Factor 

The luminance masking mechanism is related to the brightness change in the 
image. According to Weber-Fechner’s law, the minimum perceptible luminance 
of human eye shows a higher threshold in the areas with brighter or darker 
background brightness, which is called luminance adaptive effect. The calcula-
tion formula of the luminance adaptive factor is: 

( )
( )

( )
Lum

60 150 1, 60

, 1, 60 170

170 425 1, 170

I I

a n t I

I I

 − + ≤
= 
 − + ≥

                (11) 

where I  represents the average brightness.  
The contrast masking effect is an important perceptual property in the HVS, 

usually related to the awareness of a signal in the presence of another signal. 
When the contrast sensitivity factor is calculated, the image is first detected by 
Canny edge, and the image blocks are divided into three types: plain, edge and 
texture region. Since the human eye is more sensitive to distortions that occur in 
plain areas and in edge areas, different weights need to be assigned to different 
areas. Based on the above considerations, the weighted factor for each classifica-
tion block is determined by the following equation: 

( )
( )

2 2

2 2

in texture region a

1,in plain and edge region

2.25,

1.

nd 16

in texture regi25 on d,  an 16

i j

i j

ψ



=  + ≤

+ >



          (12) 

where i and j are the DCT coefficient indices. 
Taking the masking effect in the intra frame into account, the final contrast 

masking factor is: 

( )
( )

( )
( ) ( )

2 2

0.36
contrast

Lum

, in plain and edge region 16

, , , , , ,
min 4,max 1, , others

, , , ,

i j

a n i j t C n i j t
T n i j t a n t

ψ

ψ

 + ≤
  =  

  ⋅   ⋅   

 (13) 

4. Simulation Results 
4.1. Evaluation of the Improved JND Model Based on Transform  

Domain 

In order to verify the effectiveness of our proposed JND model based on DCT 
domain, we selected eight test images of different contents and complexities as 
shown in Figure 4 to carry out simulation experiments. Theoretical analysis 
shows that under a certain visual quality, the larger the threshold of the JND 
model is, the more visual redundancy will be excavated. Under the same injected 
noise energy, a more accurate JND model leads to better perceived quality. In 
order to verify the validity of the model, the thresholds calculated by the corres-
ponding JND models are introduced as noise into the DCT coefficients: 
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(a)                  (b)                  (c)                   (d) 

 
(e)                  (f)                   (g)                  (h) 

Figure 4. Eight test images. (a) Bikes; (b) Buildings; (c) Caps; (d) House; (e) Monarch; (f) 
Painted house; (g) Sailing 1; (h) Sailing 4. 
 

( ) ( ) ( )random
noise , ,, , , , , , JND , , ,n i jC n i j t C n i j t M n i j t= + ⋅          (14) 

where, ( ), , ,C n i j t  and ( )noise , , ,C n i j t  represent DCT coefficients and DCT 
coefficients after noise injection; random

, ,n i jM  random takes +1 and −1. 
The JND model presented in this paper is compared with the three models 

shown in Table 1 respectively. As can be seen from the table, the PSNR meas-
ured by this model is the smallest. Under the same visual quality, the smaller the 
PSNR value of the image is, the greater the energy is introduced into the noise 
and the larger the corresponding JND threshold is. This means that the larger 
JND threshold obtained by this model can tolerate more distortion, and the ac-
curacy of the model has been further improved. 

4.2. The Overall Performance of the Perceptual Video Coding  
Scheme 

In order to make full use of the JND characteristics of the human visual sys-
tem to reduce the perceived redundancy of the input video, we integrated the 
designed JND model into the HEVC coding framework. For the transform 
skip mode, we chose the existing pixel domain JND model; and the proposed 
JND model based on DCT domain is utilized for the transform non-skip 
mode. Figure 5 shows the overall framework of the perceptual video coding 
scheme. 

In order to verify the effectiveness of the algorithm proposed in this paper, the 
algorithm will be implemented on HM11.0, using the full I-frame encoding con-
figuration environment. The initial quantization parameters are set to 22, 27, 32 
and 37, respectively. The test sequences used in the experiment include Kimono, 
Cactus with a resolution of 1920 × 1080, BQMall, PartyScene with a resolution of 
832 × 480, and Basketball Drill Text and China Speed for screen content encod-
ing. We will evaluate the performance of the algorithm in terms of bit number 
reduction and encoding time. Compared to HM11.0, the bit rate reduction of the 
perceptual video coding scheme and the encoding time are calculated by the fol-
lowing formula: 
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Table 1. PSNR between different models. 

Test Image 
PSNR 

[8] [14] [16] Prop 

Bikes 28.73 28.71 27.36 25.85 

Buildings 29.65 28.89 28.09 24.87 

Caps 31.71 29.70  31.23 26.12 

House 31.96 29.09 29.48 25.81 

Monarch 31.47 29.80  31.43 26.15 

Painted House 30.84 29.08 28.35 25.74 

Sailing1 31.62 28.88 29.20  25.44 

Sailing4 30.18 29.05 28.75 25.91 

Average 30.770  29.150  29.236  25.736  

 

 
Figure 5. Overall coding framework. 
 

Pro ref

Pro

Bitrate Bitrate
Bitrate 100%

Bitrate
−

∆ = ×              (15) 

Pro ref

Pro

Time Time
Time 100%

Time
−

∆ = ×                (16) 

Table 2 shows the comparison of the performance of the proposed algorithm 
and Chen’s [17] and Bae’s [4] schemes under different quantization parameters. 
The experimental results show that compared with the algorithm of [4], the al-
gorithm reduces the encoding bit rate by 4.3%, compared with Chen’s algorithm, 
the encoding bit rate decreases by up to 7.58%. 

In order to more intuitively show the bitrate reduction of each algorithm, 
Figure 6 shows the comparison of bitrates at different QP values. It can be ob-
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served that compared with other method, more bit saving can be obtained by 
our method in most cases. It also can be seen that the smaller the QP value is, 
the more bits are reduced. This is because finer quantification will result in a 
larger JND threshold. 

 
Table 2. Comparison of the performance of each program. 

Test 
Sequence 

QP 
∆Bitrates (%) ∆Time (%) 

PVCChen PVCBae PVCProp PVCChen PVCBae PVCProp 

Kimono 

22 −15.97 −6.81 −2.23 6.31 2.16 22.39 

27 −13.22 −5.12 −12.24 8.42 11.29 23.19 

32 −10.92 −0.91 1.13 9.21 14.26 22.63 

37 −10.11 −3.07 −4.44 8.09 15.69 24.09 

Cactus 

22 −19.15 −49.10 −44.62 7.38 10.17 18.41 

27 −9.95 −19.67 −9.51 6.58 3.78 20.45 

32 −5.80 −5.47 −5.10 8.56 8.68 19.59 

37 −4.51 −3.90 −1.58 8.18 10.73 19.20 

BQMall 

22 −15.08 −26.49 −32.00 8.41 3.47 18.29 

27 −9.91 −18.35 −5.72 10.66 11.12 20.09 

32 −6.71 −6.25 −4.65 12.06 16.37 21.26 

37 −4.94 −5.01 −3.06 15.16 18.19 21.79 

PartyScene 

22 −16.50 −31.00 −36.91 6.19 5.09 16.97 

27 −12.16 −25.03 −6.50 6.86 2.96 20.30 

32 −8.62 −11.91 −16.76 8.55 9.79 22.21 

37 −8.01 −6.66 −5.75 12.47 15.27 23.62 

BasketballDrill 
Text 

22 −12.51 −23.18 −48.04 6.43 10.63 19.22 

27 −8.63 −17.79 −38.48 5.08 16.86 21.20 

32 −4.93 −7.24 −30.08 6.42 22.14 21.91 

37 −3.58 −5.14 −24.51 7.35 24.54 22.51 

ChinaSpeed 

22 −16.51 −32.41 −59.22 5.00 8.73 21.70 

27 −11.46 −23.65 −42.25 6.59 12.63 22.34 

32 −7.61 −15.99 −20.62 7.29 16.00 21.48 

37 −7.41 −9.12 −9.46 8.58 19.14 23.76 

Average 
 

−11.69 −14.97 −19.27 8.16 12.07 21.19 
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Figure 6. Comparisons of the bitrates. 
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shold in the pixel domain, and the calculation is easier. The JND model based on 
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accurate. Based on the above analysis and combining the advantages of the two 
models, we choose the pixel domain JND model for the transform skip mode, 
and choose the more accurate DCT domain JND for the transform non-skip 
mode. Simulation experimental results show that compared with other models, 
this algorithm can save up to 7.58% of the coding rate. 
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