

HUMAN-SCALE PERSONAL

FABRICATION

Róbert Kovács

a dissertation submitted in partial fulfillment of the requirements for

the degree of

Doctor of Engineering (Dr. -Ing.)

Hasso Plattner Institute – Digital Engineering Faculty

 University of Potsdam

2022

2

Unless otherwise indicated, this work is licensed under a Creative

Commons License Attribution – NonCommercial 4.0 International.

This does not apply to quoted content and works based on other

permissions. To view a copy of this license visit:

https://creativecommons.org/licenses/by-nc/4.0

ADVISOR

Prof. Dr. Patrick Baudisch (Hasso Plattner Institute)

REVIEWERS

Prof. Dr. Emily Whiting (Boston University)

Prof. Dr. Jürgen Steimle (Saarland University)

MEMBERS OF THE COMMITTEE

Prof. Dr. Andreas Polze (Hasso Plattner Institute, secondary advisor)

Prof. Dr. Felix Naumann (Hasso Plattner Institute)

Prof. Dr. Robert Hirschfeld (Hasso Plattner Institute)

PUBLISHED ONLINE

Publication Server of the University of Potsdam:

https://doi.org/10.25932/publishup-55539

https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-555398

3

“Give me knowledge, so I may have kindness for all.”

― From a Plains Indian

4

ABSTRACT

The availability of commercial 3D printers and matching 3D design

software has allowed a wide range of users to create physical

prototypes – as long as these objects are not larger than hand-size.

However, when attempting to create larger, "human-scale" objects, such

as furniture, not only are these machines too small, but also the

commonly used 3D design software is not equipped to design with forces

in mind — since forces increase disproportionately with scale.

In this thesis, we present a series of end-to-end fabrication software

systems that support users in creating human-scale objects. They

achieve this by providing three main functions that regular "small-scale"

3D printing software does not offer: (1) subdivision of the object into

small printable components combined with ready-made objects,

(2) editing based on predefined elements sturdy enough for larger scale,

i.e., trusses, and (3) functionality for analyzing, detecting, and fixing

structural weaknesses. The presented software systems also assist the

fabrication process based on either 3D printing or steel welding

technology.

The presented systems focus on three levels of engineering

challenges: (1) fabricating static load-bearing objects, (2) creating

mechanisms that involve motion, such as kinematic installations, and

5

finally (3) designing mechanisms with dynamic repetitive movement

where power and energy play an important role.

We demonstrate and verify the versatility of our systems by

building and testing human-scale prototypes, ranging from furniture

pieces, pavilions, to animatronic installations and playground

equipment. We have also shared our system with schools, fablabs, and

fabrication enthusiasts, who have successfully created human-scale

objects that can deal with human-scale forces.

ZUSAMMENFASSUNG

Die Verfügbarkeit kommerzieller 3D-Drucker und die dazugehörige

Software ermöglicht einer großen Bandbreite von Nutzern,

physikalische Prototypen selbst herzustellen. Allerdings gilt dies oft nur

für handgroße Objekte. Diese Limitation ist auf der einen Seite den

kleinen Maschinengrößen von 3D-Druckern geschuldet, andererseits

müssen aber auch signifikante, einwirkende Kräfte bereits im Entwurf

berücksichtigt werden, was in aktuellen Anwendungen lediglich

Benutzern mit entsprechendem Know-How vorbehalten ist.

In dieser Arbeit stelle ich eine Reihe von Software-

Komplettlösungen vor, die es einer breiten Benutzergruppe erlaubt,

große "human-scale" Strukturen, wie Möbel, zu entwerfen und

herzustellen. Diese Systeme gehen in drei Kernaspekten über

herkömmliche 3D-Druck-Entwurfsanwendungen hinaus: (1) Die

Unterteilung von großen Strukturen in eine Kombination aus

druckbaren Objekten und Standardteilen. (2) Entwurf von statisch

tragenden Strukturen. (3) Funktionalität zum Erkennen, Analysieren

und Beheben von strukturellen Schwachstellen.

Dabei beschränkt sich diese Arbeit nicht auf Softwarelösungen,

sondern unterstützt die Benutzer im gesamten Herstellungsprozess,

6

sowohl bei Prozessen basierend auf dem FDM 3D-Druck, als auch beim

Schweißen von Metallen.

Die verschiedenen Systeme, die hier vorgestellt werden,

ermöglichen die Erstellungen von tragfähigen, statischen Strukturen

über kinematische Installation bis hin zu dynamischen Konstruktionen.

Solche gefertigten Konstrukte wie Möbel, Pavillons, Spielplatzgeräte, als

auch animierte Installationen demonstrieren die Funktionalität und das

weite Anwendungsspektrum des Ansatzes. Ergebnisse dieser Arbeit

kamen bereits an Schulen, FabLabs und bei Privatpersonen zum Einsatz,

die mit der Software erfolgreich eigene und funktionale "human-scale"-

Großstrukturen entwarfen und herstellen konnten.

7

DECLARATION OF AUTHENTICITY

I declare that all material presented is my own work, or collaborations

in which I was always the scientific lead, or fully and specifically

acknowledged wherever adapted from other sources. This dissertation

has not been previously submitted, in part or whole, to any university

or institution for any degree, diploma, or other qualification.

Some ideas and figures have been previously published. Specific

chapters and sections that are directly derived from these publications

are listed in the following:

Ich erkläre, dass es sich bei allen vorgestellten Materialien um meine

eigene Arbeit bzw. um Kollaborationen handelt, bei denen ich stets die

wissenschaftliche Leitung innehatte, oder die vollständig und spezifisch

anerkannt werden, wenn sie aus anderen Quellen adaptiert wurden.

Diese Dissertation wurde bisher weder ganz noch teilweise an

irgendeiner Universität oder Institution für irgendeinen Abschluss, ein

Diplom oder eine andere Qualifikation eingereicht.

Einige Ideen und Bilder sind bereits veröffentlicht. Hier gelistet sind

die Kapitel und Sektionen, die direkt aus diesen Veröffentlichungen

abgeleitet sind:

8

▪ Parts of the Introduction were published as: Harshit Agrawal, Udayan

Umapathi, Robert Kovacs, Johannes Frohnhofen, Hsiang-Ting Chen,

Stefanie Mueller, and Patrick Baudisch. 2015. Protopiper: Physically

Sketching Room-Sized Objects at Actual Scale. In Proceedings of the 28th

Annual ACM Symposium on User Interface Software & Technology

(UIST’15), ACM, New York, NY, USA, 427–436. DOI:

http://doi.org/10.1145/2807442.2807505

▪ Chapter 3 was published and presented as: Robert Kovacs, Anna

Seufert, Ludwig Wall, Hsiang-Ting Chen, Florian Meinel, Willi Müller,

Sijing You, Maximilian Brehm, Jonathan Striebel, Yannis Kommana,

Alexander Popiak, Thomas Bläsius, and Patrick Baudisch. 2017.

TrussFab: Fabricating Sturdy Large-Scale Structures on Desktop 3D

Printers. In Proceedings of the 2017 CHI Conference on Human Factors in

Computing Systems (CHI '17). ACM, New York, NY, USA, 2606-2616.

DOI: https://doi.org/10.1145/3025453.3026016.

▪ Chapter 4 was published and presented as: Robert Kovacs, Alexandra

Ion, Pedro Lopes, Tim Oesterreich, Johannes Filter, Philipp Otto,

Tobias Arndt, Nico Ring, Melvin Witte, Anton Synytsia, and Patrick

Baudisch. 2018. TrussFormer: 3D Printing Large Kinetic Structures. In

Proceedings of the 31st Annual ACM Symposium on User Interface Software

and Technology (UIST '18). Association for Computing Machinery, New

York, NY, USA, 113–125. DOI: https://doi.org/10.1145/3242587.3242607.

▪ Chapter 5 was published and presented as: Robert Kovacs, Lukas

Rambold, Lukas Fritzsche, Dominik Meier, Jotaro Shigeyama, Shohei

Katakura, Ran Zhang, Patrick Baudisch. 2021. Trusscillator: a System

for Fabricating Human-Scale Human-Powered Oscillating Devices. To

appear in Proceedings of the 34th Annual ACM Symposium on User

Interface Software and Technology (UIST '21). Association for Computing

Machinery, New York, NY, USA, 1074–1088. DOI:

https://doi.org/10.1145/3472749.3474807

Potsdam, December 1st 2021

9

ACKNOWLEDGMENTS

Foremost, I would like to thank my advisor, Patrick Baudisch for

pushing me to think BIG. Apart from his high-level guidance and

ingenious ideas, Patrick was my most passionate co-author with 24–7

enthusiasm & dedication. Besides being my advisor and mentor on this

work, he also taught me a lesson for life: that every idea needs a story to

tell.

Dissertations always end up looking like a solo effort. This could not

be further from the truth. During the four core projects of this work, I’ve

been lucky to work with brilliant students from HPI: Lukas Rambold,

Lukas Fritzsche, Dominik Meier, Anna Seufert, Ludwig Wall, Florian

Meinel, Willi Müller, Si-Jing You, Maximilian Brehm, Jonathan Striebel,

Yannis Kommana, Alexander Popiak, Philipp Otto, Tim Oesterreich,

Johannes Filter, Philip Otto, Tobias Arndt, Nico Ring, Melvin Witte,

Martin Taraz, Harshit Agrawal, Udayan Umapathi, and Johannes

Frohnhofen; but the list of helping hands remains incomplete.

Furthermore, the wonderful team at the HPI Human-Computer

Interaction Lab was inspiring and supporting me every single day. I

shall be thankful for spending my days with these wonderful colleagues,

co-authors, and friends: Stefanie Müller, Pedro Lopes, Alexandra Ion,

Lung-Pan Cheng, Thijs Roumen, Jotaro Shigeyama, Shohei Katakura,

Abdullah Muhammed, Sebastian Marwecki, Dominik Schmidt, Hsiang

Tim Chen, Oliver Schneider, Jack Lindsay, and Mirela Alistar.

10

Furthermore, I owe a huge thank for the generous support of the

Hasso Plattner Institute and its Research School for creating superb

working conditions for conducting my research, that was often

requiring special equipment, space, and materials.

I’d like to thank the team at Microsoft Research in Redmond for

hosting me during my internship, in particular my mentor Mike Sinclair

and the rest of the EPIC team, Eyal Ofek, Mar Gonzalez Franco,

Christian Holz, Ken Hinckley, and my intern fellow Alexandra Fay Siu.

I shall thank Prof. Volker Roth for sparking the serendipity to find

my way to the HCI research community by inviting me to his research

group at the Free University of Berlin. It was a pleasure to work with his

wonderful team on their infamous miniature candy packaging plant.

The person who planted the first seed in me for this work was my

first mentor, Mrdjanov Stojan “Cole”, who taught me airplane modeling,

hacking motorcycle combustion engines, and most importantly,

nurtured the curious spirit for exploring the world, regardless of danger

or cost. His words still echo in my ears: “Do it, do it, and you have made

it!” (“Csinálsz, csinálsz, és megcsinálsz!”— as he used to say it in broken

Hungarian). This is the recipe I use until today. Rest in peace Cole.

I endlessly appreciate the unconditional support of my parents,

Rózsa and Zoltán, who created the fruitful foundation for pursuing my

PhD studies. My brother Zoltán jr. was my solid anchor, who I could

always call up for inspiring, critical conversations and listening ears

when it was most needed.

Finally, this work was inevitably inspired and motivated by an

architect, a wonderful person who joined me during the journey: Lisa

Xuan. We started by designing pavilions and continued by raising two

wonderful human beings, Tisza & András. Who could ask for more

compassion?

Thank you.

11

TABLE OF CONTENTS

Abstract... 4

Zusammenfassung .. 5

Declaration of authenticity ... 7

1 Introduction ... 21

1.1 Creating large shapes ... 22

1.2 Engineering for large forces .. 23

1.3 Contributions .. 25

1.4 Structure of the dissertation .. 26

2 Related work ... 28

2.1 Scaling up personal fabrication ... 28

2.2 Designing mechanisms .. 31

2.3 Designing mechanisms with dynamic behavior 34

3 TrussFab: human-scale load-bearing structures 36

3.1 Walkthrough of the TrussFab system 38

3.2 Load-bearing truss structures ... 42

3.3 TrussFab’s editor .. 43

3.4 Fabricating hubs and members ... 50

3.5 Strength test and safety .. 54

12

3.6 Implementation .. 55

3.7 Contribution, benefits, and limitations 60

4 TrussFormer: human-scale kinetic structures 62

4.1 Walkthrough of the TrussFormer system 63

4.2 Working principle of TrussFormer’s kinetic structures 69

4.3 Adding motion to the structure .. 71

4.4 Verifying and adapting forces ... 74

4.5 Matching simulated and real forces.. 78

4.6 TrussFormer’s hinge system.. 79

4.7 Implementation .. 84

4.8 Contribution, benefits, and limitations 86

5 Trusscillator: human-powered human-scale devices 88

5.1 Walkthrough ... 90

5.2 Design space ... 97

5.3 Expert interviews ... 99

5.4 Algorithms and implementation... 100

5.5 Validation .. 111

5.6 Contribution, benefits, and limitations 114

6 Conclusion ... 116

6.1 Summary of contributions ... 116

6.2 Impact .. 118

6.3 Limitations and future challenges .. 119

6.4 Final remarks .. 119

7 References .. 122

13

LIST OF FIGURES

Figure 1: 3D printing at human-scale is limited by the size of the

machinery and printing time. 22

Figure 2: Protopiper is a computer-aided, hand-held fabrication

device that allows users to sketch room-sized objects at

actual scale – however, only for visual purposes. 22

Figure 3: Four aspects of human-scale personal fabrication: (1)

Prototpiper: shape, (2) TrussFab: statics, (3)

TrussFormer: kinematics, (4) Trusscillator: dynamics. 24

Figure 4: TrussFab pavilion created from ~1200 PET bottles and 119

3D printed hubs, presented at CHI’17, Denver, USA. 36

Figure 5: TrussFab is an end-to-end system that allows users to

fabricate large structures sturdy enough to carry human

weight. TrussFab considers bottles as beams that form

structurally sound node-link structures also known as

trusses, allowing it to handle the forces resulting from

scale and load. 37

Figure 6: (a) TrussFab’s converter automatically turns this 3D

model of a coffee table, into (b) a sturdy tetrahedral

honeycomb structure, (c) which fabricated serves as a

functional table. 39

Figure 7: TrussFab’s editor is implemented as an extension for

SketchUp. Here the user is performing a stability check on

the bridge from Figure 5. 40

14

Figure 8: TrussFab generates the unique hub geometry for every

node of the model. The hubs are labeled by embossed IDs

to help the assembly process. 41

Figure 9: A functional boat is assembled following the embossed

hub IDs. (b) The bottle frame is simply covered by a tarp.

(c) The fabricated boat seats two. 41

Figure 10: Large objects have to withstand substantially larger

forces because (1) the loads can be much higher, and (2)

forces grow cubed with the size of the lever. 42

Figure 11: (a) Large objects involve large levers, causing them (b) to

break under load. (c) TrussFab instead affords structures

based on closed triangles, here forming a tetrahedron.

Such structures are particularly sturdy. (d) TrussFab

extends this concept to tetrahedron-octahedron trusses of

arbitrary size. 43

Figure 12: The sequence of creating a chair with a backrest in

TrussFab’s editor. 44

Figure 13: TrussFab implements the extra-long members using extra

3D print. 45

Figure 14: (a) Adding pods to the bottom hubs and (b) a cover to the

top adds stability to our design, as any load is now

propagated through the hubs, saving members from

buckling. 45

Figure 15: To verify the chair’s structural stability users indicate the

load forces. The system now calculates the occurring

compression and tension forces in every element. Here,

no forces are exceeding the limit; thus the fabricated chair

holds the human weight. 47

Figure 16: (a) Pavilion created using the beam and block tools. (b) The

roof is freely deformed by pulling upwards using the

deform tool. 48

Figure 17: (a) The load-bearing structure of this tipi is best made

from trusses; (b) its sides can be filled using facades.

(c) TrussFab makes 2D facade hubs quickly on a laser

cutter. 49

Figure 18: (a) Dome created using the dome tool. (b) We make the

opening using the delete tool, and (c) add decoration

15

using the triangle and line tools. (d) The resulting dome

is built using 512 bottles. 50

Figure 19: 3D printed hub with snap-fit and threaded bottle

connectors. 51

Figure 20: TrussFab’s cuff-connectors are easy to assemble and

strong against axial loads. 52

Figure 21: Laser-cut planar hubs are secured using a self-locking

wedge. 52

Figure 22: (a) Connecting bottles with a wood screw using an extra-

long screwdriver and (b) with a double-ended screw.

(c) Single-bottle edges require a bottom connector 53

Figure 23: (a) During strength testing of this truss member the

machine held the piece by square test-hubs. (b) Here a

pulling test is performed, where the strain-stress diagram

shows that the member broke at approximately 135 kg of

tensile force, after a 5mm stretch. 54

Figure 24: TrussFab’s editor toolbar. 56

Figure 25: The Stanford-bunny converted using the TrussFab

converter in facade conversion mode. 57

Figure 26: (a) TrussFormer is an end-to-end system that allows

users to design and 3D print large-scale kinetic truss

structures that deform and animate, such as this 4m tall

animatronic T-Rex. 62

Figure 27: (a) The static tetrahedron (b-c) is converted into a

deformable structure by swapping one edge with a linear

actuator. The only required change is to introduce

connectors that enable rotation. 63

Figure 28: Our T-Rex encompasses 5 degrees of freedom. 64

Figure 29: Modeling the static shape of the T-Rex. Here, the user

creates the jaws of the T-Rex by attaching tetrahedron

primitives through the steps (a, b, c). 65

Figure 30: (a) The user selects the demonstrate movement tool and

pulls the T-Rex head downwards. (b) TrussFormer

responds by adding an actuator to the T-Rex body so that

it is capable of performing this type of motion. At this

16

point, the system also places 9 hinging hubs to enable this

motion (marked with blue dots). 65

Figure 31: Animating the structure. Users set the desired pose using

the sliders in the animation pane and orchestrate the

movement by placing key-frames on the timeline. 66

Figure 32: Verifying the inertial forces: (a-b) The forces are

increasing with the acceleration of the structure. (c) The

structure breaks when the direction of the movement

changes rapidly. (d) TrussFormer resolves this by

making the movement slower. 67

Figure 33: (a) To fabricate our T-Rex model, TrussFormer exports: (b)

the appropriate 3D printable hinging-hubs, (c) the

specifications for the actuators, and finally the animation

sequence as a JSON file for the controller. 68

Figure 34: Attaching rigid primitives to (a) faces that do not contain

an actuator (b) results in simple structures with only

localized deformation. This structure acts as a hinge

between the two octahedra. 69

Figure 35: Attaching a rigid primitive (here an octahedron) to a face

that contains actuator results in a larger deforming

structure. 70

Figure 36: The motion caused by one actuator propagates

throughout the entire truss beam, making it bend. 70

Figure 37: A selection of assets: (a) tetrahedron with 1DoF,

(b) “robotic leg” asset, (c) hinging tetrahedra,

(d) octahedron with 1DoF, (e) Stewart platform (6DoF),

and (f) double-octahedron performing “bending” motion.

 72

Figure 38: (a) Users start the design by making the body of the

walking robot. The predesigned 2DoF “leg” asset is

added to the side triangles 6 times. (b) The fabricated

robot. 73

Figure 39: This bike’s steering column is based on the hinge asset,

which is used without the actuator in this example. 73

Figure 40: The “turn edge into actuator” tool allows users to turn any

edge into an actuator. Here user replaces one edge in the

T-Rex’s head to make its jaws move. 74

17

Figure 41: In the background, TrussFormer tests each actuator to see

if its extension leads to an invalid position, such as the

structure tipping over, hitting the ground, or breaking

any structural elements. 76

Figure 42: If the user-defined animation breaks the model,

TrussFormer offers to automatically reduce the speed or

the motion range. 77

Figure 43: (a) We measured the forces on the bottom front edge of

the T-Rex (b) using a digital force gauge. (c) The

measured forces agree with the simulated forces. 78

Figure 44: (a) Spherical joint mechanism from [13] connecting 5

edges. (b) A segment of TrussFormer’s 3D printable

hinge design. 79

Figure 45: (a) Octahedron with an actuator, still with rigid hubs. (b)

After the first step, intermediate links are assigned inside

all triangles, creating spherical joints. 80

Figure 46: TrussFormer identified the rigid substructures (a) in the

octahedron from Figure 45, and (b) in the T-Rex. 81

Figure 47: (a) The intermediate hinge connections are reduced to

rigid connections where rigid substructures are identified

(black lines). (b) The fabricated hinging hub of the

marked node of the octahedron. 81

Figure 48: (a) Double-octahedral structure, where (b) violating

three-way hinge connections appear. (c-d) TrussFormer

finds the valid configurations by heuristic elimination

and (d) chooses the structurally more stable closed chain.

 82

Figure 49: Combining rigid and hinging connections in one hub. 83

Figure 50: TrussFormer’s system diagram. 84

Figure 51: Hardware setup for controlling the T-Rex with an

Arduino, electronic pressure control valves, and a

compressor. 85

Figure 52: (a) Using Trusscillator designers specify the desired

motion experience in terms of amplitude, speed, and

physical effort; while the system responds by adjusting

the coil springs so as to produce the desired behavior.

(b) Here, the resulting interactive dinosaur swing

18

requires two children to synchronize their movement so

as to make the sculpture's head wiggle. 88

Figure 53: (a) The cheetah mechanism created using [19] is only

resembling the movement pattern of a real one, without

considering the forces involved during motion. While (b)

energy conservation makes a real-life cheetah’s gallop

efficient: (c) the elastic tendons store and release energy

in every step. 89

Figure 54: Given the scale of the involved forces, the structures

created by Trusscillator are made from steel. Trusscillator

supports steel truss fabrication by (a) generating stencils

that show where to attach the (b) temporary connectors,

(c) that hold steel rods in place for (d) welding. 90

Figure 55: (a) The initial design of the brachiosaurus playground

object is created using rigid truss primitives. (b)

Designers adjust the shape and lower the height for safety

reasons. (c) Using the spring tool, designers enable parts

of the model to move. The newly created moving part of

the model gets briefly highlighted in blue. 91

Figure 56: (a) Trusscillator initiates the model with a valid spring

configuration. The resulting oscillating motion is

summarized in form of a motion-bar above the user,

calculated for multiple age groups. (b) When designers

enlarge the motion space by dragging the scale handle, (c)

Trusscillator finds a combination of softer springs that

will produce the requested amplitude. 92

Figure 57: (a) When designers change the tempo widget from slow

to comfortable Trusscillator runs its optimization and (b)

adds additional weight to the tip of the head to reduce the

resonant frequency and tunes the springs again to

maintain amplitude. 93

Figure 58: (a) Reducing the effort would require cutting the weight

of the structure, which designers can’t do. (b) Instead,

they add one more seating position. The final design

comprises three spring-coupled inverted pendula, the

head, middle seat, and tail. (c) Children induce resonance

by synchronizing their motion. 93

19

Figure 59: (a) Trusscillator exports this node in the 3D model (b) in

the form of custom stencils. (c) Users mark one spot on

the sphere, then attach the stencil at that point using a

magnet, allowing them to mark the remaining incidence

points. (d) Users then set up a stand-up drill with a round

ring as a jig, and drill the spheres. 95

Figure 60: Trusscillator offers a temporary connector system to help

position the edges for welding. 96

Figure 61: (a) Spring-telescope fabricated using two fitting tubes. (b)

Slit opening on a sphere for inserting the telescope.

(c) Revolute-joint connection. (d) Assembled chair model

with a springy backrest. 97

Figure 62: Some of the designs we created using Trusscillator. 98

Figure 63: This “bird-swing” structure was designed to allow

children to swing in two dimensions and influence each

other’s experience. 98

Figure 64: Building a model based on primitives containing springs

speeds up the design process. Here, the chair model is

constructed using a tetrahedron with one spring and two

hinges in only three steps. 99

Figure 65: Trusscillator’s high-level architecture. 103

Figure 66: (a) The mechanical properties of the structure are

defining the experience attributes. (b) The correlation

between the mechanical properties and the motion

experience (amplitude, tempo, and effort). 107

Figure 67: (a) Trusscillator simulates the (b) excitation of the model

until the point when it reaches an energy equilibrium –

maximum amplitude. (c) The time after the velocities

won’t increase anymore is considered as the effort metric.

(d) The peak of the frequency spectrum determines the

tempo metric. 107

Figure 68: Spring optimization procedure. 110

Figure 69: (a) The measurement points indicated on the real and

virtual model. (b) Frequency response comparison of the

push and pull experiments. 112

20

Figure 70: Our systems allow users to focus on the high-level design

objectives, while the software takes care of the specific

underlying engineering aspects. 117

Figure 71: Furniture created by tech-enthusiasts using the TrussFab

system. 118

21

1

INTRODUCTION

Digital fabrication tools, such as 3D printers have become popular in

today's society, as users in fablabs, makerspaces, or at home, create

customized objects on demand. This trend was empowered by

advancements in Human Computer Interaction (HCI) and Computer

Graphics research, which enabled the usage of fabrication tools for fast

prototyping [60], as well as to fabricate soft [32] and interactive objects

[41][63], embed optical elements [107], or design kinematic

characters [19][56]. It was the availability of 3D printers in a desktop form

factor, that allowed fabrication to spread to the maker community [95]

and the consumer market, empowering personal fabrication [83].

However, these desktop-sized personal fabrication machines are

limited in that they fabricate at most desktop-sized objects; preventing

users from creating larger objects, such as furniture pieces or pavilions,

as illustrated in Figure 1. This is because of two major issues: (1) printing

large objects requires large machinery, and (2) printing time increases

proportional to the volume of the object, therefore cubed to the size.

Even though, researchers have demonstrated how to break down

designs into smaller pieces that can fit into printers [47], the printing

time still remains an issue.

22

Figure 1: 3D printing at human-scale is limited by the size of the machinery and

printing time.

1.1 CREATING LARGE SHAPES

As an alternative solution to achieve large-scale without the necessity of

large fabrication machinery we have developed a handheld fabrication

device, called Protopiper [2], shown in Figure 2. The key idea behind

Protopiper is that it extrudes tubes from adhesive tape rolls. This allows

designers to quickly sketch the outer frame of room-sized objects at

actual scale and verify their design decisions, for example when

furnishing a new apartment.

Figure 2: Protopiper is a computer-aided, hand-held fabrication device that allows users

to sketch room-sized objects at actual scale – however, only for visual purposes.

While Protopiper gives a solution to fabricate human-scale objects

with a (1) small fabrication device (2) in a short amount of time, it has a

major limitation: the created objects serve purely visual purpose (shape).

23

However, fabricating human-scale objects is not only about

achieving the size and reducing printing time, but more importantly,

these large objects have to afford substantial external loads. Furniture,

bridges, and vehicles, for example, all must be engineered to hold the

weight of a human. Therefore, with large objects, the main design

objective becomes to withstand large forces. Designing for large forces,

however, requires substantial engineering skills, ranging from

envisioning the appropriate structures in the first place to verifying their

structural integrity [46].

1.2 ENGINEERING FOR LARGE FORCES

To address the mechanical engineering challenges emerging with the

larger loads, we took a software engineering approach. We

encompassed the required engineering know-how for creating human-

scale objects into an end-to-end fabrication software system, called

TrussFab [42].

TrussFab achieves the large scale by complementing 3D print with

plastic bottles. It does not use these bottles as bricks though, but as

beams that form structurally sound node-link structures, also known as

trusses [46]. These structures are lightweight, yet able to handle the large

forces resulting from large scale and corresponding higher loads.

TrussFab automatically validates the design via integrated structural

analysis and also takes care of the building process by generating the

appropriate underlying 3D printable node geometries together with

embedded assembly instructions.

TrussFab extends Protopiper’s shape-only objects towards load

bearing structures, as shown in Figure 3 on the horizontal axes – static

forces.

 As Figure 3 already suggests, our next challenge was to create

human-scale objects that involve motion, aka. kinematic mechanisms.

This class of devices raise a set of new challenges, including designing

24

the movement path of a mechanism, and also adding hinges to the

structure. However, more importantly, when things start to move, the

structures are not only exposed to static forces anymore, but we also

need to consider the upcoming inertial forces, which can be momentarily

orders of magnitude larger than the static loads.

Figure 3: Four aspects of human-scale personal fabrication: (1) Prototpiper: shape,

(2) TrussFab: statics, (3) TrussFormer: kinematics, (4) Trusscillator: dynamics.

With TrussFormer [43] we address these motion-specific challenges

within the context of animatronic devices. TrussFormer’s editor enables

users to design the desired motion, while the system generates the

underlying hinge mechanisms, and more importantly, it affords

structurally sound design simulating the inertial forces during the

motion.

While TrussFormer solves the motion-specific aspects of the design,

there is still one component not to taken into account: the energy required

to actuate such devices. This aspect is of increased importance when

designing human-powered devices, such as playground equipment.

Engineering human-powered mechanisms is not only about designing a

specific movement path (aka. kinematics), but more importantly we

25

have to design the motion experience as a consequence of the input

power (aka. dynamics).

With Trusscillator [44] we extended our approach towards

human-scale, human-powered devices, within the context of playground

equipment. The system features a novel set of interactive tools that allow

designers to focus on user experience-specific aspects, such as motion

range, tempo, and effort, while abstracting away the underlying

technicalities of eigenfrequencies, spring constants, and energy use.

Since the resulting devices have to deal with high forces, Trusscillator

helps users to fabricate them from welded steel. Trusscillator selects the

appropriate springs, generates the parts-list, and produces stencils and

jigs that help users to weld with precision and ease.

With these three end-to-end software systems (TrussFab,

TrussFormer, and Trusscillator) we aim at exploring three aspects of

human-scale personal fabrication that go beyond shape: statics,

kinematics, and dynamics, as illustrated in Figure 3.

We validate our systems by physically building prototypes, ranging

from furniture pieces, pavilions, animatronic installations, and

playground equipment. We test their mechanical properties and check

against our software predictions.

1.3 CONTRIBUTIONS

The main contribution of this thesis is the blueprint of three end-to-end

fabrication systems, that embody the required engineering knowledge

for human-scale fabrication. This aspect is identified as the domain

knowledge category among the six challenges of personal fabrication [8].

As illustrated in Figure 3, our end-to-end software systems provide

solution to achieve functionality beyond shape in three key aspects: (1)

statics: load-bearing structures (TrussFab), (2) kinematics: moving

structures (TrussFormer), and (3) dynamics: moving structures with

regard to actuation forces (Trusscillator).

26

On the user interaction side, we contribute with a novel set of tools

that afford creating structurally sound objects, such as designing using

truss-based primitives that enable voxel-like editing. Automated checks

and resolving design flaws are also key parts of the proposed systems.

Furthermore, we introduced tools for creating animated movement and

authoring the motion experience of devices powered by human input

forces.

To implement the above-mentioned UI tools, we have integrated

engineering solutions, such as differential equation solvers and

parametric model generation, into a high-level user interface. One of the

key challenges with embedding these often computationally intensive

solutions was achieving interactive rates. This required implementing

model simplifications, design restrictions, and taking several

assumptions about the model into account. We count these technical

solutions among our contributions.

On the hardware level, we provide a number of custom mechanical

solutions for fabricating the structures that are supported by the

software workflow. This ensures that all the designs are physically valid,

buildable structures. These solutions include building trusses using

plastic bottles and 3D printed hubs. We characterized the materials and

created 3D printable designs for the connector nodes. We automated the

generation of the 3D geometries using parametric design software.

Furthermore, we developed a computer-assisted system for the personal

fabrication of welded steel structures, thereby laying the groundwork

for scaling this line of research to even bigger structures and larger

forces.

1.4 STRUCTURE OF THE DISSERTATION

This dissertation is organized into six chapters. After this introduction

(chapter 1), we discuss the prior work that we are building on, with a

particular emphasis on personal fabrication in HCI (chapter 2). The three

27

subsequent chapters are dedicated to the three particular aspects of

large-scale fabrication: statics, kinematics, and dynamics, covered by

three software systems: TrussFab (chapter 3), TrussFormer (chapter 4),

and Trusscillator (chapter 5). In chapter 6 we conclude the dissertation

by summarizing and discussing the benefits and limitations of our

approach, followed by outlining the open challenges of this emerging

field.

28

2

RELATED WORK

This work builds on previous efforts in the following branches: large-

scale personal fabrication, mechanism design, and designing dynamic

behavior of the mechanism. These topics are discussed and further

subdivided below.

2.1 SCALING UP PERSONAL FABRICATION

Architects and engineers have made efforts to scale up the additive

manufacturing process (3D printing) to construct large-scale structures,

such as houses or sculptures. These efforts involve scaling up the

fabrication machinery [116], such as creating concrete printers [40], or

breaking down the objects into smaller parts to print on desktop

machines [47] [51].

Another significant approach for fabricating architectural-scale

objects is by using mobile printing robots, which move on the ground

[38] or fly [108] around the printed object. Yoshida et al. [111] proposed

a computer-assisted ungrounded fabrication method for large-scale

architecture that combines a hand-held chopstick dispenser with a

projector-based guiding system. Lafreniere et al. [45] coordinate

multiple workers while collaboratively fabricating a pavilion. Going

even larger, Whiting et al. [106] have been exploring fabrication at

environment-scale by replicating climbing experiences.

29

Lightweight, large structures are often built using inflatable

contraptions. Swaminathan et al. [92] have explored how to fabricate

room-scale inflatable structures with embedded input and output

capabilities. Sareen et al. [79] and Murayama et al. [62] have built

automated machines that fabricate human-scale structures from inflated

tubes that can also be actuated. Sato et al. [80] have explored how to

build inflatable mobility devices that are soft, yet humans can ride on

them.

Construction kits are popular for fast prototyping and fabrication of

larger objects. They offer a repertoire of prefabricated elements, which

can be combined in various ways. Henrik and Kobbelt [113] developed

a system to accurately approximate complex shapes using the Zometool

mathematical modeling kit. Skouras et al. [84] created an interactive

editor to computationally combine interlocking elements into a desired

shape. Mueller et al. [61] proposed incorporating (Lego-) bricks into 3D

printed models.

 At the intersection of fabrication and virtual reality lies TurkDeck

[17], a system that physically builds virtual environments around a

virtual reality user on-the-fly. Finally, room-scale objects have been also

instantiated by a large shape display by Suzuki et al. [91].

2.1.1 DESIGNING WITH READY-MADE OBJECTS

MixFab [103], and Encore [16] allow users to integrate existing objects into

their design. For creating objects enclosing electronic components

Ashbrook et al. [5] developed an augmented fabrication system.

Devendorf and Ryokai [20] proposed a human-assisted fabrication

system that helps users incorporate everyday objects into 3D print.

Teibrich et. al. [97] have developed a system that is capable of upgrading

ready-made by printing on them. Beady [33] approximates models from

beads and offers an editor for refining them. Gellért assembled wooden

boards combined with 3D printed connectors in node-link structure [26].

30

Skilled individuals have stacked or tied plastic bottles in order to make

art pieces, furniture, rafts, or houses [130]. Yamada et al. [110] proposed

a system for arranging ready-made objects into 3D shapes using 3D-

printed connectors.

2.1.2 TOOLS FOR CREATING STRUCTURALLY SOUND OBJECTS

Beyond achieving scale, engineering the structural stability of objects

has been explored in previous research. For example, Smith et al. [85],

achieve stability by automatically generating truss structures using non-

linear optimization. Whiting et al. [105] proposed a system for

procedural modeling of structurally-sound masonry buildings. Makris

et al. [52] have developed a design tool that generates parametrically

defined, semi-automatically analyzed, and visualized structures. Arora

et. al [3] have explored the generative design of optimal Michell trusses

depending on the load. Wang et al. [102] developed an automated

method that minimizes material cost by converting solid 3D models into

a skin-frame structure. Rosen [74] has proposed a workflow for CAD

design for additive manufacturing of cellular structures. SketchChair [81]

is an interactive chair design system that allows users to validate the

structural integrity of their design by subjecting it to the weight of a

human rag doll. Similarly, Umentani et al. [100] created a system for

exploring physically valid shapes in furniture design. Furthermore,

Kyub [9] and Fasforce [1] both aim at creating structurally sound laser-cut

closed box structures that can hold human weight.

Commercial tools for engineering truss structures include

SkyCiv [141], which allows users to analyze the force distribution in

trusses. MiTek’s PAMIR [135] is a specialized tool for creating timber

rooftops. TrussTool [128] allows assembling constructions from ready-

made trusses. While Autodesk’s Revit [122] provides an overarching

solution from architectural design to managing the building process on-

site. On the open-source side, RhinoVAULT [139] is a research and

31

development platform for fabricating funicular self-supporting

structures.

While these tools are of great help for experts, they might be

overwhelming for walk-up users, the common participants in personal

fabrication.

2.2 DESIGNING MECHANISMS

Since the emergence of 3D printers, researchers in the HCI and computer

graphics community have been looking into creating expert systems for

helping everyday users in performing mechanical engineering tasks.

One of these non-trivial engineering tasks is creating mechanisms, that

have been researched in many flavors. TrussFormer and Trusscillator

draw from work on systems that assist users with creating mechanisms

that involve motion and forces. For example, ChaCra [56] is an

interactive design system for rapid character crafting. Thomaszewski et.

al. [99] looked into generating motion paths for animated kinematic

characters. Bend-it [109] is a system for creating kinetic characters from

bending wire. Roibot [48] augments passive everyday objects by adding

motorized actuation to them. Ion et. al. [34] proposed an interactive

editor for creating mechanical metamaterial mechanisms.

Algorithmic tools can help users create moving mechanisms. For

example, kinematic synthesis of mechanisms [90], or generation of

personalized walking toys from a library of predefined template

mechanisms [11]. These can be embedded in design support systems, for

example, generating moving toys from motion input [115], or

synthetized planar kinematic mechanisms from sketch-based motion

input [19].

Several software tools directly help prototyping linkage-based

mechanisms, such as LinkEdit [7], LinkageDesigner [22], and Mechanism

Perfboard [36]. These tools sometimes include physical simulation of

simple mechanisms (e.g., using hinges); examples include Crayon

32

Physics [124] and freeCAD [126]. These software tools provide great help

in engineering mechanisms; however, they usually don’t streamline the

design process to make it fail-safe for novices.

2.2.1 VARIABLE GEOMETRY TRUSS MECHANISMS

TrussFormer’s mechanisms are based on variable geometry trusses

(VGT) [4][71][87]. An example of a VGT is the Stewart Platform [89], a

common mechanism found in haptics/HCI. A Stewart platform uses

actuators in every member to enable 6 DoF motion while maintaining

the stability of a truss, crucial for scenarios that involve large inertial

forces.

VGTs have been used extensively in robotics. Tetrobot [27] is built by

chaining the tetrahedron edges with linear actuators, which unite at a

vertex in a spherical joint. The design and mechanics of spherical joints

have been extensively analyzed [86][88]. Tetrobot was designed to

enable robots to reconfigure into different usages by reusing the same

basic primitives. Researchers and engineers have explored variations of

this VGT design in different contexts, for example, in space applications

[4], reconfigurable robotic manipulators [4][27][98], and shape

morphing trusses [86].

Other researchers introduced design variations in this basic cell,

allowing the resulting structure to afford new qualities. For instance, the

Spiral Zipper [18] is an extendable edge, based on extending a cylinder

that allows for extreme expansion ratios (e.g., 14:1). Similarly, Pneumatic

Reel Actuator [28] is based on a mechanism that extrudes and retracts a

plastic (tape-like) tubing, to act as an actuator. The mechanism is

designed to be lightweight and low-cost, while being limited in its

robustness.

TrussFormer takes inspiration from VGTs and builds on the

conceptual design of Tetrobot. To this work, TrussFormer contributes a

spherical joint design that is automatically generated based on the

designed truss geometry.

33

2.2.2 SOFTWARE TOOLS FOR ANIMATING MECHANISMS

Many HCI researchers have built software tools to empower users to

animate robots [54] [72]. This is especially challenging when the users

are novices and the intended results are expressive movements, such as

imitating animal (organic) movements, i.e., animatronics [21].

Animatronics interfaces follow several designs, from manual

control [54] to puppeteering using skeletal tracking [78]. Marti et al.

designed an early example of an animatronics software tool for a small

(puppet-sized) phone call handling agent, demonstrating two methods:

manual control (user directly controls every single actuator using one

GUI fader) and programming motion patterns using a sequencer [54].

Later work integrated robotics with keyframe editors, as for 3D

animation [123] or video editing [118].

Previous tools suffice for animating small robots because actuating

these robots (typically via small servo motors) does not involve moving

large loads. With smaller robots, software tools do not have to simulate

the adversarial effects of dynamics, e.g., inertia and resonance. However,

when animating large animatronics, these forces affect not only the

stability of the structure but also the desired animation

2.2.3 ANIMATING ROBOTIC MANIPULATORS

Programming robotic manipulators is a similar task to creating

animation patterns for TrussFormer’s mechanisms. The manufacturers

of industrial robots usually provide their proprietary software packages

for expert users, like ABB RobotStudio [117] or KUKA.Sim [131], while

there are powerful open-source platforms as well for programming

robot behavior, such as ROS [140]. Recently, also visual block-based

interfaces become popular for non-expert users, like KUKA|prc [132]

and CoBlox [104]. These software tools provide advanced programming

capabilities; however, they still lack real-time physical simulation to

visualize the occurring inertial forces during the motion.

34

2.3 DESIGNING MECHANISMS WITH DYNAMIC BEHAVIOR

In contrast to designing for static forces, such as balancing 3D

objects [68], predicting the dynamic behavior of mechanisms has been

also researched in the HCI and computer graphics community in the

past. Interactive design tools leverage physics simulation, such as Spin-

it [6] enables 3D printing of spinning tops by optimizing the internal

rotational dynamic properties, while Pteromys [101] helps to optimize the

aerodynamics of free-flight glider paper airplanes. Chang et al. [14] have

been developing haptic kirigami swatches that are essentially highly

specialized springs that provide a well-defined force resistance profile

for buttons and switches. Chen et al. [15] proposed a system for accurate

simulation of dynamic, elastic objects at interactive rates. Similarly,

Real2Sim [29] is a system that estimates the material’s visco-elastic

parameters retrieved from dynamic motion data. Hoshyari et al. [31]

have created a workflow for reducing unwanted secondary oscillations

in expressive robotic characters. Tang et. al. [96] presented a harmonic

balance approach for designing compliant mechanical systems with

non-linear periodic motions.

All these projects are dealing with predicting dynamic motion and

helping users in their design. TrussFormer and Trusscillator extend this

line of work to concern inertial forces, energy, and oscillations.

2.3.1 PROFESSIONAL TOOLS FOR SIMULATING DYNAMIC SYSTEMS

Physics simulation has become one of the most important enabling

technologies for engineering physical artifacts. For example, commercial

software like Fusion360 [120] readily offers finite element simulation

capabilities for engineers. Some interactive editors utilize powerful

frame-based simulation, such as Algoryx Momentum [119] or Vortex

Studio [143]. These systems are great for real-time simulation of complex

physical phenomena; however, repeatability and energy conservation in

the model are not always guaranteed.

35

On the other hand, continuous-time cross-domain analytic solvers

offer high accuracy and repeatability through a closed representation of

the system. Examples of such systems are Modelica [25] and Mathworks’

Simscape [133]. They are very powerful in simulating cross-domain

physical processes; however, their use often requires a deep

understanding of the simulated system and the actual language as well.

Trusscillator bridges this gap by interfacing the analytic solver with a

high-level UI tailored for designing spring-based oscillating

mechanisms.

2.3.2 SPRINGS AND COMPLIANT MECHANISMS

Springs, in their static and kinematic nature, have already been explored

by the personal fabrication community. For example, Ondulé [30] helps

novices to design parameterizable deformation behaviors in 3D-

printable models using helical springs and embedded joints.

Schumacher et. al. [82] have proposed a system for modifying the

underlying microstructure of 3D printed objects in order to adjust their

elasticity. Systems like Bend-it [109] and Megaro et al. [57] are focusing

on compliant mechanisms that utilize the elasticity of the material to

create motion. Roumen et. al. [76] have proposed SpringFit, a system for

users of laser-cutters to make their models cross-device compatible by

replacing the problematic press fit-based mounts and joints with

cantilever-spring-based mounts and joints. Ion et. al. in [35] uses

preloaded springs to mechanically transmit signals in digital

metamaterials. Takahashi et. al. [94] have created a system for creating

statically balanced planar spring mechanisms. The bistable nature of

compliant mechanisms has been explored by Zhang et al. [114].

While all these works are focusing on springs and elastic behavior,

they are mostly concerned about the shape, static balance, and static

force that the spring provides. Trusscillator extends these to authoring

dynamic motion experiences, beyond the level of designing only

motion paths.

36

3

TRUSSFAB: HUMAN-SCALE LOAD-

BEARING STRUCTURES

Fabricating large objects requires access to specialized equipment, such

as concrete printers that allow making houses [40] or robotic arms

capable of 3D printing [37]. In contrast, the owners of the widespread

desktop devices cannot participate in this evolution, because the

underlying technology does not scale.

Figure 4: TrussFab pavilion created from ~1200 PET bottles and 119 3D printed hubs,

presented at CHI’17, Denver, USA.

37

Even techniques that break down large models into printer-sized

parts [47] ultimately do not scale, as large models consume material and

time proportional to their size, which quickly renders 3D printing and

related techniques intractable for larger-than-desktop-scale models.

As an alternative approach, fabrication enthusiasts have created

large objects by combining 3D print with ready-made objects, such as

plastic bottles [130]. In their simplest form, such objects wrapped in 3D

print can serve as 3D voxel collages that approximate the volume of an

object [110].

Figure 5: TrussFab is an end-to-end system that allows users to fabricate large structures

sturdy enough to carry human weight. TrussFab considers bottles as beams that form

structurally sound node-link structures also known as trusses, allowing it to handle the

forces resulting from scale and load.

Going larger, however, is not only about scale and print volume. For

large objects, the main design objective is typically to withstand large

forces, as forces grow cubed with the size of the object. Also, large objects

afford substantial external loads; furniture, bridges, and vehicles, for

example, all must be engineered to hold the weight of a human.

Designing for large forces, however, requires substantial engineering

38

skills [46] from envisioning appropriate structures in the first place to

verifying their structural integrity.

In this chapter, we present TrussFab, an integrated end-to-end

system that allows users to design large structures that are sturdy

enough to carry human weight (Figure 5). TrussFab achieves this by

taking a different perspective on bottles. Unlike previous systems that

stacked bottles as if they were “bricks”, TrussFab considers them as

beams and uses them to form structurally sound node-link structures

based on closed triangles, also known as trusses. TrussFab embodies the

required engineering knowledge, allowing non-engineers to design

such structures and validate their integrity using its structural analysis

functionality. We validate our approach via building physical

prototypes, ranging from furniture pieces to a 6m tall pavilion, shown

in Figure 4

3.1 WALKTHROUGH OF THE TRUSSFAB SYSTEM

TrussFab allows users to create structures either by modeling from

scratch or by converting existing 3D models into trusses. This interactive

workflow we summarize in the following.

STEP 1: AUTOMATIC CONVERSION

One way to create TrussFab structures is to convert an existing 3D model

using TrussFab’s converter. As shown in the example in Figure 6, this tool

converts a truncated cone-shaped coffee table into a tetrahedral

honeycomb structure, allowing it to bear substantial load.

39

Figure 6: (a) TrussFab’s converter automatically turns this 3D model of a coffee table, into

(b) a sturdy tetrahedral honeycomb structure, (c) which fabricated serves as a functional

table.

STEP 2: EDITING

TrussFab’s editor allows users to refine an object created by automatic

conversion (Figure 6) or to start a new object from scratch. We

implemented TrussFab’s editor as an extension to the 3D modeling

software SketchUp [142]. TrussFab’s editor offers all the functionalities of

the original SketchUp system, plus custom functions that help users

create sturdy structures. In particular, TrussFab’s editor offers

primitives that are elementary trusses (tetrahedra and octahedra), tools

that create large beams in the form of trusses, and tools for tweaking the

shape of structures, while maintaining their truss structure. In Figure 7,

the user placed a human weight on top of the bridge design. TrussFab’s

integrated structural analysis shows no warnings, suggesting that the

bridge is structurally sound.

40

Figure 7: TrussFab’s editor is implemented as an extension for SketchUp. Here the user is

performing a stability check on the bridge from Figure 5.

STEP 3: HUB GENERATION

After designing and verifying the structure, TrussFab’s hub generator

generates the 3D models of all hubs. Figure 8 shows one of our 3D

printed hub designs; here the connector on the top snaps into the

bottleneck, while the bottom ones are holding the bottles by their

threaded neck. When designing structures to carry a human weight,

these hubs experience large forces. We discuss the details of TrussFab’s

hub designs in the section “3.4 Fabricating hubs and members”.

41

Figure 8: TrussFab generates the unique hub geometry for every node of the model. The

hubs are labeled by embossed IDs to help the assembly process.

STEP 4: FABRICATION

Users then send the generated 3D model files (STL) produced by the hub

generator to one or more 3D printers in order to manufacture them.

Typically, a hub prints in 2-3 hours.

STEP 5: ASSEMBLY

Finally, users manually assemble their structures by following the

unique IDs embossed into each hub (as shown in Figure 8b). In Figure 9,

a boat for two is assembled using 124 PET bottles and 31 3D printed hubs.

The assembly time required for this model is approximately ~2h.

Figure 9: A functional boat is assembled following the embossed hub IDs. (b) The bottle

frame is simply covered by a tarp. (c) The fabricated boat seats two.

42

3.2 LOAD-BEARING TRUSS STRUCTURES

TrussFab’s structures tend to be exposed to substantially larger forces

than hand-size objects. As illustrated in Figure 10, this is due to two main

reasons: (1) large objects tend to support much larger loads than their

hand-sized counterparts, and, less obviously, (2) forces grow cubed with

the size of the levers (when levers are involved). These two factors result

in orders of magnitude higher forces in the construction, that need to be

addressed by a proper underlying structure.

Figure 10: Large objects have to withstand substantially larger forces because (1) the

loads can be much higher, and (2) forces grow cubed with the size of the lever.

The key idea behind TrussFab’s structures is to (1) employ bottles in

their structurally most sturdy way, i.e., as beams from bottom to

bottleneck, arranged in (2) sturdy “closed frame structures”, also known

as trusses [46].

While freestanding bottles tend to break easily (Figure 11a/b), truss

structures essentially consist of triangles. In such an arrangement, it is

the structure that prevents deformation, not the individual bottle. The

main strength of trusses is that they turn lateral forces (aka bending

moments) into tension and compression forces along the length of the

43

edges (aka. members). Bottles make great members: while they buckle

easily when pushed from the side, they are very strong when pushed or

pulled along their main axis (see section “3.5 Strength test and safety”).

(c) The resulting structures, such as this tetrahedron, are strong enough

to bear the weight of one or more humans. (d) TrussFab affords building

trusses by combining tetrahedra and octahedra into so-called

tetrahedral honeycomb structures. The coffee table in Figure 6, for

example, is cut from such a “tetra-octa” mesh. This structural

arrangement is commonly used in truss design and provides great

structural stability [46].

Figure 11: (a) Large objects involve large levers, causing them (b) to break under load.

(c) TrussFab instead affords structures based on closed triangles, here forming a

tetrahedron. Such structures are particularly sturdy. (d) TrussFab extends this concept to

tetrahedron-octahedron trusses of arbitrary size.

Alternatively, users might also consider using larger sturdy

primitives, such as the icosahedron, however, we opted for the

tetrahedron and octahedron, as they are space-filling, thus providing a

simpler construction grid than other geometries.

3.3 TRUSSFAB ’S EDITOR

We now zoom in on Step 2 of our walkthrough: the TrussFab editor. The

main design rationale behind the editor is to afford a stable structure. It

achieves this by using bottles as the members of trusses. The key idea

behind TrussFab’s editor is to start any design with primitives that

already are trusses, i.e., tetrahedra and octahedra; additional functions

then allow users to extend and tweak the structure while maintaining

44

the truss property at all times. Once the main truss structure has been

created, users may add facades and decorative details.

We demonstrate this principle on our chair design in Figure 12.

(a) As illustrated by Figure 12a, we start our design by creating

the base of the chair. We select the octahedron tool from TrussFab’s

drawing toolbar and click on the ground plane of our workplace, which

creates an octahedron. By default, this octahedron is made from small

(half-liter) bottles. We check its height using the standard SketchUp

measurement tool—it is 45cm, which is a good height for an average

person to sit on.

Figure 12: The sequence of creating a chair with a backrest in TrussFab’s editor.

(b) To make the backrest, we now select the tetrahedron tool. We

click on one of the sides of the base octahedron, which attaches a

tetrahedron to it. (c) We click the top surface of the tetrahedron we just

made, attaching one more tetrahedron to it. This gives us the rough

shape of our chair and its backrest.

 (d-e) The backrest is a little short. We select the grow tool and

click one of the three upper members of the backrest. This elongates one

of the two bottles to the next supported size, i.e., a 1.5-liter bottle, here

shown as light green. We click again, which causes the second bottle of

this member to grow as well. Repeating this on the other side scales the

backrest to the desired size.

(f) The chair is now too “laid back”. Still holding the grow tool, we

click the rear edge of the backrest until the backrest is more vertical.

Alternatively, instead of using the discrete grow/shrink tools, users can

also use the deform tool, which allows freely dragging individual hubs

45

in space, while preserving the truss nature of the model (see section

“3.3.1 Editing larger structures efficiently”). In addition to the standard

member lengths governed by bottle sizes, TrussFab can implement

extra-long members and in-between sizes by extending hubs with 3D

print, as shown in Figure 13. This allows users for more freedom in their

design.

Figure 13: TrussFab implements the extra-long members using extra 3D print.

 We now select the pod tool and use it to add pods to the bottom

of our chair, as illustrated by Figure 14a. As discussed earlier, bottles are

sturdy only when forces apply along their main axis. This is not the case

for an octahedron directly touching the ground. If we tried to sit on it,

our weight would cause the members touching the ground to buckle and

break. The pods avoid this by propagating the user’s weight into the truss,

making the design robust.

 Finally, we select the cover tool and click the top of the

octahedron (Figure 14b). This adds a plywood plate for users to sit on; it

is supported by three upward-facing pods. Plates will later be exported

as SVG files. We tend to fabricate them on a laser cutter.

Figure 14: (a) Adding pods to the bottom hubs and (b) a cover to the top adds stability

to our design, as any load is now propagated through the hubs, saving members from

buckling.

46

 To verify the chair’s ability to carry a human user, we select the

add weight tool and click on the seat plate (Figure 15). This places 10 kg

weight on each of the three corners of the plate. We click three more

times, which increases the weight in 5 kg steps, to sum up in total of 75

kg. A click at the backrest adds another 10kg load pushing into the

backrest.

 Clicking the check stability icon causes TrussFab to compute the

effect of these weights onto the structure. This happens in two steps.

First, the software looks for flaws in the truss structure, i.e., it

searches for parts that are not completely rigid and are subject to

shearing forces (see section “3.6 Implementation”). If found, the

software would suggest placing additional stabilizing members. Our

chair, however, is rigid, so there are no warnings.

Second, the software checks whether the structure will hold up to

the weight we placed on it. Using finite element analysis, the software

calculates the forces that apply to every member of the structure. As

shown in Figure 15, TrussFab shades all members accordingly. The six

vertical members of the octahedron now appear in shades of red,

suggesting that these are experiencing compression. So does the chair’s

“backbone”. All other members are tinted blue, suggesting that these are

subject to tension.

TrussFab compares these forces with the maximal load members

and hubs can hold (see section “3.4 Fabricating hubs and members”) and

it warns the user if the limits are exceeded. This is not the case here, so

we now know that our chair model is structurally sound.

47

Figure 15: To verify the chair’s structural stability users indicate the load forces. The

system now calculates the occurring compression and tension forces in every element.

Here, no forces are exceeding the limit; thus the fabricated chair holds the human weight.

 Finally, the fabricate it! button causes TrussFab to generate 3D

models of all hubs and export them in STL format to the 3D printer. For

the wooden seat cover, TrussFab creates a 2D line drawing in SVG

format and sends it to a laser cutter. Users now assemble hubs and

bottles based on the embossed hub IDs, resulting in the chair shown in

Figure 15b. This particular design prints in 90 min per hub on a MakerBot

2X, and takes about 20 minutes to assemble.

Note how the interaction we described afforded creating a stable

structure. In particular, the octahedron we started with was a truss and

thus stable. We then added tetrahedra, which turned our initial truss

into a larger truss. Tweaking the length of individual members, finally,

did not affect the structure of our design, so it remained a truss at all

times.

3.3.1 EDITING LARGER STRUCTURES EFFICIENTLY

To create larger objects, TrussFab offers a number of tools that create

larger trusses in a single interaction, thus resulting in a more efficient

design process.

48

The beam tool creates entire beams in one go. The bridge in Figure

5 and the pavilion in Figure 16 were created this way.

 The block tool creates a tetra-octa plane in one go. We used it to

create the roof of the pavilion in Figure 16. It can also serve, for example,

as a stage.

 The deform tool allows users to deform trusses. In Figure 16b we

applied this tool in order to obtain a curved roof. Using the tool, we

grabbed a hub located in the middle of the roof and dragged it upwards.

The tool accommodates this by growing and shrinking members

throughout the truss (see section “3.6 Implementation”

Figure 16: (a) Pavilion created using the beam and block tools. (b) The roof is freely

deformed by pulling upwards using the deform tool.

 The facade tool allows filling in a facade between two trusses.

This tool flood fills the plane in between two trusses with a triangle mesh.

In Figure 17, we used this tool to create the walls of a tipi. (a) Users start

by creating a load-bearing skeleton structure in the form of truss beams.

(b) Users then fill in the non-load-bearing sides as facades. The benefit

of this two-stage process is that facades are particularly efficient. First,

they are single-layer, thus require fewer bottles. Second, the hubs that

form a facade are flat; this allows TrussFab to fabricate such hubs using

a laser cutter, which is very fast (40x faster than 3D print, see section

“3.4.3 Laser-cut hubs for facades”).

49

Figure 17: (a) The load-bearing structure of this tipi is best made from trusses; (b) its sides

can be filled using facades. (c) TrussFab makes 2D facade hubs quickly on a laser cutter.

To support this classic layered architecture, TrussFab complements

all of its truss tools with specialized facade tools. The editor offers facade

tools for filling the large opening with facades (Figure 17b). The hub

generator offers the aforementioned laser-cut facade hubs. And, for

objects not expected to bear a load at all, TrussFab’s surface converter

turns the outer hull into a hollow facade structure (Figure 25).

 The dome tool supports creating geodesic domes in one go (Figure

18). Domes are particular in that they support themselves by means of

their own curvature, i.e., without any underlying truss structure. We

created the shown tent by (a) creating a dome by selecting TrussFab’s

dome tool and clicking on the ground. (b) We create an opening in the

front using TrussFab’s delete brush. (c) Using the triangle and the line

tools we add the decorative ears on top of the dome. (d) The resulting

dome is assembled from 512 bottles, 68 3D-printed, and 63 laser-cut hubs.

50

Figure 18: (a) Dome created using the dome tool. (b) We make the opening using the

delete tool, and (c) add decoration using the triangle and line tools. (d) The resulting

dome is built using 512 bottles.

3.4 FABRICATING HUBS AND MEMBERS

As mentioned earlier, TrussFab’s hubs are exposed to loads in the range

of human weight, making their design crucial for achieving sturdy

structures. Each hub connects two or more bottles by their necks. These

regions we call the connectors. In the following, we describe our two 3D

printable connector designs that use different mechanical principles,

and a hub design suitable for laser cutting.

3.4.1 THREAD AND SNAP CONNECTORS

The thread and snap connector pair is shown in Figure 19. The threaded

design is very straightforward, users simply screw the respective bottle

into the connector. Unfortunately, trusses cannot be assembled from

threaded connectors alone, because the last member of a closed contour

would require turning one end left and the other right to screw both

ends simultaneously. TrussFab, therefore, complements threaded

connectors with a second type of connector that allows free rotation.

The snap connector slides into the bottleneck and holds the bottle

from the inside (Figure 19). A three-way split in the connector forms a

set of cantilever springs that are compressed when the connector is

51

inserted into a bottle, allowing the tip to slip in. When it reaches the

point where the bottle widens, it expands and now resists being pulled

out. To secure the connector against tension, users insert a pin into the

hole from the opposite side, as shown in Figure 19, which prevents the

prongs from squeezing. Releasing the snap-fit connector is done by

pushing the pin all the way into the bottle.

Figure 19: 3D printed hub with snap-fit and threaded bottle connectors.

Similar to the threaded connectors, it is generally not possible to

implement a TrussFab structure using snap connectors alone. The

reason is that if two snap connectors are facing close to the opposite on

the same hub, the locking pin technically cannot be inserted.

TrussFab resolves this challenge automatically by using at least one

snap connector per closed contour and by using threaded connectors

opposite to any snap connector.

3.4.2 CUFF CONNECTOR

The cuff connector design is based on a generic flange and a

separately printed cuff, that snaps on the bottle neck, as shown in Figure

20a. We used this type of connector for building our pavilion from

Figure 4. This design has a number of advantages: (1) Quick assembly

and disassembly. (2) The cuff can be printed separately, resulting in

optimal slicing against axial loads (Figure 20b). (3) In case of breaking,

usually only the cuff needs to be exchanged. (4) When using different

52

bottle types, only the cuffs need to be redesigned to make the new bottle

fit.

Figure 20: TrussFab’s cuff-connectors are easy to assemble and strong against axial

loads.

By default, TrussFab creates connectors that fit the bottlenecks of the

most common bottles (PCO 28mm thread); However, connectors can be

designed for any other ready-made objects in TrussFab’s OpenSCAD

script (see section “3.6.6 Hub generator”).

3.4.3 LASER-CUT HUBS FOR FACADES

Figure 21 shows the laser-cut connectors we use for facades and domes.

We tend to fabricate them from particleboard or optionally plywood for

extra stability.

Figure 21: Laser-cut planar hubs are secured using a self-locking wedge.

53

Each laser-cut connector consists of two parts. The plate forms the

hub itself. It is cut to accommodate the flange of the bottle, which

prevents the bottle from moving in-and-out along its main axes.

Inserting a wedge prevents the bottle from slipping out of the plane of

the connector.

Even though hubs are flat when fabricated, assembling them into a

curved structure, such as a dome (Figure 18), requires hubs to assume

this curvature. TrussFab fabricates laser-cut connectors with play to

allow for this.

3.4.4 FABRICATING MEMBERS FROM BOTTLES

As shown in Figure 22, TrussFab generally uses (a) long wood screws to

connect the bottoms of two bottles or (b) double-ended screws,

tightened by rotating the bottles in opposite directions. (c) In the rare

case of short, single-bottle members, TrussFab uses bottom-to-hub wood

screw connectors.

Figure 22: (a) Connecting bottles with a wood screw using an extra-long screwdriver and

(b) with a double-ended screw. (c) Single-bottle edges require a bottom connector

We made all our TrussFab objects from refillable plastic bottles. Since

these bottles are designed to be used multiple times, they feature thicker

walls, resulting in sturdier structures.

54

For fabricating facades or non-load-bearing structures we connect

bottles using 6” wide adhesive tape. This leaves the bottles intact,

allowing us to return the bottles. It also works well with thinner,

disposable bottles.

3.5 STRENGTH TEST AND SAFETY

The structures intended to carry a human weight need to undergo

careful design and testing. Before building, users should verify the

stability of their particular bottle members and hubs using an appropriate

testing procedure. We describe this procedure in the following.

In order to determine the maximum load that our bottle members

can undergo, we used the mechanical break testing machine shown in

Figure 23a. We used the 3D-printed test connectors to attach the bottles

to the machine. The machine then applied increasing tension or

compression, until the tested element breaks, resulting in the strain-

stress diagram shown in Figure 23b.

Figure 23: (a) During strength testing of this truss member the machine held the piece

by square test-hubs. (b) Here a pulling test is performed, where the strain-stress diagram

shows that the member broke at approximately 135 kg of tensile force, after a 5mm

stretch.

Table 1 shows the maximum loads our hubs and members did

withstand under idealized conditions, i.e., room temperature and

55

without any dynamic loads. For our members, we were able to apply up

to 85kg of pressure (at which point the bottle buckles and collapsed) or

135 kg of tension (at which point the FDM-printed ABS hubs tore).

threaded
connector

snap
connector

bottle
member

compression (any) (any) 85 kg

tension 135 kg 145 kg 180 kg

Table 1: Breaking points of our threaded and snap connectors and bottle members.

Note that these results were obtained with thick refillable bottles—

disposable bottles tend to break under smaller loads. Also, slicer settings,

print-orientations, and hub materials may lead to different results. Thus,

the testing procedure needs to be performed with the respective bottles

and 3D printing technology at hand.

These measured values need to be complemented with additional

safety factors that represent the expected dynamic loads and in the case

of outdoor deployment also factors resulting from environmental

conditions, such as wind forces, wear, and weather decay.

3.6 IMPLEMENTATION

To help readers replicate our results, we now describe the

implementation of the main components of the TrussFab system:

TrussFab’s editor, converter, force analyzer, and hub generator.

3.6.1 EDITOR FRONTEND

We implemented TrussFab as an extension to the 3D editor SketchUp

[142]. It is written in Ruby and JavaScript. It allows users to create 3D

models, use efficient editing tools, verify stability, and trigger

TrussFab’s hub generator, as illustrated in Figure 24.

56

Figure 24: TrussFab’s editor toolbar.

3.6.2 MODIFYING TRUSSES

In the Modify tab are the grow, shrink and deform tools, that are the

most computationally intensive. They affect the lengths of members and

consequently all the angles between members. After altering the

position of a node, TrussFab restores the consistency of the 3D model by

running a dynamic relaxation algorithm [65], i.e., neighboring members

start to push-pull each other until they find the position that

accommodates the change. TrussFab iterates up to 10,000 cycles or until

0.1 mm accuracy has been reached.

3.6.3 AUTOMATIC CONVERSION

TrussFab’s converter offers two modes of operation: volumetric and

surface conversion.

The volumetric conversion procedure is similar to traditional

voxelization methods. However, instead of intersecting the given 3D

model with a regular cubical grid, TrussFab intersects the model with a

tetrahedral honeycomb, as demonstrated earlier on the example of a

table in Figure 6. The algorithm also iterates to find those angles and

positions that maximize the number of fully enclosed edges. We note

57

that our solution is focused on space-filling with fixed edge length, while

more elaborate flexible space-filling algorithms have been proposed by

Arora et al. [3], Mitra et al. [59], and Wang et al. [102].

The surface conversion procedure reproduces the object’s facade as

members, as illustrated in Figure 25. The main challenge here is to

ensure that every edge of the 3D model either fits the length of one of

the bottle primitives or is slightly longer, in which case the converter will

lengthen the edge by extending the respective connector.

Figure 25: The Stanford-bunny converted using the TrussFab converter in facade

conversion mode.

Our surface conversion tool, inspired by Richter and Alexa’s Beam

Meshes [73], consists of two stages: mesh simplification and surface

re-meshing. In the mesh simplification stage, we use the quadric-based

edge collapse function in MeshLab [134] until it reaches the desired

number of edges. We preserve certain features, such as the ears of the

bunny in Figure 25, by manually simplifying the 3D model using the

simplification brush in Autodesk MeshMixer [121].

In the surface re-meshing stage, we optimize the vertex position of

the model so that all edges are of the valid length of bottle primitives

and the distortion of the final mesh is minimized. The energy function

has two terms, where the first term is the minimum distance between an

58

edge and the bottle primitives and the second term is the distance

between the vertex position and the original simplified mesh.

More specifically, the energy function is of the form

𝐸(𝑽) = ∑ min(∑𝐸𝑖 − 𝑩)
𝑚

𝑖=0
+ 𝛼 ∑ 𝐷𝑖𝑠𝑡(𝑣𝑖, 𝑺)

𝑛

𝑖=0

where V are the vertices of the simplified 3D model, n and m are the

numbers of vertices and edges respectively, Ei is the length of the edge i,

B is the set of valid lengths for all bottle primitives, 𝐷𝑖𝑠𝑡(𝑣𝑖 , 𝑺) is the

distance between vertex i and the surface S of the given 3D model. We

calculate the optimized vertex positions using Powell’s COBYLA

optimization routine [66].

The algorithm does not account for structural stability; therefore,

optional reinforcement needs to be added manually. Also, physical self-

intersections need to be corrected by the user. The converted models are

exported to the TrussFab editor in the form of a JSON file.

3.6.4 FORCE CALCULATION

TrussFab uses Karamba3D [67] finite element analysis (FEA) for

calculating the loads. This method models each edge as a spring of

particular stiffness and calculates the displacement of the nodes under

the given force [24]. TrussFab treats all hubs as ball joints, allowing for

deformations without breaking. The bottle members are modeled as

filled cylinders, which are rigid in shear. The pods touching the ground

are considered anchor points.

TrussFab sends the geometry of the model together with the

specified load forces to Karamba3D in JSON format, which returns the

resulting compression and tension forces for each member.

3.6.5 R IGIDITY CHECK

Any TrussFab model is a node-link diagram that can be represented as

graph 𝐺. Conveniently, by analyzing this graph, a check of structural

rigidity can be performed [77]. Because of its relevance to this thesis, we

describe this procedure below.

59

Let’s consider a movement of the vertices given by specifying a

velocity 𝜇𝑖 (𝑡) for each vertex 𝑣𝑖 at every point in time 𝑡. Let 𝑝𝑖 be the

initial position of 𝑣𝑖. Then the movement preserves the length of an edge

𝑣𝑖𝑣𝑗, if and only if

(𝜇𝑖(𝑡) − 𝜇𝑗(𝑡)) ∙ (𝑝𝑖 − 𝑝𝑗) = 0

holds for every point in time. Thus, to check 𝐺 for rigidity, we can

instead test whether velocities satisfy this equation for every edge. As

each equation is linear, we obtain a system of linear equations. This

system can be written as 𝐴𝜇 = 0 where 𝜇 is the vector of all velocities

and each row of the matrix A corresponds to one equation. The matrix

𝐴 is the above-mentioned rigidity matrix. Note that 𝜇 has dimension 3𝑛

as we have one velocity for each vertex and each velocity is 3-

dimensional. Thus, if 𝑟𝑎𝑛𝑘(𝐴) = 3𝑛 − 6 then the solution space of 𝐴𝜇 =

0 is 6-dimensional, which covers exactly the trivial movements of

rotating (in three dimensions) and translating (in three dimensions) the

whole graph. Hence, if 𝑟𝑎𝑛𝑘(𝐴) = 3𝑛 − 6 , no other edge-length

preserving movement can exist, i.e., 𝐺 is rigid.

3.6.6 HUB GENERATOR

The TrussFab Hub Generator generates the 3D models of the hubs using

the mathematical solid modeling tool OpenSCAD [137].

The TrussFab Hub Generator receives its input from the TrussFab

editor in OpenSCAD script file format (.scad). (1) For 3D printed hubs,

this data file describes each connector using a direction vector for each

connection, annotated with connector type, elongation, and ID. (2) For

laser-cut hubs, the plug-in projects the connections onto a plane before

exporting the hub as a 2D geometry.

TrussFab Hub Generator generates hubs by arranging the

individual connector primitives around a sphere. The connector

geometry is loaded from separate modular files, allowing users to

include their own, custom connector types for using different ready-

made objects in the design.

60

3.6.7 FABRICATION AND ASSEMBLY

We fabricated the 3D hubs on MakerBot 2X and Ultimaker 2 desktop

FDM printers. Each hub consumes about 50-150 g of filament, resulting

in $2-5 cost. One average hub prints in about 1.5-2.5 h, using a 0.5 mm

nozzle. We mostly used PLA and ABS materials, however also

experimented with recycled PET material successfully. The laser-cut

hubs are made from 5 mm particleboard, which took about 3

minutes/hub to cut on a Universal UL 150D laser cutter.

Table 2 summarizes the bottle-hub count, printing, and assembly

time for all presented objects. The refillable bottles were acquired for

their deposit value ($0.15/piece).

number of
bottles

number of
hubs

printing
time

assembly
time

chair 36 8 ~16 h ~10 min

table 48 10 ~20 h ~20 min

boat 124 31 ~62 h ~2 h

dome 512
68 (3D print)
63 (laser-cut)

~136 h
~3 h

~8 h
(for 2ppl)

bridge 174 30 ~60 h ~4 h

pavilion ~1200 119 ~300 h
6h

(for 8 ppl)

Table 2: Summary of bottle/hub count, printing, and assembly time per example object.

3.7 CONTRIBUTION, BENEFITS , AND LIMITATIONS

TrussFab’s main contribution is the integrated end-to-end workflow

that allows users to fabricate large structures that are sturdy enough to

carry human weight—on desktop 3D printers. Unlike previous systems

that build on up-cycled plastic bottles combined with 3D print, TrussFab

considers bottles not as “bricks”, but as beams that form structurally

sound node-link structures also known as trusses, allowing users to

handle the forces resulting from scale and load.

61

TrussFab embodies the required engineering knowledge, allowing

non-engineers to design such structures, and allows users to validate

their designs using integrated structural analysis. In particular,

TrussFab’s editor offers primitives that are trusses (tetrahedra and

octahedra), tools that create large beams that are trusses, and tools for

tweaking the shape of structures, while maintaining its truss structure.

On the mechanical side, we contribute the key structural elements that

allow creating trusses, i.e., the 3D-printed and laser-cut hub design.

We have validated our system by designing and fabricating tables

and chairs, a 2.5 m bridge strong enough to carry a human (Figure 5), a

functional boat that seats two (Figure 9), and a 6 m tall pavilion built of

1200 bottles, shown in Figure 4.

Our approach is subject to the general limitations faced by ready-

made objects. In particular, TrussFab can reproduce neither details

smaller than a bottle nor closed surfaces. On the structural side, further

development could aim at integrating automatic structural adjustments,

in case the forces are exceeding the limits of the materials, by

implementing algorithms, such as by Arora et. al [3].

62

4

TRUSSFORMER: HUMAN-SCALE

KINETIC STRUCTURES

Large-scale fabrication systems, such as TrussFab, have shown to

support a wide range of applications, from furniture to tradeshow

pavilions, however, such systems are limited to creating static structures.

Figure 26: (a) TrussFormer is an end-to-end system that allows users to design and 3D

print large-scale kinetic truss structures that deform and animate, such as this 4m tall

animatronic T-Rex.

63

In this section we present a system that allows users to create large

kinetic structures, i.e., structures that involve motion and deal with

inertial forces, as they occur in animatronics devices, such as the

animated Tyrannosaurus Rex, illustrated by Figure 26, and other large-

scale machinery. TrussFormer embodies the required engineering

knowledge from (1) creating the appropriate mechanism, (2) verifying

its structural soundness, and (3) generating the underlying hinge system

printable on desktop 3D printers.

4.1 WALKTHROUGH OF THE TRUSSFORMER SYSTEM

TrussFormer helps users to create the shape and design the motion of

large-scale kinetic structures. It does this by incorporating linear

actuators into rigid truss structures in a way that they move

“organically”, i.e., hinge around multiple points at the same time. These

structures are also known as variable geometry trusses [4]. Figure 27

illustrates this on the smallest elementary truss, (a) the rigid tetrahedron.

(b) We swap one of the edges with a linear actuator, (c) resulting in a

variable geometry truss. The only required change for this is to

introduce hubs that enable rotation at the nodes. We call these hinging

hubs.

Figure 27: (a) The static tetrahedron (b-c) is converted into a deformable structure by

swapping one edge with a linear actuator. The only required change is to introduce

connectors that enable rotation.

64

This simple approach to creating variable geometry truss

mechanisms scales well to arbitrary larger structures. Our T-Rex model

from Figure 26 contains five linear actuators and thus offers five degrees

of freedom (DoF). It can (a) lift or lower its neck (1 DoF), (b) turn its head

left and right (1 DoF), (c) sweep its tail (2 DoF), and (d) open its mouth

(1 DoF), as shown in Figure 28.

Figure 28: Our T-Rex encompasses 5 degrees of freedom.

In the following, we demonstrate how TrussFormer allows non-

expert users to create such structures in six steps.

STEP 1: CREATING A STATIC STRUCTURE

As shown in Figure 29, this particular model was created by first

modeling the T-Rex as a static structure in TrussFormer. Our editor’s

ability to create static structures is based on TrussFab [42]: users design

the shape of their T-Rex using structurally stable primitives (tetrahedra

and octahedra).

65

Figure 29: Modeling the static shape of the T-Rex. Here, the user creates the jaws of the

T-Rex by attaching tetrahedron primitives through the steps (a, b, c).

STEP 2: ADDING MOVEMENT

To add movement to the static structure, users select the demonstrate

movement tool and pull the T-Rex head downwards, as shown in Figure

30. TrussFormer responds by placing an actuator that turns the T-Rex

body into a structure that organically moves and bends down. Together

with the Demonstrate movement tool, TrussFormer provides three

different approaches to animating structures, ranging from this (1)

automated placement (for novice users), through (2) placing elements

with predefined motion, called assets, to (3) manual placement (as users

acquire engineering knowledge). We discuss these in section

“4.3 Adding motion to the structure”.

Figure 30: (a) The user selects the demonstrate movement tool and pulls the T-Rex head

downwards. (b) TrussFormer responds by adding an actuator to the T-Rex body so that

it is capable of performing this type of motion. At this point, the system also places 9

hinging hubs to enable this motion (marked with blue dots).

66

STEP 3: STABILITY CHECK ACROSS POSES

During this step, TrussFormer also verifies that the mechanism is

structurally sound. In the background, TrussFormer finds the safe range

of expansion and contraction of the placed actuator by simulating the

occurring forces in a range of positions. If there is a pose where the forces

exceed the pre-determined breaking limits or the structure would tip

over, TrussFormer sets the limits for the actuator so it will not extend

beyond them. This check prevents users from producing invalid

configurations.

STEP 4: ANIMATION

To animate the structure users open the animation pane in the toolbar, as

shown in Figure 31. First, they control the movement of the structure

manually using sliders, to try out the movement. When they find the

desired pose, they simply add it as a keyframe to the animation timeline.

With this TrussFormer allows users to orchestrate the movement of all

actuators using a simple timeline/keyframe editor. In Figure 31 we

program a “feeding” behavior, where the T-Rex opens its mouth while

reaching down and waving its tail.

Figure 31: Animating the structure. Users set the desired pose using the sliders in the

animation pane and orchestrate the movement by placing key-frames on the timeline.

67

STEP 5: CHECKING FORCES DURING THE MOTION

Once a movement has been defined, TrussFormer computes the dynamic

forces. As shown in Figure 32a, the user creates an animation that moves

the T-Rex body up and down. (b) TrussFormer computes the forces

while T-Rex’s body comes back up quickly after dipping down; the large

acceleration of the long neck leads to very high inertial forces, exceeding

the breaking limit of the construction, (c) causing the structure to fail at

the indicated time point. These situations are hard to foresee because the

inertial forces can be multiple times higher than the static load in the

structure. (d) TrussFormer addresses this by automatically correcting

the animation sequence by either limiting the acceleration or the range

of the movement, assuring that the structure will now withstand the

movement.

Figure 32: Verifying the inertial forces: (a-b) The forces are increasing with the

acceleration of the structure. (c) The structure breaks when the direction of the

movement changes rapidly. (d) TrussFormer resolves this by making the movement

slower.

68

STEP 6: FABRICATION

When users are satisfied with their design (structure, movement, and

animation), they click the fabricate button, shown in Figure 33a. This

invokes (1) TrussFormer’s hinge generation algorithm, which analyzes

the structure’s motion and generates the appropriate 3D printable hinge

and hub geometries, annotated with imprinted IDs for assembly. In the

case of the T-Rex, the system exports 42 3D printed hubs, consisting of

135 unique hinging pieces. (2) Next, TrussFormer exports the created

animation patterns as a JSON file that can be uploaded for example to

an Arduino that controls the mechanism. (3) Lastly, it outputs a

specification, containing the force, speed, and motion range of the

actuators, in order to achieve the desired animation pattern. Users find

these actuators as standardized components.

Figure 33: (a) To fabricate our T-Rex model, TrussFormer exports: (b) the appropriate 3D

printable hinging-hubs, (c) the specifications for the actuators, and finally the animation

sequence as a JSON file for the controller.

69

4.2 WORKING PRINCIPLE OF TRUSSFORMER ’S KINETIC

STRUCTURES

Before we discuss how TrussFormer allows users to define the motion

path of the structure, we explain the underlying principle how these

variable geometry trusses [4] work, where actuators can be placed and

how their motion propagates.

A structure created in TrussFormer consists of unit cells, which can

be tetrahedra or octahedra. Each cell can contain one or more linear

actuators. When actuated, the actuators change the geometry of the cell

and thus move the entire structure.

First, as an example, Figure 34 illustrates how inserting an actuator

affects only its surrounding. (a) One way of thinking of the actuated

tetrahedron is as a rotary hinge, with a triangle face at each side (shaded

in gray). (b) Such structures can be extended by attaching a rigid

structure to each of the two faces (here two octahedra). As a result, the

two structures are hinging around each other. Since the motion is

localized, this type of actuator placement is intuitively graspable.

Figure 34: Attaching rigid primitives to (a) faces that do not contain an actuator (b) results

in simple structures with only localized deformation. This structure acts as a hinge

between the two octahedra.

Second, as illustrated by Figure 35, (a) we can produce more

complex kinetic structures by attaching rigid primitives to the faces that

contain an actuator (e.g., the one shaded in gray). (b) Now, the newly

70

placed primitive will also contain this actuator and therefore the result

is a structure that moves in whole, resulting in more complex behavior.

Figure 35: Attaching a rigid primitive (here an octahedron) to a face that contains

actuator results in a larger deforming structure.

The third way to propagate motion is to build structures where the

cells are interconnected through two or more moving faces. Figure 36a

shows an octahedron with one actuator in it. (b) We attach two

tetrahedra to the marked faces and place a second octahedron in

between them. Since the two original connecting faces are moving with

respect to each other, the two tetrahedra are moving as well, causing the

second octahedra to deform. The second octahedra require removing

one arbitrary edge (here on the top) to allow for deformation.

(c) Applying this principle users can propagate the movement of one

actuator through the truss.

Figure 36: The motion caused by one actuator propagates throughout the entire truss

beam, making it bend.

71

4.3 ADDING MOTION TO THE STRUCTURE

TrussFormer offers three ways for users to animate their structures: (1)

by demonstrating the desired movement, as we discussed in our

walkthrough, (2) using elements with predefined motion, which we call

assets, and (3) by placing actuators manually.

The first two strategies are better suited for novice users, since they

do not require knowledge about the mechanism, but rather focus on the

shape of the structure and the movement they want to achieve. The third

option is best suited for users with more experience, who have already

gained a deeper understanding of variable geometry trusses.

4.3.1 AUTOMATIC ACTUATOR PLACEMENT BY DEMONSTRATION

As we briefly discussed in the walkthrough section and in Figure 30,

TrussFormer enables users to create moving structures by offering

automatic actuator placement. Users can focus on only designing the

shape of their structure first. Then, they invoke the demonstrate movement

tool and drag the static structure in the direction they want it to move.

TrussFormer then replaces the edge with an actuator at the position

which best satisfies the movement.

To identify which edge should be replaced with an actuator

TrussFormer runs an exhaustive search by virtually replacing every

member with an actuator one by one. At every replacement, it moves

the actuator while measuring if the structure moved closer or further to

the desired target position. Finally, it compares all the results and selects

the actuator that produced the closest motion. A limitation of this simple

method is that it works by naïve approximation, i.e., that it does not

guarantee that the desired position will be exactly reached. To improve

these results, further optimization algorithms can be utilized, similarly

as demonstrated by Coros et al. [19] for planar mechanisms.

72

4.3.2 CREATING KINETIC STRUCTURES BASED ON ASSETS

Because the resulting motion of variable geometry trusses tends to be

hard to predict, TrussFormer encapsulates them into predefined sub-

assemblies, which we call assets. Assets connect to the existing geometry

through a dedicated triangle surface. This results in structures that

contain the asset’s movement which is localized and thus easy to

understand.

Figure 37 shows a selection of assets. The triangles marked in gray

are their connectors, i.e., the side that connects to existing geometry

when the asset is added to a structure. TrussFormer offers a basic

selection of assets, however, users can easily create their own asset

library by saving a custom asset into an asset folder.

Figure 37: A selection of assets: (a) tetrahedron with 1DoF, (b) “robotic leg” asset, (c)

hinging tetrahedra, (d) octahedron with 1DoF, (e) Stewart platform (6DoF), and (f)

double-octahedron performing “bending” motion.

Figure 38 illustrates the workflow enabled by assets: a simple walking

robot with six robotic legs. (a) Users start by creating the rigid body of

the robot from tetrahedra and octahedra blocks. They design it to offer

six connector faces, i.e., three on each side, (b) where they attach copies

73

of the robotic leg asset, shown in Figure 37b. (c) This results in an

autonomous walking structure.

Figure 38: (a) Users start the design by making the body of the walking robot. The

predesigned 2DoF “leg” asset is added to the side triangles 6 times. (b) The fabricated

robot.

The concept of assets is useful beyond the use of actuators. Figure

39 for example, shows a bike we designed around the hinge asset that

forms the steering column.

Figure 39: This bike’s steering column is based on the hinge asset, which is used without

the actuator in this example.

74

4.3.3 MANUAL ACTUATOR PLACEMENT

As users gain expertise in creating variable geometry trusses, they may

prefer to place actuators directly into their structures. TrussFormer’s

turn edge to actuator tool allows users to transform rigid edges into

actuators by simply clicking on them, as illustrated by Figure 40.

Figure 40: The “turn edge into actuator” tool allows users to turn any edge into an

actuator. Here user replaces one edge in the T-Rex’s head to make its jaws move.

We designed this tool deliberately as a “turn existing edge into

actuator” tool and not as a “place new actuator” tool. Normally, placing

a new actuator edge into an already rigid structure would not allow for

movement, however, by turning an existing edge into an actuator, users

are essentially adding a degree of freedom to the structure.

4.4 VERIFYING AND ADAPTING FORCES

Our system helps users to create the shape and the motion of large-scale

kinetic structures. To accomplish this, it helps users handle the dynamic

forces that occur when large structures move, such as the T-Rex in Figure

26.

TrussFormer enables users to (1) constantly monitor the forces that

occur within the structure at interactive rates. Furthermore, it

(2) validates the poses of the structure and adapts the motion range of

75

the actuators to not damage the model, and (3) automatically adapts the

user-defined animation sequence in case it breaks the structure.

To perform these tasks, TrussFormer takes into account the breaking

limits of the building materials. The model is considered broken when

the simulated peak stress value exceeds the entered breaking limit of the

building material. We acquired these values from fracture testing the

materials, in our case the plastic bottles, as described in TrussFab [42],

resulting in max. 85 kg compression and max. 135 kg tension. If users

decide to use different building materials, we recommend testing the

forces these elements can withstand again. However, we expect users to

share this information on platforms such as thingiverse.com.

4.4.1 CONTINUOUSLY VISUALIZING FORCES DURING ANIMATIONS

While the user animates the structure, TrussFormer is continuously

simulating the forces using its built-in physical simulation. The forces

are visualized as colored edges: red indicates compression, blue

indicates tension, while saturation signalizes the intensity of the force.

This allows users not only to preview artifacts that arise from their

current animation, e.g., the structure wobbling too much due to rapid

changes from pose to pose; but, more importantly, it allows them to

preview how the stress is distributed in the structure and even foresee

breaking points when rapidly actuated.

4.4.2 VALIDATING POSSIBLE POSES

After users have placed an actuator in their structure, TrussFormer

automatically determines their motion range, i.e., how far can it expand

without damaging the structure.

Figure 41 shows that the structure can break due to various causes,

such as the structure falling over, hitting the ground from too high of a

movement allowance, or simply exerting too much force on another

structural element (e.g., an edge).

76

To determine the limits of an actuator, TrussFormer iteratively

increases the expansion until the simulated model breaks. TrussFormer

then stores the previous valid expansion as the maximum length for that

actuator. This value is then set as the upper bound for the motion in the

keyframe editor. This way the user is never able to over-actuate them.

Figure 41: In the background, TrussFormer tests each actuator to see if its extension leads

to an invalid position, such as the structure tipping over, hitting the ground, or breaking

any structural elements.

This check is performed for each actuator individually. While a full

factorial cross-check would be necessary to detect damaging interaction

effects, unfortunately, such an exhaustive search does not scale well

with the increasing number of actuators and would deteriorate the

software’s interactivity. Therefore, TrussFormer still checks if the

structure breaks in the later animation step and offers automatic

correction.

4.4.3 AUTOMATICALLY ADAPTING FORCES

After users create an animation sequence using the keyframe editor,

shown in Figure 42a, TrussFormer continues to validate if the structure

can withstand user-defined accelerations.

As we previously demonstrated in Figure 32, TrussFormer predicts

that the T-Rex breaks if its neck is actuated too rapidly between a neck-

77

down and a neck-up pose. This happened due to the large inertial forces.

Since the structure is large, its mass is large as well. Forces that act on

the elements of the structure increase proportionally with the

acceleration of the movement (𝑭 = 𝑚𝒂). While the mass is a constant in

the structure, the acceleration is what TrussFormer can alter to prevent

it from breaking. When the model breaks in the simulation, TrussFormer

offers two options to reduce the occurring inertial forces, as shown in

Figure 42.

Figure 42: If the user-defined animation breaks the model, TrussFormer offers to

automatically reduce the speed or the motion range.

TrussFormer offers to fix the animation slopes in two ways: (1) by

reducing the speed of the motion, i.e., by stretching the time of the

animation, or (2) by reducing the range of the movement. TrussFormer

finds the valid actuation profiles by simulating the structure in the

background and gradually reducing the speed or the extension of the

actuation, depending on the users’ choice.

The predicted force values during the simulation are also used to

inform users about the properties of the actuators they need to buy to

fabricate their structures, i.e., the minimum force that actuators must

exert and the speed set in the animation. This force is defined as the

maximum force that we measure during the simulation while the

structure is performing the programmed animation.

78

4.5 MATCHING SIMULATED AND REAL FORCES

To match the predicted forces calculated by the physics simulation

engine, we measured the real forces occurring in our T-Rex model and

tuned our simulation based on these empirical measurements.

Figure 43: (a) We measured the forces on the bottom front edge of the T-Rex (b) using

a digital force gauge. (c) The measured forces agree with the simulated forces.

As Figure 43a-b shows, we inserted the external force sensor

(capacity: 5000 N, error: 0.5%) between two bottles at the bottom of the

T-Rex structure. We chose this element as it bears the largest forces. We

then actuated the T-Rex to move its entire head up to its highest position

and down again to its lowest position. Figure 43c shows the measured

and the simulated forces, in agreement with the forces we measured. We

acknowledge the differences due to the fabrication imprecision, such as

slack in the joints and friction.

79

4.6 TRUSSFORMER’S HINGE SYSTEM

A key element behind TrussFormer’s kinetic structures is the 3D

printable hinge system, that enables multiple edges to spherically pivot

around a node point. While traditional ball joints allow for spherical

motion, they are limited to connecting only two edges. To address this

shortcoming, TrussFormer uses the generic design of a spherical joint

mechanism [13], shown in Figure 44a, that allows for multiple edges to

pivot around the same center point, as they were connected via a

ball-joint. Figure 44b shows TrussFormer’s rendering of the spherical

joint mechanism, adopted for 3D printing.

Figure 44: (a) Spherical joint mechanism from [13] connecting 5 edges. (b) A segment of

TrussFormer’s 3D printable hinge design.

To achieve the motion that users designed, TrussFormer arranges

the necessary spherical joints automatically in the structure.

Traditionally, determining the required mobility of the joints is done by

evaluating the Grübler–Kutzbach mobility criterion. However, this

analytical approach is hard to fit for spatial (i.e., 3D) parallel

mechanisms, and it’s still subject to active research [50]. Therefore,

instead of attempting an analytical solution to this problem,

TrussFormer tests the motion of the user-defined structure by using its

built-in physical simulation and arranges the hinges heuristically. In the

following, we describe TrussFormer’s four-step hinge placement routine

on the example of an octahedron with one actuator, shown in Figure 45a.

80

STEP 1: V IRTUALLY ASSIGNING ALL POSSIBLE HINGES

As a first step, TrussFormer assigns the intermediate link connections of

the spherical joint mechanism, from Figure 44a, between all the edges

forming a triangle in the structure, as illustrated with blue lines in Figure

45b. This provides 2DoF to all the edges, as they were connected via ball

joints. This already gives a mechanically satisfying solution, however, it

can be further optimized. In variable geometry truss structures, most of

the edges are confined in triangles and larger rigid substructures,

therefore not all movements are possible. Placing unnecessary hinges

only adds complexity to assembly and reduces mechanical stability.

Figure 45: (a) Octahedron with an actuator, still with rigid hubs. (b) After the first

step, intermediate links are assigned inside all triangles, creating spherical joints.

STEP 2: IDENTIFYING RIGID SUBSTRUCTURES

To identify rigid substructures in the structure, TrussFormer now runs

the physical simulation and moves all the actuators simultaneously. It

observes the angular movement between the edges and if the angle

between two or more connected edges never changed, TrussFormer

considers them as a rigid substructure. Figure 46a shows the rigid

substructures identified in the octahedron, visualized in distinct colors.

The triangles containing the actuator are not considered rigid, since their

internal angles are changing. Figure 46b shows the result of this step on

the example of the T-Rex. Here, the rigid substructures consisting of

single triangles are left uncolored, for clarity.

81

a b

Figure 46: TrussFormer identified the rigid substructures (a) in the octahedron from

Figure 45, and (b) in the T-Rex.

STEP 3: REDUCING THE EXCESS OF HINGES

Now that TrussFormer knows which parts of the structure are rigid, it

can remove the unnecessary hinges between the edges which belong to

the same rigid substructure and don’t move in regards to each other. In

Figure 47 we show this step on our octahedron example. Between the

edges forming rigid substructures, the intermediate link connections

(before blue lines) are reduced to rigid connections (black lines). Rigid

substructures will still rotate with respect to each other. At this stage,

the final hinge chain is already found for the octahedron example and

the resulting 3D print is shown in Figure 47b.

Figure 47: (a) The intermediate hinge connections are reduced to rigid connections

where rigid substructures are identified (black lines). (b) The fabricated hinging hub of

the marked node of the octahedron.

82

STEP 4: RESOLVING IMPOSSIBLE CONNECTIONS

At this point, TrussFormer has already assigned an optimized valid

hinge configuration, however, not all the connections might be

physically possible to physically assemble. TrussFormer’s hinge design

has the limitation that it only supports one-on-one hinge connections, as

shown in Figure 44b. Three-way connections are not possible, i.e., three

parts cannot physically hinge around the same axis.

Figure 48: (a) Double-octahedral structure, where (b) violating three-way hinge

connections appear. (c-d) TrussFormer finds the valid configurations by heuristic

elimination and (d) chooses the structurally more stable closed chain.

However, after Step 3, there might be hubs violating this condition,

e.g., where three hinges are meeting at the same axis. We demonstrate

this case in Figure 48 on the example of the double-octahedra structure

with one actuator, similar to the one found in the body of the T-rex. In

Figure 48b we highlight the hub where three-way hinge connections are

present after performing Step 3. Fortunately, these connections are

redundant in TrussFormer’s kinetic structures, and they can be resolved

by eliminating some of the hinges, while still maintaining the hub’s

83

structural integrity, i.e., all the edges remain interconnected via a

continuous hinge chain.

TrussFormer resolves violating connections using a backtracking

algorithm that removes connections heuristically. After each removed

connection, it checks the validity of the resulting hinge configuration for

two constraints: (1) all edges around the node are still interconnected

directly or indirectly with each other, and (2) no more than two hinges

are connected at each axis. If these constraints are satisfied, a valid hinge

configuration was found. The algorithm continues until it finds all valid

configurations. If available, TrussFormer will select the configuration

with a closed hinge chain (Figure 48d) over an open chain (Figure 48c),

for stability reasons. The fabricated hinge for this example was shown

earlier in Figure 33b-c.

TrussFormer’s hinging-hubs can also be combined with TrussFab’s

rigid hubs. Such an example is shown in Figure 49, where a node

contains four rigidly connected edges combined with two hinging

connections.

Figure 49: Combining rigid and hinging connections in one hub.

STEP 5: GENERATING THE HINGE GEOMETRIES FOR 3D PRINTING

After determining where the hinges should be placed in the structure,

TrussFormer has all the necessary information to export the 3D printable

geometries in the form of OpenSCAD [137] files. These files contain

84

information about the angle and connector lengths of the hinging pieces,

as well as their imprinted IDs (as visible in Figure 48a). Users assemble

the hinging hubs by matching the corresponding IDs. These IDs also

contain information about the placement of the actual hub within the

structure, the IDs of the neighboring hubs, and the bottle type to be

inserted.

4.7 IMPLEMENTATION

To help readers replicate our results, we now describe the

implementation of the main components of the TrussFormer software

system and the hardware we used to actuate our prototypes.

4.7.1 SOFTWARE SYSTEM

TrussFormer builds on TrussFab’s for SketchUp [142], extending it with

movement-specific tools. TrussFormer’s system consists of three core

components, the 3D geometry exporter, the hinge placement routine,

and the simulation with force analysis, as illustrated in Figure 50.

Figure 50: TrussFormer’s system diagram.

85

To simulate the movement and the force distribution in the 3D

model, we use the physical simulation engine MSPhysics [93], a Ruby

wrapper for the C++ physics library Newton Dynamics [136]. To achieve

interactive performance, the only simulated components are the hubs,

the edges are just animated on the scene. The hubs contain all the

necessary information, such as weight, breaking force, and stiffness

determining how much hubs can move in relation to their neighbors.

User interface elements (e.g., the control or the animation pane) are

displayed in a SketchUp-integrated Web Browser View. We

implemented the UI in HTML and JavaScript to take advantage of UI

frameworks such as React [138].

4.7.2 CONTROL SYSTEM AND ACTUATORS

Figure 51 shows the hardware we use to actuate our T-Rex example. We

use pneumatic actuators interfaced with proportional valves (Festo

VPPE and MPYE series) that are controlled by an Arduino Nano. The

pneumatic cylinders have diameters from 25 to 35 mm and produce

forces between 390 N and 770 N. We use an Airpress HL 360 compressor

that can provide up to 8 bar of pressure.

Figure 51: Hardware setup for controlling the T-Rex with an Arduino, electronic pressure

control valves, and a compressor.

86

Our spider example in Figure 38 uses electric linear actuators similar

to those found in garage doors. These actuators have a motion range of

45 cm and move rather slowly: 0.03 m/s compared to the speed of a

pneumatic actuator that can reach 20 m/s.

4.7.3 BUILDING MATERIALS

For creating our models, we used refillable soda bottles and 3D printed

the hubs on an Ultimaker 3 3D printer using PLA material. To increase

stability, we set a 3mm wall thickness for our hubs. While the 3D

printing process is rather time-consuming (5-8 hours/hub) the assembly

of the hubs is quite fast (10-15min/hub). The overall structure is

assembled in a reasonably short time; our T-Rex took approximately 1-

2 hours for 3 persons.

We use plastic bottles as a building material as they are ecologically

friendly and commonly available all around the world. However,

TrussFormer also supports any other type of building materials. Users

only need to create and copy the 3D models of their material primitives

into TrussFormer’s material library folder.

To create more realistic-looking animatronic creatures, users can

also cover the structure with stretchable textile or other materials and

attach smaller features (e.g., ears, fingers, etc.) using 3D printing or other

fabrication techniques.

4.8 CONTRIBUTION, BENEFITS , AND LIMITATIONS

TrussFormer is an end-to-end system that enables novice users to design

and build large animated structures, that would otherwise be privilege

of industry, such as movie sets or theme parks.

TrussFormer helps users in the three main steps along the design

process. (1) It enables users to animate large truss structures by adding

linear actuators to them. It offers three tools for this purpose: manual

actuator placement, placement of assets performing a predefined

87

motion, and creating motion by demonstration. (2) TrussFormer

validates the design in real-time against static forces, static forces across

all poses, and dynamic forces. (3) TrussFormer automatically generates

the necessary 3D printable hinges for fabricating the structure. Its

algorithm determines the placement and configuration of the hinges and

their exact geometry.

To validate our system, we created a series of example objects,

including a 6-legged walking robot and a 4m-tall animatronics dinosaur

with five actuators, comprising 17 static and 25 hinging hubs.

TrussFormer is subject to the following limitations:

(1) TrussFormer’s simulation relies on the Newton Dynamics physics

engine [136], which offers only limited accuracy for engineering

purposes. Higher precision could be achieved by replacing Newton

Dynamics with a scientific-grade physics engine (e.g., Vortex Studio [143]

or Algoryx Momentum [119]). (2) When deployed, TrussFormer should be

provided with additional safety features, such as the option to use

stronger materials and additional safety margins in the computation.

88

5

TRUSSCILLATOR: HUMAN-POWERED

HUMAN-SCALE DEVICES

The related work in personal fabrication offers numerous examples for

creating so-called kinematic systems [53], that allow users to design and

fabricate mechanisms that perform user-specified movement patterns.

Examples include the 3D-printed pantograph from Metamaterial

Mechanisms [34], the animatronic T-Rex from TrussFormer [43], and the

animated cheetah by Coros et al. [19], reproduced in Figure 53a.

Figure 52: (a) Using Trusscillator designers specify the desired motion experience in

terms of amplitude, speed, and physical effort; while the system responds by adjusting

the coil springs so as to produce the desired behavior. (b) Here, the resulting interactive

dinosaur swing requires two children to synchronize their movement so as to make the

sculpture's head wiggle.

89

We build on this line of work and extend it towards machines that

are human-powered, such as playground equipment, workout devices,

and certain types of kinetic installations. “Human-powered” means that

these devices need to be operated with the limited power that a human

or, in some cases, a child can produce.

Unfortunately, when it comes to designing devices where limited

power plays a central role, the aforementioned systems for designing

kinematic machines are of little help. Without support from a

specialized software system, human-powered devices continue to be

designed using time-consuming design cycles that iterate back-and-

forth between guesswork and physical prototyping (see section

“5.3 Expert interviews”).

Figure 53: (a) The cheetah mechanism created using [19] is only resembling the

movement pattern of a real one, without considering the forces involved during motion.

While (b) energy conservation makes a real-life cheetah’s* gallop efficient: (c) the elastic

tendons store and release energy in every step.

In this chapter, we describe Trusscillator, a software system that enables

users to create human-scale, human-powered machines, such as the

playground equipment shown in Figure 52. Trusscillator achieves this

by allowing users to add springs to their designs. Springs have the ability

to transform movement (kinetic energy) into compression (potential

energy) and transform that back into movement, as illustrated in Figure

53b. Consequently, springs keep devices, typically referred to as dynamic

* https://www.dkfindout.com/us/animals-and-nature/cats/inside-cheetah

90

systems [58], in motion with little effort and thus allow even larger

machines to be human-powered. The resulting devices do not bear a lot of

similarities with kinematic machines, such as the kinematic cheetah

from Figure 53a, but instead bear more resemblance with an actual

cheetah, which also uses springs (called tendons) to run efficiently [55]

(Figure 53c).

To allow designers to create human-powered movement,

Trusscillator offers a novel set of tools, specifically designed for

designing dynamic experiences (Figure 52a). These tools allow

designers to focus on user experience-specific aspects, such as motion

range, tempo, and effort while abstracting away the underlying

technicalities of eigenfrequencies, spring constants, masses, and energy

use. Since the forces involved in the resulting devices can be high,

devices designed using Trusscillator are made from steel, as shown in

Figure 54. Trusscillator helps users fabricate from steel not only by

picking out appropriate masses and springs but also by (a) producing

stencils, (b) placing temporary connectors that help (c) pre-assembling

the structure for (d) welding.

Figure 54: Given the scale of the involved forces, the structures created by Trusscillator

are made from steel. Trusscillator supports steel truss fabrication by (a) generating

stencils that show where to attach the (b) temporary connectors, (c) that hold steel rods

in place for (d) welding.

5.1 WALKTHROUGH

To demonstrate Trusscillator’s workflow, we present a scenario in which

two designers of playground equipment are designing the dinosaur-

inspired device shown in Figure 52. The two designers, tasked to design

91

a model for the playground associated with a natural history museum,

are ideating around an interactive sculpture of a brachiosaurus.

5.1.1 DESIGNING A BRACHIOSAURUS SWING FOR TWO

As shown in Figure 55a, the playground designers start by creating a

rigid dinosaur sculpture by stacking truss-primitives, specifically

tetrahedra, and octahedra (building on TrussFab [42]). They place a

ragdoll figure onto the model, which inserts a matching seat for a child.

(b) Given that Trusscillator will fabricate the model from steel,

Trusscillator allows building models of any height. However, one of the

designers is worried about safety issues resulting from the seat being

located high up, so they place the dinosaur into “imaginary water”, i.e.,

they remove its legs by deleting truss elements.

As illustrated by Figure 55c, the two designers now turn the static

structure into a very basic swing: they select the spring tool and use it to

transform the three shown rods into coil springs. Trusscillator responds

by placing hinges at the adequate points below the seat and

acknowledges this by briefly highlighting the now movable part (in

blue). The dinosaur's neck is not a hinging component and the sculpture

has become a simple interactive device. A child can now bob back and

forth, causing the dinosaur’s neck to wiggle.

Figure 55: (a) The initial design of the brachiosaurus playground object is created using

rigid truss primitives. (b) Designers adjust the shape and lower the height for safety

reasons. (c) Using the spring tool, designers enable parts of the model to move. The

newly created moving part of the model gets briefly highlighted in blue.

92

As illustrated by Figure 56a, Trusscillator displays the properties of

this basic swing using what we call the motion bar: an average 6-year-

old should be capable of making it rock roughly by the amplitude

indicated by the middle curved blue bar labeled “6”. Designers can play

back a simulation of the child rocking by clicking on this bar.

Note that these properties are not coincidental: Trusscillator

computed the swing the moment it was created and has picked a spring

that is “just right”, i.e., neither so soft as to that a 12-years-old could max

out, nor so rigid as to that a 3-year-old would be unable to move it.

Figure 56: (a) Trusscillator initiates the model with a valid spring configuration. The

resulting oscillating motion is summarized in form of a motion-bar above the user,

calculated for multiple age groups. (b) When designers enlarge the motion space by

dragging the scale handle, (c) Trusscillator finds a combination of softer springs that will

produce the requested amplitude.

The designers decide to further fine-tune the experience. As

discussed, the movement of a 12-year-old is ok per se (dark blue bar),

but they are concerned that the dinosaur head to reach down far enough

to hit someone. As shown in Figure 56b, the designers reduce the

device’s amplitude by grabbing the handle attached to the motion bar and

dragging it inwards. Trusscillator responds by re-running its

optimization engine and replacing the springs in the model with springs

that produce motion in the request range (Figure 56c).

The reduction in amplitude has now caused the ride to oscillate

faster (0.6s period, indicated on hover). As shown in Figure 57a,

Trusscillator considers this uncomfortable and displays a notification (in

the shape of a metronome, together with the word “fast”). The designers

93

click the notification to switch it to comfortable. Trusscillator responds by

re-running its optimization to find a frequency in the range that is

considered a pleasant rocking frequency (0.8-1.2s), which it achieves by

making yet another adjustment to the springs, as well as by adding a

weight to the head of the dinosaur as shown in Figure 57b.

Figure 57: (a) When designers change the tempo widget from slow to comfortable

Trusscillator runs its optimization and (b) adds additional weight to the tip of the head

to reduce the resonant frequency and tunes the springs again to maintain amplitude.

At this point, designers notice a third concern: the effort widget

suggests “laborious” (Figure 58a). This means the device requires more

than 8 cycles to reach maximum amplitude, bearing the risk of children

losing interest before getting it into full swing. One of the designers

proposes clicking the effort widget to reduce the effort (see section 5.4.5),

but the other designer sees the opportunity to add another level of

excitement and challenge to the design by bringing in a second child. As

illustrated in Figure 58b, they add a second seat and yet another spring.

Figure 58: (a) Reducing the effort would require cutting the weight of the structure, which

designers can’t do. (b) Instead, they add one more seating position. The final design

94

comprises three spring-coupled inverted pendula, the head, middle seat, and tail.

(c) Children induce resonance by synchronizing their motion.

This update changes the widget from laborious to just right for both

children, as they now both contribute power. More importantly, the

resulting device has now created an additional challenge—a social

challenge: First, it requires the first child to recruit another child as

confederate to produce in order to successfully get the device to reach

peak amplitude. Second, it requires the two children to synchronize

their movement (or to decide to play against each other). Trusscillator

allows for this by running its optimization procedure to tune the two

seats to similar eigenfrequencies. To get a sense of what the resulting

synchronization will feel like, the designers invoke simulations of the

resulting movement (by clicking on the motion bars for each of the three

age groups).

The designers are excited about this new perspective and move on

to a physical prototype. They hit the export and fabricate button and

proceed to fabricate their device.

5.1.2 FABRICATION PIPELINE

Trusscillator now exports the designed structures for fabrication from

steel rods, steel spheres, and steel springs, which users assemble using a

power drill, an angle grinder, and an electric welding device.

The main challenge in assembling welded structures is to get all

elements properly aligned prior to welding, as they cannot be adjusted

anymore once a piece is welded. Trusscillator achieves this by

supporting users in first creating a provisional assembly; only when

everything is in place do users start to weld.

As a first step, Trusscillator produces a list with the lengths of

required steel tubes, the number of steel balls to be purchased, and a list

of the steel springs to be purchased (from a commercial spring catalog

[129]).

95

Based on these elements, the fabrication process continues as

illustrated by Figure 52c-f: (c) Trusscillator generates stencils for

marking the connection points on the nodes-spheres. (d) Using the

temporary connection system (e) users set up the provisional structure,

and (f) finally weld the entire structure. Trusscillator supports this

process as follows.

Trusscillator generates stencils as illustrated by Figure 59. (a) To

minimize the resulting gap between rod and sphere, thus maximizing

the quality of the welded connections, Trusscillator helps users arrange

rods and spheres so that the rods hit the spheres at a right angle. (b) To

show users where on sphere connect with rods, Trusscillator generates

custom stencils that mark the so-called incidence points. Stencils form

star-like shapes and Trusscillator exports them in SVG format. Users

print and cut stencils manually using scissors or they send the SVG to a

knife cutter or laser cutter. (c) Users attach a stencil to a sphere (using a

magnet) and wrap the arms around the sphere so that each arm marks

one incidence point. The stencil also displays node IDs and rod IDs,

clarifying the placement of the edges. Users transfer this information

onto the spheres by marking the incidence points through small holes in

the stencil. (d) Now users drill 6mm holes at the marked incidence

points.

Figure 59: (a) Trusscillator exports this node in the 3D model (b) in the form of custom

stencils. (c) Users mark one spot on the sphere, then attach the stencil at that point using

a magnet, allowing them to mark the remaining incidence points. (d) Users then set up

a stand-up drill with a round ring as a jig, and drill the spheres.

96

Temporary connectors: Holding and welding the pieces in place is

a challenging task, even for experienced welders. To overcome this

difficulty, Trusscillator offers a system that helps pre-assemble the

structure, allowing users to position all rods at the right places and at

right angles with respect to the spheres before welding starts. For this

purpose, we designed a thin metal connector piece that on one side

hooks into the holes of the node-sphere, while its other side forms a

cantilever spring that fits tightly into the metal tubes and resists slipping

out, as shown in Figure 60a. For a secure connection, two of these metal

pieces are inserted in every hole with opposite hook orientation, so none

of them will be able to escape the hole when the tube holds them

together (Figure 60b-c). This way they are holding the structure

temporarily but firmly together for welding (Figure 60d). These

connector pieces can be produced in a local metalworking shop using

CNC machinery. They are considered as consumable material that stays

inside the structure after welding.

Figure 60: Trusscillator offers a temporary connector system to help position the edges

for welding.

This workflow of creating drilling stencils and using custom

temporary connectors is our contribution to ease the otherwise hard to

weld truss structures.

Spring telescopes and revolute hinges: To embed the off-the-shelf

springs into the structure, users now create simple telescope elements

by fitting two matching tubes into each other, as shown in Figure 61a.

The metal discs at the two ends encompass the springs and prevent their

97

buckling. These discs are then welded on the rods at a predefined

position, to hold the spring in the right position.

As illustrated in Figure 61b, users mount spring telescopes into the

structure by cutting a slit into a steel sphere. The corresponding holes

for the axle-screw are also contained by the stencils.

As illustrated by Figure 61c, users now create revolute-joints by

drilling large holes into the node spheres where a tube can pierce

through and form an axle. To fit two hinging parts together Trusscillator

slightly insets the nodes of one part (here the backrest of the chair), so

they can fit between the two outer nodes of the structure. Figure 61d

shows the finished assembly of a chair model with a springy backrest.

Figure 61: (a) Spring-telescope fabricated using two fitting tubes. (b) Slit opening on a

sphere for inserting the telescope. (c) Revolute-joint connection. (d) Assembled chair

model with a springy backrest.

5.2 DESIGN SPACE

We have used Trusscillator to design a wide range of devices. The

samples are shown in Figure 62 including swings featuring 1D (b, e, j,

m), and 2D motion (a, c, f, g), as well as kinetic installations (h, k) and

balancing workout equipment (i).

98

Figure 62: Some of the designs we created using Trusscillator.

While some of the devices feature collinear/coplanar spring

arrangements (such as the brachiosaurus from our walkthrough), others

create 2D motion paths, such as the “bird swing” shown in Figure 63.

Figure 63: This “bird-swing” structure was designed to allow children to swing in two

dimensions and influence each other’s experience.

We created most of these models following the workflow we

presented in the walkthrough section, i.e., we started by making a static

shape and then added movement later (“shape-driven” design).

However, other designs we created using a workflow that starts out

with an already moving structure. As illustrated in Figure 64,

99

Trusscillator supports this by offering predefined moving elements,

such as a hinged tetrahedron.

Figure 64: Building a model based on primitives containing springs speeds up the design

process. Here, the chair model is constructed using a tetrahedron with one spring and

two hinges in only three steps.

5.3 EXPERT INTERVIEWS

Before we started designing Trusscillator, we conducted semi-

structured interviews with 3 professional playground designers (P1-P3,

all male, between 40-55 years) recruited through purposive sampling.

They had 20, 6, and 12 years of field experience respectively in a publicly

listed company. Our objective was to learn about the opportunities and

challenges that playground designers face, so we could address these

using Trusscillator.

Before the interview session, we briefed the participants on the

concept that we were interested in and the general workflows we

wanted to support. Questions for the interview included the existing

design workflows that the participants followed, in particular, their

strategies of ensuring the users’ safety, engagement, and tailoring their

solutions to fit the needs of specific age groups. The interviews lasted

between 90-120 minutes. All the interviews were audio-recorded with

the participants’ informed consent. We analyzed the interview

transcripts using thematic analysis.

100

All three participants started by explaining their current workflow.

They design using conventional CAD software (Revit [122], SketchUp

[142], Fusion360 [120]), after which they validated and adjusted their

designs against various safety standards and fabrication requirements.

All three participants pointed out the absence of tools that can support

the design of experiences.

P2 explained: “When creating equipment based on springs, we

choose from a small ballpark of well-tested [very stiff] springs. We just

assume that they’ll work OK when we try it out. In case [they do] not,

then we need to order a new set of springs. As a result, many of the

spring-based toys at playgrounds are very hard to move, i.e., very

restricted in their motion”.

P1 gave us insights into the standards and norms that need to be

taken into account. He also explained that different age groups fall into

different safety categories. However, all equipment has to be designed

safe for all age groups: “We like to create exciting toys. Having a certain

level of danger is not inherently bad, as long as [the children] are made

aware of that danger by design. This is how they learn to assess risk.”

P3 saw potential in enabling a do-it-yourself approach: “Such tools

could enable developing countries to build cheap playgrounds, that are

not only fun, but the software could ensure that safety standards are also

satisfied.”

Our key insight was that current design tools tend to focus on

appearance, safety, and fabrication-related aspects. In contrast,

participants expressed their desire to support not just the necessary

technicalities in the design, but for designing the experience as well. This

formed the basic objective for the design of our Trusscillator system.

5.4 ALGORITHMS AND IMPLEMENTATION

The Trusscillator system is implemented in the form of three main

modules: (1) interactive editor frontend, (2) simulation server, and (3)

101

exporter for fabrication. In order to allow our readers to replicate our

results, we reproduce the underlying implementation and algorithms as

follows.

5.4.1 INTERACTIVE EDITOR FRONTEND

Trusscillator builds on the editor components of TrussFab [42] and

TrussFormer [43], which provide the core functionality to create,

save-load and export static and kinematic structures. Both the editors as

well as, Trusscillator’s frontend as well, are implemented as a plugin for

SketchUp Version 17 [142] using the Ruby programming language.

In particular, Trusscillator’s frontend extends Sketchup with UI

elements that specifically refer to oscillating devices: (1) the motion-bar

that users can drag to scale the motion range or click to play back the

corresponding simulation sequence, (2) the tempo and effort widgets,

and (3) the tools that add springs and hinges to the design.

To assist the users in placing the springs at the appropriate position,

the Trusscillator frontend allows invoking a rigidity detection, which we

implemented based on Zhang et. al. [114]. Using this approach,

Trusscillator informs users whenever a new moving part has been

enabled or warns users when a placed spring is rigidly confined.

While the front end takes care of modeling tasks and user

adjustments, the oscillation characteristics and spring solutions are

provided by the simulation server.

5.4.2 S IMULATION SERVER

We implemented the simulation server in the Julia programming

language [10] combined with the packages DifferentialEquations.jl [70]

and NetworkDynamics.jl [49]. The Julia language is geared towards

numerical computing and aims to combine the execution speed of low-

level programming languages with the expressiveness of high-level

languages.

102

The two central advantages of using this stack for Trusscillator are:

(1) The abstraction of Julia and DifferentialEquations.jl enables us to

choose from a large library of solvers and choose the best

performance/accuracy trade-off. (2) With the Just-in-time-compilation

capabilities of Julia we generate efficient machine code for every given

model without the need of introducing a separate compilation step, as it

would have been necessary for similar systems like Modelica [25].

Trusscillator simulates the dynamic behavior by formulating a

continuous-time system of differential equations. Such differential

equation systems provide a robust solution for modeling systems where

maintaining energy constraints plays a crucial role, even in the case of

fast oscillations (unlike discrete-time models, as commonly found in

real-time physically-based simulations). The system uses highly

optimized variable step solvers to obtain a time-domain solution of the

motion that ensures that the result stays within specified tolerances.

Using this approach, we have implemented a custom simulation

package that can simulate the dynamics of arbitrary spring-damper-rod

networks.

As illustrated by Figure 65, Trusscillator’s simulator and optimizer

package runs as a stand-alone server and communicates via HTTP with

the UI and the Sketchup Plugin. Sketchup transfers the model, encoded

as a JSON string, to the simulation server. It contains the graph

representation of the structure, including the lengths, spring and user

positions, and the state of the requested behavior. For running a

simulation, the server derives a system of equations from this structure

by mapping the input graph structure onto simulation components,

such that the entire model can be expressed in the following form:
𝑑𝑢

𝑑𝑡
=

𝑓(𝑢, 𝑝, 𝑡), where u is the state vector of the system, p is the parameter

vector, and t is the time, as follows from [70]. This representation treats

all the nodes essentially as ball-joint connections with point masses. For

103

any arbitrary structure, the state of the system is uniquely defined by the

positions and velocity of individual nodes.

Figure 65: Trusscillator’s high-level architecture.

With NetworkDynamics.jl, we provide a graph structure and specify

the respective functions for every component separately. Here, we

specify four components: nodes, spring-dampers, rigid edges, and

fixtures. These components are mapped 1:1 from the model created in

the editor.

Node component is assigned to every node and together they define

the state of the structure. They compute their movement from the forces

of adjacent edges, their mass, and their actuation. Every node has a state

vector that contributes to the global system state. It is defined by 𝑢 =

[𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 , 𝑣𝑥 , 𝑣𝑦, 𝑣𝑧], where 𝑟 is the 3D-displacement vector and 𝑣 is the

velocity vector.

According to the formula above, we need to provide a function that

returns the derivative of the state vector u, given any state vector (for

reference, the derivative of displacement yields velocity, and the

derivative of velocity yields acceleration). Computing the velocities is

trivial, as they are already part of the function’s input vector u. For

obtaining the accelerations, we evaluate the term

𝑎⃗ =
∑ 𝐹𝑒𝑑𝑔𝑒

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑒𝑑𝑔𝑒∈𝐸

𝑚𝑎𝑠𝑠
+

𝐹𝑎𝑐𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑚𝑎𝑠𝑠
+ 𝑎𝑔𝑟𝑎𝑣𝑖𝑡𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

104

where E is the set of the adjacent edges with their corresponding force

vectors 𝐹⃗𝑒𝑑𝑔𝑒 (see rigid edge components on how we obtain these values).

To account for gravity, we also add a global gravitational acceleration

force. Furthermore, we add an actuation force 𝐹⃗𝑎𝑐𝑡, in case the node has

a ragdoll placed onto it (see section “5.4.3 Simulating human actuation”).

Thus, the result that we return to the solver is:

[𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 , 𝑎𝑥 , 𝑎𝑦, 𝑎𝑧] =
𝑑𝑢

𝑑𝑡
.

Spring-damper components return the reaction force of a spring

component, as given by Hooke’s law and viscous damping. They take

the state vectors of the two nodes they connect and calculate a resulting

force vector to both nodes as an output. We calculate the overall force

by taking the sum of the spring force and damping: 𝐹𝑒𝑑𝑔𝑒 = 𝑘 ·

(𝑥 − 𝑙) − 𝑑 · 𝑣 , where k is the spring constant, l is the uncompressed

length of the spring, d is the damping coefficient, x is the distance

between the two connecting nodes and v is the scalar velocity along the

edge vector. The latter two are directly calculated from the connecting

nodes’ state vector. The resulting scalar is applied along the edge

direction and presented as Fedge to the nodes.

Rigid edges are modeled as very stiff (essentially not movable)

dampers, analogous to the damping term of the spring-damper

component. They enforce a constant distance between the nodes.

Fixtures are anchor points of the structure, indicated by pods in the

editor. From the perspective of the simulation, these simply expose a

state vector with constant positions and without any velocity to the

edges.

Finally, to run the simulation, we need to provide valid initial

conditions i.e., a start assignment of the system’s state vector to start the

simulation. For this, we obtain the positions of each node directly from

the client and set all velocities to zero.

105

5.4.3 S IMULATING HUMAN ACTUATION

By default, Trusscillator simulates the structure behavior for three age

groups: 3, 6, and 12 years old (unless the user specifies otherwise). For

approximating how children will interact with the structure,

Trusscillator applies a periodic actuation force at the ragdoll’s position.

While an exact behavior would be hard to predict, Trusscillator assumes

that the net power that a child exerts over time is roughly constant.

Trusscillator assumes a 3-year-old to weigh 15 kg and output 30 Watts,

a 6-year-old to weigh 25 kg and output 45 Watts, and a 12-year-old to

weigh 40 kg and output 75 Watts, based on data from [64] and [23].

The actuation force is then applied in the direction of the actual

velocity vector. To make sure that this force acts naturally on the system,

respecting its natural frequency, we apply this force only during the

acceleration phase of the movement. This behavior roughly mimics how

humans push a swing back and forth. The value of this force is then

calculated from the formula of power 𝐹𝑎𝑐𝑡 =
𝑃𝑐𝑜𝑛𝑠𝑡

|𝑣⃗⃗|
, to respect the

constant net power input over time. To initialize the motion of the

structure, Trusscillator simply applies a short push to set the structure

in its natural oscillation.

5.4.4 EQUILIBRIUM INSTANTIATION

If the system would simply apply spring lengths from the catalog or use

the edge length, the structure would immediately deform under its own

weight and, therefore, deviate from the user’s design intent.

Trusscillator enables the creation of structures in their equilibrium

positions without exposing its users to implementation details of

uncompressed spring lengths or their static compression at rest. To

achieve this abstraction, Trusscillator calculates, how much a spring

needs to be pre-compressed, to ensure that they hold up the weight of

the structure.

106

Trusscillator determines the level of pre-compression for static

equilibrium by checking how the structure behaves without any

adjustment. It runs a short-time simulation (e.g., 0.1s) and measures the

resulting velocity along the spring vectors. Then it adjusts the springs'

uncompressed lengths in proportion to this velocity to counter the initial

movement. Trusscillator repeats this step until the process converges

and the structure stops moving.

The resulting spring lengths are provided for the fabrication process,

as well as, passed on to the simulation. Making the springs hold up the

structure ensures that no unwanted initial potential energy gets

introduced at the beginning of the simulation and actuates the structure

beyond our model.

5.4.5 TRANSLATING AMPLITUDE , FREQUENCY , AND EFFORT INTO MASS ,

SPRING , AND DAMPER CONFIGURATION

The main objective behind Trusscillator is to allow users not only to

design and build large-scale human-powered structures but also to help

them to get the physical properties “right”. The key idea here is to shield

users from the underlying physics perspective (where devices are

considered mass-spring-damper systems, see below) and to instead, let

the users interact in user experience-related dimensions they are familiar

with, i.e., range of motion (aka amplitude), frequency of the oscillation

(aka tempo), and the time/energy required to swing up the device (aka

effort), as illustrated in Figure 66a. For these input dimensions,

Trusscillator determines spring constant and mass configuration to

satisfy the user’s design intent. The rough relationship between the

mechanical properties and the experience attributes is illustrated in

Figure 66b.

107

Figure 66: (a) The mechanical properties of the structure are defining the experience

attributes. (b) The correlation between the mechanical properties and the motion

experience (amplitude, tempo, and effort).

Trusscillator acquires the amplitude, tempo, and effort attributes by

running a simulation sequence. To exemplify this process, we take the

simple bobbing saddle model from Figure 66a, fit with a catalog spring

with the stiffness of k = 3376N/m, and damping d = 50 Ns/m, as shown

in Figure 67a, and run the simulation for a 12-year-old user (40kg, 75W).

During the simulation, the human-mimicking force, described in

chapter 5.4.3, starts to actuate the device and the amplitude is increasing

as the energy is being accumulated in the system, as shown in Figure

67a. Consequently, the velocity of the movement also keeps increasing.

However, proportionally to the velocity, viscous damping starts to

increase (𝐹𝑑𝑎𝑚𝑝 = 𝑑 · 𝑣), and this force is counteracting the movement.

Figure 67: (a) Trusscillator simulates the (b) excitation of the model until the point when

it reaches an energy equilibrium – maximum amplitude. (c) The time after the velocities

won’t increase anymore is considered as the effort metric. (d) The peak of the frequency

spectrum determines the tempo metric.

108

With the increasing velocity, the damping action is dissipating more

and more energy into heat; up until the point when the amplitude and

velocity are so high that all the input energy of the user is being

consumed by damping. The orange line in Figure 67b indicates this time

point when the oscillating system has reached the energy equilibrium

and the amplitude remains constant. From this state the following

attributes are extracted:

Amplitude: Trusscillator takes the largest amplitude from the

simulated movement coordinates by finding out the maximum distance

between any two points in the time-series for the node of interest. For

the example above, it shows that the tip of the child’s head will move

about a 1m arc.

Effort: The time required to reach the energy equilibrium (ramp-up

time) is what Trusscillator takes to estimate the effort required to swing

up the device. Specifically, we take the amplitude measurements and

compare at which point in time the occurrence of the largest amplitude

drops below a 15% margin from the largest amplitude. The diagram in

Figure 67c shows the velocity increase has stabilized after around 3.5s.

Trusscillator interprets this effort as easy (up until 5s ramp-up time).

From 5s to 10s it is considered just-right and above 10s is laborious, based

on our observation of common swinging behavior. This information is

then displayed in the effort widget to the user.

Tempo/Frequency: Trusscillator analyzes this 3D velocity data from

Figure 67c using Fast Fourier Transform (Figure 67d) and searches for

the global maximum. In this example, the structure oscillates with the

dominant frequency of 1Hz. This result is then classified as comfortable

(0.5-1.5 Hz) based on input from [39]. Higher frequencies are classified

as shaky, lower are slow. This information is displayed to the user in the

tempo widget.

109

5.4.6 OPTIMIZATION

To change the motion experience, Trusscillator has access to modify the

two mechanical properties, namely mass (by adding weights to the

structure) and stiffness (by choosing a spring from a catalog). We

assume damping to be fixed as an inherent property of the material of

the coil springs. This results in a challenging limitation for tuning the

experience, where not all the criteria can be satisfied at all times. For this

reason, Trusscillator utilizes a sampling-based optimization approach.

Figure 68 illustrates Trusscillator’s optimization procedure, which is

loosely inspired by the simulated annealing strategy. First, the algorithm

searches for a viable baseline configuration. It assumes one global spring

constant for all springs in the structure. It covers the range between

3kN/m and 20kN/m spring in intervals determined by the preset

resolution (e.g., 10). After each simulation, we evaluate the simulation

runs with the target metrics that we want to optimize and assign a

distance to every sample using the distance function. We store the best

(i.e., closest result) and proceed with optimizing the springs with a

higher resolution one by one. We proceed analogously to the global

sampling, only this time we don't consider the full spectrum of springs

but only a window around the currently best assignment (e.g., ± 2kN/m),

and every sample is being simulated with a range of additional masses.

After every sampling round, we store the best parameter assignment

and resume it for the next spring. After all the springs have been

processed, we return the best matching parameter assignment of the last

round.

 This algorithm returns in O(n) sampling steps, where n is the

number of springs, assuming that sufficient computing resources to run

all simulations for a given sample in parallel are available. Parallelizing

the simulations within one sampling round and reducing the

dependencies of consecutive steps is key for reducing response times

and enabling interactivity.

110

Figure 68: Spring optimization procedure.

For determining whether a design matches the expectation of what

the user chooses, we define a distance metric that can be calculated from

the simulation result: ∑ 3 ∙ ∆𝐴𝑐 + ∆𝑓𝑐 + ∆𝑒𝑐 + σ(𝑓)𝑐 ∈ 𝐶 , where 𝐶 is the set

of children and ∆𝐴𝑐 , ∆𝑓𝑐 , ∆𝑒𝑐 are the normalized differences of

amplitude, frequency, and effort between target and measured data for

the respective child. We emphasize the amplitude constraint with an

additional weighting factor, as it is critical for the mechanical function

of the structure. The last term (σ(𝑓)) incentivizes structure where

multiple children that can achieve resonance by increasing the distance,

where the standard deviation of the measured frequencies at the child’s

nodes is high. The corresponding algorithm works as follows:

ALGORITHM 1: Spring optimization

best_parameter_vector = nothing

sampling_resolution = get_number_of_workers()

available_additional_masses = [0, 5, 15]

global_sampling = sample_all_springs(model, range(1kN/m, 20kN/m,
length=sampling_resolution))

best_parameter_vector = select_best_guess(global_sampling)

for spring in springs

 spring_constant = get_spring_constant(spring, best_parameter_vector)

 local_samples = sample_spring_and_masses(model, spring,
range(spring_constant - 2kN, spring_constant + 2kN, length= sampling_resolution),
available_additional_masses)

 best_parameter_vector = select_best_guess(local_samples)

end

return best_parameter_vector

111

For optimization, we only consider the oldest specified age group

(here 12 years), as that age group exhibits the most extreme behavior,

especially in terms of amplitude.

Before returning the information back to the client, Trusscillator

takes the closest matching springs from an online vendor catalog [129],

configures the structure with that spring, and runs the simulation for all

age groups.

We note that when optimizing for multiple parameters the

algorithm might overwrite previously set values, in case can’t satisfy all

criteria; therefore, navigating this multi-dimensional parameter space is

not always a straightforward process, but rather an open-ended

exploration. Alternative UI solutions for such high-dimensional design

exploration problems have been proposed by Yue et al. [112].

5.4.7 EXPORTING STENCILS

Trusscillator renders the stencils using the parametric modeling tool

OpenSCAD [137]. The key challenge behind this stencil design is that the

longer an “arm” is, the larger the potential error caused by a user

shearing the material while wrapping it around the sphere. We

minimize this effect by choosing a star-like topology, where one

incidence point acts as the center based on which all other incidence

points are being referred. This prevents errors from propagating, as

would be the case with designs that daisy-chain incidence points. Our

algorithm picks the center point so as to minimize the distances to the

other incidence points.

5.5 VALIDATION

To validate Trusscillator’s functionality, we designed 15 models (Figure

62), including two models that were fabricated physically, i.e., the

“brachiosaurus” in Figure 52, the “bird swing” in Figure 63.

112

Trusscillator allowed a team of two to design, cut, drill, assemble, weld,

and paint each model in 2-3 days.

5.5.1 S IMULATION ACCURACY

We conducted a technical evaluation validating the accuracy of

Trusscillator’s simulation, in which we compared the acceleration

response measured for our “brachiosaurus” device with the acceleration

response predicted by our simulation.

Figure 69 (left) shows the evaluation setup. Three IMU loggers (G-

Sensor Logger [127]) were placed on the three moving parts of the

dinosaur swing, recording 60 data points per second. We measure the

"step response" of the mechanism in response to pushing the dinosaur

head node upwards and then rapidly releasing it, as well as the response

to pulling the “chin” downwards and releasing it. We also measured the

peak force applied to the system using a SAUTER HP-5K digital force

sensor and this same value was also applied in the simulation

environment.

Results: Figure 69b shows frequency spectra measured and

simulated. We obtain them by applying FFT on the acceleration data

from the IMU data from the real model (green line), and on the

simulation data of the respective node (orange line). We observe that the

simulation matches the real-world observations closely.

Figure 69: (a) The measurement points indicated on the real and virtual model.

(b) Frequency response comparison of the push and pull experiments.

113

The slight differences between the real and the simulated model we

interpret by increased friction and slack in the joints, caused by the

imprecision of the fabrication, causing additional shocks and loss of

energy. These parameters can be empirically adjusted and implemented

in the software; however, they are highly dependent on the actual

fabrication quality, materials used, lubrication, etc.

5.5.2 PERFORMANCE OF THE SIMULATOR

Simulating the oscillating behavior is the computationally most

expensive component of Trusscillator’s system. To validate that the

system can provide interactive design iteration cycles even for complex

models, we benchmarked the simulation steps on three models: a simple

chair with one spring in its backrest (Figure 61c), the bird-swing (Figure

63), and the brachiosaurus (Figure 52).

We ran the simulation on a DELL XPS 15 9600 with Intel Core i7-

10750H 2.6 GHz CPU (2020 edition) running on Ubuntu 20.04. The

output of the simulation is a common query used in our editor: 30 fps

for 5s, resulting in 150 frames. We computed response times by

performing 10 consecutive runs and averaging response times.

As shown in Table 3, all the simulations run under 1 second—

appropriate for a turn-taking interaction.

model # nodes # edges # springs simulation
time

optimization
time

chair 8 18 1 74 ms 929 ms

bird-swing 26 76 3 797 ms 5544 ms

brachiosaurus 32 103 6 179 ms 7770 ms

Table 3: Simulation benchmark results

We note that execution speed is sensitive to multiple factors, such as

required accuracy, number of spring combinations, number of

refinements, frequency of the movement, actuation power, and more.

114

This is the main reason why the optimization is currently slower than

the simulation time multiplied by the spring count (the slowest

simulation governs the time for one sampling round). Note that the

times reported here, are for a full optimization round, where consecutive

user interaction could also be reduced to a subset of the springs and

samples. We see further potential for speed-ups by not simulating every

node position individually, but combining rigid parts of the structure

and simulating them as a single entity (detected by the rigid group

detection algorithm mentioned in section 5.4.1).

5.6 CONTRIBUTION, BENEFITS , AND LIMITATIONS

Trusscillator is an end-to-end system that allows non-engineers to create

human-scale human-powered devices that perform oscillatory

movements, such as playground equipment, workout devices, and

interactive kinetic installations. As we learned in our expert interviews,

such devices are usually subject to long design and prototyping cycles.

Trusscillator speeds up this process by encapsulating large parts of the

required domain knowledge from designing structurally stable

mechanisms, through tuning and verifying their dynamic behavior, to

building the structures.

Trusscillator allows designers to consider not only the shape of a

model, but also the experience it will produce, such as the motion range,

enjoyable oscillation frequency, and the effort it requires to be set in

motion.

On the implementation side, we contribute with a continuous-time,

extensible, high-fidelity simulator with strong robustness for variable-

geometry spring-damper truss structures. In contrast to many

physically-based spring damper simulators that are used in computer

graphics, our simulator is not prone to change the energy in the system,

even for high-frequency applications.

115

On the hardware level, Trusscillator contributes with a series of

novel hardware tools that support the fabrication of the steel truss

structures, such as the drilling stencils and a temporary connector

system that supports welding.

We have validated our system by designing novel pieces of

playground equipment, workout devices, and interactive kinetic

installations, two of which we manufactured end-to-end, and by

evaluating the technical aspects, such as simulation time and accuracy.

We note that before devices designed using Trusscillator can be

deployed, additional safety checks need to be considered, according to

the applicable local regulatory requirements for playground equipment,

such as DIN EN 1176 [125].

 Zooming out, we think of Trusscillator as a tool that pushes

research on large-scale personal fabrication in two ways. First, it goes to

the next logical step from systems supporting static construction to

kinematic construction to now dynamic construction. Second, it

provides a computer-assisted system for the personal fabrication of

welded steel structures, thereby laying the groundwork for scaling this

line of research to bigger structures and larger forces.

116

6

CONCLUSION

In this chapter, we expand upon the insights of the individual projects

and draw conclusions about human-scale personal fabrication on a

broader scale. We discuss how this work might impact fabrication

technology and summarize our main contribution before we close by

discussing long-term future directions.

6.1 SUMMARY OF CONTRIBUTIONS

Creating large-scale objects and mechanisms has so far been mainly the

privilege of engineers and industry. Not only because of the high price

of heavy-duty fabrication machinery, but also because of the lack of

engineering know-how to create the right structure that can withstand

large forces.

Our first attempt to explore human-scale personal fabrication was

on the shape level by our Protopiper device. However, in this thesis, we

strive to go beyond shape and help engineering objects for real-life forces.

As a result, we provide blueprints of three end-to-end software systems

that embody the required domain knowledge to enable non-professional

individuals to design and fabricate human-scale objects and

mechanisms that involve human-scale forces.

The presented fabrication systems are concerned with three aspects

beyond the shape. These we classify in Table 4: (1) TrussFab – creating

117

static load-bearing structures, (2) TrussFormer — creating kinematic

mechanisms, and (3) Trusscillator — creating mechanisms with dynamic

movement. These aspects also correspond to three major fields of

mechanical engineering: statics, kinematics, and dynamics.

motion
TrussFormer

(kinematics)

Trusscillator

(dynamics)

no motion
Protopiper

(shape)

TrussFab

(statics)

 no force force

Table 4: Classification of the presented systems by the domains they cover.

These end-to-end fabrication systems assist the creation process by:

(1) providing custom editor tools for designing load-bearing trusses and

mechanisms, (2) verifying the structural integrity and behavior of the

resulting structures, and (3) streamlining the building process by

generating the necessary parts lists, aids, and instructions. With this, our

systems help users to focus on high-level design objectives without

being concerned about engineering aspects of the design. Figure 70

summarizes these aspects for the three respective systems.

Figure 70: Our systems allow users to focus on the high-level design objectives, while

the software takes care of the specific underlying engineering aspects.

118

While good design is certainly a crucial aspect when creating a new

object, the fabrication phase is equally important in order to materialize

a functional artifact. Both of these phases require different skills;

therefore, they are often not carried out by the same individuals. Our

systems resolve this by uniting these two phases into one integrated

workflow, where the design is readily supported by a fabrication

pipeline. This way single individuals are able to carry out both the

design (with engineering behind the scenes) and the fabrication tasks as

well. This empowers individuals to create human-scale objects using

commonly available household fabrication equipment. Our contribution

is this set of integrated end-to-end fabrication systems.

6.2 IMPACT

To foster this benefit of our solutions, we have been sharing our software

systems freely among individuals, schools, fablabs, researchers,

architects, and designers, who have been using them for a variety of

hobby, art, and research projects, some of them shown in Figure 71. This

general interest and the positive feedback suggest that the development

of such end-to-end systems is relevant direction in personal fabrication.

Figure 71: Furniture created by tech-enthusiasts* using the TrussFab system.

* Images from Instagram.com #trussfab (by curtesy of the authors).

https://www.instagram.com/explore/tags/trussfab

119

6.3 L IMITATIONS AND FUTURE CHALLENGES

Personal fabrication of large-scale objects opens up a range of new

challenges. Unlike designing desktop-scale objects, software systems for

large-scale need to consider how to assure structural integrity and to

guarantee safety.

One of the key challenges when designing end-to-end fabrication

systems is to balance ease-of-use and expressiveness. In our systems, we

have always aimed to create the simplest, yet most expressive workflow

within the given fabrication constraints. We acknowledge that this

might be frustrating for experienced users, who seek more design

freedom.

With larger objects comes greater responsibility as well. This means

that safety needs to be taken seriously when fabricating at human-scale.

Safety considerations should start already at the software

implementation and also be taken into account when fabricating the

objects following safety standards. Since our research projects were

mostly concerned with the design and fabrication aspects, rather than

implementing safety regulations, this remains a task for future research

and development.

While our systems peek into the three main aspects of mechanical

engineering (statics, kinematics, dynamics), they are far from providing

complete solutions for all challenges of human-scale fabrication.

However, they might serve as inspiration for systems concerning other

specific application domains.

6.4 F INAL REMARKS

Our key takeaway from exploring the topic of human-scale fabrication

is that building larger objects is not only about achieving the scale by

inventing specialized machinery, but more importantly to engineer for

disproportionally increasing forces. This insight has driven our vision to

create software systems that encapsulate pieces of engineering domain

120

knowledge that help users focus on high-level design objectives. We

believe this principle can be applied to many other technical domains,

all with the aim to democratize engineering.

121

122

7

REFERENCES

1. Muhammad Abdullah, Martin Taraz, Yannis Kommana, Shohei

Katakura, Robert Kovacs, Jotaro Shigeyama, Thijs Roumen, and Patrick

Baudisch. 2021. FastForce: Real-Time Reinforcement of Laser-Cut

Structures. Proceedings of the 2021 CHI Conference on Human Factors in

Computing Systems. Association for Computing Machinery, New York,

NY, USA, Article 673, 1–12. DOI: https://doi.org/10.1145/3411764.3445466

2. Harshit Agrawal, Udayan Umapathi, Robert Kovacs, Johannes

Frohnhofen, Hsiang-Ting Chen, Stefanie Mueller, and Patrick Baudisch.

2015. Protopiper: Physically Sketching Room-Sized Objects at Actual

Scale. In Proceedings of the 28th Annual ACM Symposium on User Interface

Software & Technology (UIST’15), ACM, New York, NY, USA, 427–436.

DOI: http://doi.org/10.1145/2807442.2807505

3. Rahul Arora, Alec Jacobson, Timothy R. Langlois, Yijiang Huang, Caitlin

Mueller, Wojciech Matusik, Ariel Shamir, Karan Singh, and David I. W.

Levin. 2019. Volumetric Michell trusses for parametric design &

fabrication. In Proceedings of the ACM Symposium on Computational

Fabrication (SCF '19). Association for Computing Machinery, New York,

NY, USA, Article 6, 1–13. DOI: https://doi.org/10.1145/3328939.3328999

4. V. Arun, Charles F. Reinholtz, and Layne Terry Watson. 1990.

Enumeration and analysis of variable geometry truss manipulators.

Department of Computer Science, Virginia Polytechnic Institute and

State University.

5. Daniel Ashbrook, Shitao Guo, and Alan Lambie. 2016. Towards

Augmented Fabrication: Combining Fabricated and Existing Objects. In

123

Proceedings of the 2016 CHI Conference Extended Abstracts on Human

Factors in Computing Systems (CHI EA ’16), ACM, New York, NY, USA,

1510–1518. DOI: http://doi.org/10.1145/2851581.2892509

6. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung.

2014. Spin-it: optimizing moment of inertia for spinnable objects. ACM

Trans. Graph. 33, 4, Article 96 (July 2014), 10 pages.

DOI: https://doi.org/10.1145/2601097.2601157

7. Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015.

LinkEdit: interactive linkage editing using symbolic kinematics. ACM

Trans. Graph. 34, 4, Article 99 (August 2015), 8 pages.

DOI:https://doi.org/10.1145/2766985

8. Patrick Baudisch and Stefanie Mueller. Personal Fabrication. Foundations

and Trends® in Human–Computer Interaction Vol. 10: No. 3–4, 165-293.

2017.

9. Patrick Baudisch, Arthur Silber, Yannis Kommana, Milan Gruner,

Ludwig Wall, Kevin Reuss, Lukas Heilman, Robert Kovacs, Daniel

Rechlitz, and Thijs Roumen. 2019. Kyub: A 3D Editor for Modeling

Sturdy Laser-Cut Objects. Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems. Association for Computing

Machinery, New York, NY, USA, Paper 566, 1–12.

DOI: https://doi.org/10.1145/3290605.3300796

10. Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelma. 2012. Julia:

A fast dynamic language for technical computing." arXiv preprint

arXiv:1209.5145.

11. Gaurav Bharaj, Stelian Coros, Bernhard Thomaszewski, James Tompkin,

Bernd Bickel, and Hanspeter Pfister. 2015. Computational design of

walking automata. In Proceedings of the 14th ACM SIGGRAPH /

Eurographics Symposium on Computer Animation (SCA '15). ACM,

New York, NY, USA, 93-100.

DOI: https://doi.org/10.1145/2786784.2786803

12. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee,

Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design

and fabrication of materials with desired deformation behavior. ACM

Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages.

DOI: https://doi.org/10.1145/1778765.1778800

124

13. Paul Bosscher, Imme Ebert-Uphoff. 2003. A novel mechanism for

implementing multiple collocated spherical joints. In Robotics and

Automation, Proceedings. ICRA'03. IEEE International Conference on (Vol. 1,

pp. 336-341). IEEE.

14. Zekun Chang, Tung D. Ta, Koya Narumi, Heeju Kim, Fuminori Okuya,

Dongchi Li, Kunihiro Kato, Jie Qi, Yoshinobu Miyamoto, Kazuya Saito,

and Yoshihiro Kawahara. 2020. Kirigami Haptic Swatches: Design

Methods for Cut-and-Fold Haptic Feedback Mechanisms. In Proceedings

of the 2020 CHI Conference on Human Factors in Computing Systems

(CHI '20). Association for Computing Machinery, New York, NY, USA,

1–12. DOI: https://doi.org/10.1145/3313831.3376655

15. Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M.

Kaufman. 2017. Dynamics-aware numerical coarsening for fabrication

design. ACM Trans. Graph. 36, 4, Article 84 (July 2017), 15 pages.

DOI: https://doi.org/10.1145/3072959.3073669

16. Xiang “Anthony” Chen, Stelian Coros, Jennifer Mankoff, and Scott E.

Hudson. 2015. Encore: 3D Printed Augmentation of Everyday Objects

with Printed-Over, Affixed and Interlocked Attachments. In Proceedings

of the 28th Annual ACM Symposium on User Interface Software & Technology

(UIST’15), ACM, New York, NY, USA, 73–82.

DOI: http://doi.org/10.1145/2807442.2807498

17. Lung-Pan Cheng, Thijs Roumen, Hannes Rantzsch, Sven Köhler, Patrick

Schmidt, Robert Kovacs, Johannes Jasper, Jonas Kemper, and Patrick

Baudisch. 2015. TurkDeck: Physical Virtual Reality Based on People. In

Proceedings of the 28th Annual ACM Symposium on User Interface Software

& Technology (UIST '15). Association for Computing Machinery,

New York, NY, USA, 417–426.

DOI: https://doi.org/10.1145/2807442.2807463

18. Foster Collins, and Mark Yim. 2016. Design of a spherical robot arm with

the spiral zipper prismatic joint. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2137-2143.

19. Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro

Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd

Bickel. 2013. Computational Design of Mechanical Characters. ACM

Transactions on Graphics 32, 4: 1.

DOI: http://doi.org/10.1145/2461912.2461953

125

20. Laura Devendorf and Kimiko Ryokai. 2015. Being the Machine:

Reconfiguring Agency and Control in Hybrid Fabrication. In Proceedings

of the 33rd Annual ACM Conference on Human Factors in Computing Systems

(CHI ’15), ACM, New York, NY, USA, 2477–2486.

DOI: http://doi.org/10.1145/2702123.2702547

21. Paul H. Dietz and Catherine Dietz. 2007. The animatronics workshop. In

ACM SIGGRAPH 2007 educators program (SIGGRAPH '07). ACM, New

York, NY, USA, Article 36 . DOI: https://doi.org/10.1145/1282040.1282078

22. Gábor Erdős - Linkage Designer. Retrieved on Nov. 15, 2021, from

http://www.linkagedesigner.com/

23. Martin, J. C., R. P. Farrar, B. M. Wagner, and W. W. Spirduso. 2000.

Maximal power across the lifespan. The Journals of Gerontology Series

A: Biological Sciences and Medical Sciences 55, no. 6 (2000): M311-M316.

24. Jacob Fish and Ted Belytschko. 2007. A first course in finite elements. Wiley

New York.

25. Peter Fritzson and Vadim Engelson. 1998. Modelica—A unified object-

oriented language for system modeling and simulation. In European

Conference on Object-Oriented Programming, pp. 67-90. Springer,

Berlin, Heidelberg.

26. Ollé Gellért. Print To Build, 3D printed joint collection. Retrieved on Nov.

15, 2021 from https://www.behance.net/gallery/27812109/Print-To-

Build-3D-printed-joint-collection

27. Gregory J. Hamlin and Arthur C. Sanderson. 2013. Tetrobot: A Modular

Approach to Reconfigurable Parallel Robotics. In Volume 423 of The

Springer International Series in Engineering and Computer Science,

Springer Science & Business Media. ISBN: 1461554713, 9781461554714

28. Zachary M. Hammond, Nathan S. Usevitch, Elliot W. Hawkes, and Sean

Follmer. 2017. Pneumatic Reel Actuator: Design, modeling, and

implementation. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 626-633.

29. David Hahn, Pol Banzet, James M. Bern, and Stelian Coros. 2019.

Real2Sim: visco-elastic parameter estimation from dynamic motion.

ACM Trans. Graph. 38, 6, Article 236 (November 2019), 13 pages.

DOI: https://doi.org/10.1145/3355089.3356548

126

30. Liang He, Huaishu Peng, Michelle Lin, Ravikanth Konjeti, François

Guimbretière, and Jon E. Froehlich. 2019. Ondulé: Designing and

Controlling 3D Printable Springs. In Proceedings of the 32nd Annual

ACM Symposium on User Interface Software and Technology (UIST '19).

Association for Computing Machinery, New York, NY, USA, 739–750.

DOI: https://doi.org/10.1145/3332165.3347951

31. Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz

Bächer. 2019. Vibration-minimizing motion retargeting for robotic

characters. ACM Trans. Graph. 38, 4, Article 102 (July 2019), 14 pages.

DOI: https://doi.org/10.1145/3306346.3323034

32. Scott E. Hudson. 2014. Printing Teddy Bears. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI ’14), ACM, New

York, NY, USA, 459–468. http://doi.org/10.1145/2556288.2557338

33. Yuki Igarashi, Takeo Igarashi, and Jun Mitani. 2012. Beady: interactive

beadwork design and construction. ACM Transactions on Graphics (TOG)

31, c: 49. DOI: http://doi.org/10.1145/2185520.2185545

34. Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs,

Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and

Patrick Baudisch. 2016. Metamaterial Mechanisms. In Proceedings of the

29th Annual Symposium on User Interface Software and Technology

(UIST '16). Association for Computing Machinery, New York, NY, USA,

529–539. DOI: https://doi.org/10.1145/2984511.2984540

35. Alexandra Ion, Ludwig Wall, Robert Kovacs, and Patrick Baudisch. 2017.

Digital Mechanical Metamaterials. In Proceedings of the 2017 CHI

Conference on Human Factors in Computing Systems (CHI '17).

Association for Computing Machinery, New York, NY, USA, 977–988.

DOI: https://doi.org/10.1145/3025453.3025624

36. Yunwoo Jeong, Han-Jong Kim, and Tek-Jin Nam. 2018. Mechanism

Perfboard: An Augmented Reality Environment for Linkage Mechanism

Design and Fabrication. In Proceedings of the 2018 CHI Conference on

Human Factors in Computing Systems (CHI '18). ACM, New York, NY,

USA, DOI: https://doi.org/10.1145/3173574.3173985

37. Sasa Jokic and Petar Novikov. Mataerial - A Radical New 3D Printing

Method. Retrieved on Nov. 15, 2021 from http://www.mataerial.com/

127

38. Sasa Jokic, Petr Novikov, Shihui Jin, Stuart Maggs, Cristina Nan, and

Dori Sadan. Minibuilders: Robots for 3D printing in construction and

design. Retrieved on Nov. 15, 2021 from http://robots.iaac.net/

39. Takeshi Kawashima. 2015. 101 Basic study on comfortable fluctuation:

Discussions about the period fluctuations of rhythms produced by

humans for their own enjoyment. The Proceedings of the Symposium on

Environmental Engineering. 2015.25. 10-13. 10.1299/jsmeenv.2015.25.10.

40. Behrokh Khoshnevis. 2004. Automated Construction by Contour

Crafting—Related Robotics and Information Technologies. Automation in

Construction 13, 1: 5–19. DOI: http://doi.org/10.1016/j.autcon.2003.08.012

41. Konstantin Klamka, Raimund Dachselt, and Jürgen Steimle. 2020. Rapid

Iron-On User Interfaces: Hands-on Fabrication of Interactive Textile

Prototypes. In Proceedings of the 2020 CHI Conference on Human Factors in

Computing Systems (CHI '20). Association for Computing Machinery,

New York, NY, USA, 1–14. DOI: https://doi.org/10.1145/3313831.3376220

42. Robert Kovacs, Anna Seufert, Ludwig Wall, Hsiang-Ting Chen, Florian

Meinel, Willi Müller, Sijing You, Maximilian Brehm, Jonathan Striebel,

Yannis Kommana, Alexander Popiak, Thomas Bläsius, and Patrick

Baudisch. 2017. TrussFab: Fabricating Sturdy Large-Scale Structures on

Desktop 3D Printers. In Proceedings of the 2017 CHI Conference on Human

Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 2606-

2616. DOI: https://doi.org/10.1145/3025453.3026016

43. Robert Kovacs, Alexandra Ion, Pedro Lopes, Tim Oesterreich, Johannes

Filter, Philipp Otto, Tobias Arndt, Nico Ring, Melvin Witte, Anton

Synytsia, and Patrick Baudisch. 2018. TrussFormer: 3D Printing Large

Kinetic Structures. In Proceedings of the 31st Annual ACM Symposium on

User Interface Software and Technology (UIST '18). Association for

Computing Machinery, New York, NY, USA, 113–125.

DOI: https://doi.org/10.1145/3242587.3242607

44. Robert Kovacs, Lukas Rambold, Lukas Fritzsche, Dominik Meier, Jotaro

Shigeyama, Shohei Katakura, Ran Zhang, Patrick Baudisch. 2021.

Trusscillator: a System for Fabricating Human-Scale Human-Powered

Oscillating Devices. To appear in Proceedings of the 34th Annual ACM

Symposium on User Interface Software and Technology (UIST '21).

Association for Computing Machinery, New York, NY, USA, 1074–1088.

DOI: https://doi.org/10.1145/3472749.3474807

128

45. Benjamin Lafreniere, Marcelo H. Coelho, Nicholas Cote, Steven Li, Andy

Nogueira, Long Nguyen, Tobias Schwinn, James Stoddart, David

Thomasson, Ray Wang, Thomas White, Tovi Grossman, David Benjamin,

Maurice Conti, Achim Menges, George Fitzmaurice, Fraser Anderson,

Justin Matejka, Heather Kerrick, Danil Nagy, Lauren Vasey, Evan

Atherton, and Nicholas Beirne. 2016. Crowdsourced Fabrication. In

Proceedings of the 29th Annual ACM Symposium on User Interface Software

& Technology (UIST ’16), 15–28. http://doi.org/10.1145/2984511.2984553

46. Tien T. Lan. 2005. Structural Engineering Handbook - Space Frame

Structures. CRC Press.

47. Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. 2011.

Converting 3D furniture models to fabricatable parts and connectors.

ACM Trans. Graph. 30, 4, Article 85 (July 2011), 6 pages.

DOI: https://doi.org/10.1145/2010324.1964980

48. Jiahao Li, Jeeeun Kim, and Xiang 'Anthony' Chen. 2019. Robiot: A Design

Tool for Actuating Everyday Objects with Automatically Generated 3D

Printable Mechanisms. In Proceedings of the 32nd Annual ACM Symposium

on User Interface Software and Technology (UIST '19). Association for

Computing Machinery, New York, NY, USA, 673–685.

DOI: https://doi.org/10.1145/3332165.3347894

49. Michael Lindner, Lucas Lincoln, Fenja Drauschke, Julia Monika Koulen,

Hans Würfel, Anton Plietzsch, and Frank Hellmann. 2021.

NetworkDynamics.jl—Composing and simulating complex networks in

Julia. - Chaos, 31, 6, 063133. DOI: https://doi.org/10.1063/5.0051387.

50. Wenjuan Lu, Lijie Zhang, Yitong Zhang, Yalei Ma, Xiaoxu Cui. 2014.

Modified Formula of Mobility for Mechanisms. In Proceedings of the

International Conference on Intelligent Robotics and Applications (ICIRA'14).

Springer, Cham, Germany, 2014, 535-545.

DOI : https://doi.org/10.1007/978-3-319-13963-0_54

51. Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik.

2012. Chopper: Partitioning Models into 3D-Printable Parts. ACM

Transactions on Graphics 31, 6: 1.

DOI: http://doi.org/10.1145/2366145.2366148

52. Michael Makris, David Gerber, Anders Carlson, and Doug Noble. 2013.

Informing Design through Parametric Integrated Structural Simulation.

129

In eCAADe 2013: Computation and Performance–Proceedings of the 31st

International Conference on Education and research in Computer Aided

Architectural Design in Europe, Delft University of Technology, 69–77.

53. Asok Kumar Mallik, Amitabha Gosh, Günter Dittrich. 1994. Kinematic

analysis and synthesis of mechanisms. CRC Press.

54. Stefan Marti and Chris Schmandt. 2005. Physical embodiments for

mobile communication agents. In Proceedings of the 18th Annual ACM

Symposium on User Interface Software and Technology (UIST'05). ACM, New

York, NY, USA, 231-240. DOI: http://dx.doi.org/10.1145/1095034.1095073

55. Alexander R. McN. 1989. Elastic mechanisms in the locomotion of

vertebrates. Netherlands Journal of Zoology 40, no. 1-2(1989): 93-105.

56. Vittorio Megaro, Bernhard Thomaszewski, Damien Gauge, Eitan

Grinspun, Stelian Coros, and Markus Gross. 2015. ChaCra: an interactive

design system for rapid character crafting. In Proceedings of the ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (SCA

'14). Eurographics Association, Goslar, DEU, 123–130.

57. Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus

Gross, and Bernhard Thomaszewski. 2017. A computational design tool

for compliant mechanisms. ACM Trans. Graph. 36, 4, Article 82 (July

2017), 12 pages. DOI: https://doi.org/10.1145/3072959.3073636

58. James L. Meriam and L. Glenn Kraige. 2012. Engineering mechanics:

dynamics. Vol. 2. John Wiley & Sons.

59. Niloy J Mitra and Mark Pauly. 2009. Shadow art. ACM Transactions on

Graphics 28, 5: 1. DOI: http://doi.org/10.1145/1618452.1618502

60. Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich,

Lisa Pfisterer, François Guimbretière, and Patrick Baudisch. 2014.

WirePrint: 3D Printed Previews for Fast Prototyping. In Proceedings of the

27th Annual ACM Symposium on User Interface Software & Technology

(UIST ’14), ACM, New York, NY, USA, 273–280.

DOI: http://doi.org/10.1145/2642918.2647359

61. Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen,

and Patrick Baudisch. 2014. FaBrickation: fast 3D printing of functional

objects by integrating construction kit building blocks. In CHI '14

Extended Abstracts on Human Factors in Computing Systems (CHI EA '14).

130

Association for Computing Machinery, New York, NY, USA, 187–188.

DOI: https://doi.org/10.1145/2559206.2582209

62. Takumi Murayama, Junichi Yamaoka, and Yasuaki Kakehi. 2020.

Reflatables: A Tube-based Reconfigurable Fabrication of Inflatable 3D

Objects. In Extended Abstracts of the 2020 CHI Conference on Human Factors

in Computing Systems (CHI EA '20). Association for Computing

Machinery, New York, NY, USA, 1–8.

DOI: https://doi.org/10.1145/3334480.3382904

63. Simon Olberding, Sergio Soto Ortega, Klaus Hildebrandt, and Jürgen

Steimle. 2015. Foldio: Digital Fabrication of Interactive and Shape-

Changing Objects With Foldable Printed Electronics. In Proceedings of the

28th Annual ACM Symposium on User Interface and Software Technology

(UIST '15). Association for Computing Machinery, New York, NY, USA,

223–232. DOI: https://doi.org/10.1145/2807442.2807494

64. Mercedes de Onis, Adelheid W. Onyango, Elaine Borghi, Amani Siyam,

Chizuru Nishida, and Jonathan Siekmann. 2007. Development of a WHO

growth reference for school-aged children and adolescents. Bulletin of

the World health Organization 85 (2007): 660-667.

65. Joseph Reuben Harry Otter, Alfred Carlo Cassell, and Roger Edwin

Hobbs. 1966. Dynamic Relaxation. In Proceedings of the Institution of Civil

Engineers 35, 4: 633–656. DOI: http://doi.org/10.1680/iicep.1966.8604

66. Michael J. D. Powell. 1964. An Efficient Method for Finding the

Minimum of a Function of Several Variables without Calculating

Derivatives. The computer journal: 155–162.

http://doi.org/10.1093/comjnl/7.2.155

67. Clemens Preisinger. Karamba3D - Parametric Structural Modeling.

Retrieved on Nov. 15, 2021 from http://www.karamba3d.com/

68. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-

Hornung. 2013. Make it stand: balancing shapes for 3D fabrication. ACM

Trans. Graph. 32, 4, Article 81 (July 2013), 10 pages.

DOI: https://doi.org/10.1145/2461912.2461957

69. Jie Qi and Leah Buechley. 2012. Animating paper using shape memory

alloys. In Proceedings of the 2012 ACM annual conference on Human Factors

in Computing Systems (CHI ’12).

DOI: http://doi.org/10.1145/2207676.2207783

131

70. Christopher Rackauckas and Qing Nie. 2017. Differentialequations.jl–a

performant and feature-rich ecosystem for solving differential equations

in julia." Journal of Open Research Software 5, no. 1 (2017).

71. Marvin D. Rhodes, and Martin M. Mikulas. Deployable controllable

geometry truss beam. 1985 National Aeronautics and Space

Administration, Scientific and Technical Information Branch (Technical

report No. NASA-TM-86366. 1985).

72. Tiago Ribeiro and Ana Paiva. 2012. The illusion of robotic life: principles

and practices of animation for robots. In Proceedings of the seventh annual

ACM/IEEE international conference on Human-Robot Interaction (HRI '12).

ACM, New York, NY, USA, 383-390.

DOI: https://doi.org/10.1145/2157689.2157814

73. Ronald Richter and Marc Alexa. 2015. Beam Meshes. Computers &

Graphics, 1: 1–8. http://doi.org/10.1016/j.cag.2015.08.007

74. David W. Rosen. 2007. Computer-Aided Design for Additive

Manufacturing of Cellular Structures. Computer-Aided Design and

Applications, 4:5, 585-594, DOI: 10.1080/16864360.2007.10738493

75. Thijs Roumen, Willi Mueller and Patrick Baudisch. 2018. Grafter:

Remixing 3D Printed Machines. In Proceedings of the 36th Annual ACM

Conference on Human Factors in Computing Systems (CHI '18). ACM, New

York, USA DOI: https://doi.org/10.1145/3173574.3173637

76. Thijs Roumen, Jotaro Shigeyama, Julius Cosmo Romeo Rudolph, Felix

Grzelka, and Patrick Baudisch. 2019. SpringFit: Joints and Mounts that

Fabricate on Any Laser Cutter. In Proceedings of the 32nd Annual ACM

Symposium on User Interface Software and Technology (UIST '19).

Association for Computing Machinery, New York, NY, USA, 727–738.

DOI: https://doi.org/10.1145/3332165.3347930

77. B. Roth. 1981. Rigid and Flexible Frameworks. Mathematical Association of

America 88, 1: 6–21.

78. Mose Sakashita, Tatsuya Minagawa, Amy Koike, Ippei Suzuki, Keisuke

Kawahara, and Yoichi Ochiai. 2017. You as a Puppet: Evaluation of

Telepresence User Interface for Puppetry. In Proceedings of the 30th

Annual ACM Symposium on User Interface Software and Technology

(UIST'17). ACM, New York, NY, USA, 217-228.

DOI: https://doi.org/10.1145/3126594.3126608

132

79. Harpreet Sareen, Udayan Umapathi, Patrick Shin, Yasuaki Kakehi, Jifei

Ou, Hiroshi Ishii, and Pattie Maes. 2017. Printflatables: Printing Human-

Scale, Functional and Dynamic Inflatable Objects. Proceedings of the 2017

CHI Conference on Human Factors in Computing Systems. Association for

Computing Machinery, New York, NY, USA, 3669–3680.

DOI: https://doi.org/10.1145/3025453.3025898

80. Hiroki Sato, Young ah Seong, Ryosuke Yamamura, Hiromasa Hayashi,

Katsuhiro Hata, Hisato Ogata, Ryuma Niiyama, and Yoshihiro

Kawahara. 2020. Soft yet Strong Inflatable Structures for a Foldable and

Portable Mobility. In Extended Abstracts of the 2020 CHI Conference on

Human Factors in Computing Systems (CHI EA '20). Association for

Computing Machinery, New York, NY, USA, 1–4.

DOI: https://doi.org/10.1145/3334480.3383147

81. Greg Saul, Manfred Lau, Jun Mitani, and Takeo Igarashi. 2011.

SketchChair: An All-in-one Chair Design System for End Users. In

Proceedings of the fifth international conference on Tangible, embedded, and

embodied interaction (TEI ’11), ACM, New York, NY, USA, 73.

http://doi.org/10.1145/1935701.1935717

82. Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara

Daraio, and Markus Gross. 2015. Microstructures to control elasticity in

3D printing. ACM Trans. Graph. 34, 4, Article 136 (August 2015), 13

pages. DOI: https://doi.org/10.1145/2766926

83. Rita Shewbridge, Amy Hurst, and Shaun K. Kane. 2014. Everyday

Making. In Proceedings of the 2014 conference on Designing interactive

systems (DIS ’14), ACM, New York, NY, USA, 815–824.

DOI: http://doi.org/10.1145/2598510.2598544

84. Melina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard

Thomaszewski. 2015. Interactive Surface Design with Interlocking

Elements. ACM Transactions on Graphics 34, 6: 224.

DOI: http://doi.org/10.1145/2816795.2818128

85. Jeffrey Smith, Jessica Hodgins, Irving Oppenheim, and Andrew Witkin.

2002. Creating Models of Truss Structures with Optimization. ACM

Transactions on Graphics. 21, 3: 295–301.

DOI: http://doi.org/10.1145/566654.566580

133

86. A. Y. N. Sofla, D. M. Elzey, and H. N. G. Wadley. 2009. Shape morphing

hinged truss structures. Smart Materials and Structures 18: 65012.

DOI: http://doi.org/10.1088/0964-1726/18/6/065012

87. Alexander Spinos, Devin Carroll, Terry Kientz, and Mark Yim. 2017

Variable topology truss: Design and analysis. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Vancouver, BC, 2017, 2717-2722. DOI: 10.1109/IROS.2017.8206098

88. Alexander Spinos and Mark Yim. 2017. Towards a variable topology

truss for shoring. 2017. In Proceedings of the 14th International Conference

on Ubiquitous Robots and Ambient Intelligence (URAI), 244–249.

DOI: http://doi.org/10.1109/URAI.2017.7992723

89. Doug Stewart. 1965. A platform with six degrees of freedom.

In Proceedings of the institution of mechanical engineers 180.1, 371-386.

90. Devika Subramanian. 1995. Kinematic synthesis with configuration

spaces. In Research in Engineering Design 7, no. 3, 193-213.

91. Ryo Suzuki, Ryosuke Nakayama, Dan Liu, Yasuaki Kakehi, Mark D.

Gross, and Daniel Leithinger. 2020. LiftTiles: Constructive Building

Blocks for Prototyping Room-scale Shape-changing Interfaces. In

Proceedings of the Fourteenth International Conference on Tangible, Embedded,

and Embodied Interaction (TEI '20). Association for Computing Machinery,

New York, NY, USA, 143–151.

DOI: https://doi.org/10.1145/3374920.3374941

92. Saiganesh Swaminathan, Michael Rivera, Runchang Kang, Zheng Luo,

Kadri Bugra Ozutemiz, and Scott E. Hudson. 2019. Input, Output and

Construction Methods for Custom Fabrication of Room-Scale

Deployable Pneumatic Structures. Proc. ACM Interact. Mob. Wearable

Ubiquitous Technol. 3, 2, Article 62 (June 2019), 17 pages.

DOI: https://doi.org/10.1145/3328933

93. Anton Synytsia. MSPhysics physics simulation. Retrieved on Nov. 15,

2021 from https://extensions.sketchup.com/en/content/msphysics

94. Takuto Takahashi, Jonas Zehnder, Hiroshi G. Okuno, Shigeki Sugano,

Stelian Coros, and Bernhard Thomaszewski. "Computational Design of

Statically Balanced Planar Spring Mechanisms." IEEE Robotics and

Automation Letters 4, no. 4 (2019): 4438-4444.

134

95. Joshua G. Tanenbaum, Amanda M. Williams, Audrey Desjardins, and

Karen Tanenbaum. 2013. Democratizing Technology: Pleasure, Utility

and Expressiveness in DIY and Maker Practice. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (CHI ’13):

2603–2612. DOI: http://doi.org/10.1145/2470654.2481360

96. Pengbin Tang, Jonas Zehnder, Stelian Coros, and Bernhard

Thomaszewski. 2020. A harmonic balance approach for designing

compliant mechanical systems with nonlinear periodic motions. ACM

Trans. Graph. 39, 6, Article 191 (December 2020), 14 pages.

DOI: https://doi.org/10.1145/3414685.3417765

97. Alexander Teibrich, Stefanie Mueller, François Guimbretière, Robert

Kovacs, Stefan Neubert, and Patrick Baudisch. 2015. Patching Physical

Objects. In Proceedings of the 28th Annual ACM Symposium on User Interface

Software Technology (UIST '15). Association for Computing Machinery,

New York, NY, USA, 83–91.

DOI: https://doi.org/10.1145/2807442.2807467

98. Emil Teutan, S.D. Stan., D. Verdes, R. Balan. 2009. Virtual Reality

Simulation of Tetrobot Parallel Robot for Medical Applications. In

Proceedings of International Conference on Advancements of Medicine and

Health Care through Technology, Vol 26. pp. 177-180.

99. Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro,

Eitan Grinspun, and Markus Gross. 2014. Computational design of

linkage-based characters. ACM Trans. Graph. 33, 4, Article 64 (July 2014),

9 pages. DOI: https://doi.org/10.1145/2601097.2601143

100. Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012. Guided

exploration of physically valid shapes for furniture design. ACM

Transactions on Graphics 31, 4: 1–11.

DOI: http://doi.org/10.1145/2185520.2335437

101. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi.

2014. Pteromys: interactive design and optimization of free-formed free-

flight model airplanes. ACM Trans. Graph. 33, 4, Article 65 (July 2014),

10 pages. DOI: https://doi.org/10.1145/2601097.2601129

102. Weiming Wang, Tuanfeng Y. Wang, Zhouwang Yang, Ligang Liu, Xin

Tong, Weihua Tong, Jiansong Deng, Falai Chen, and Xiuping Liu. 2013.

Cost-effective Printing of 3D Objects with Skin-frame Structures. ACM

135

Transactions on Graphics 32, 6: 1–10.

DOI: http://doi.org/10.1145/2508363.2508382

103. Christian Weichel, Manfred Lau, David Kim, Nicolas Villar, Hans W.

Gellersen, Christian Weichel, Manfred Lau, David Kim, Nicolas Villar,

and Hans W. Gellersen. 2014. MixFab: A Mixed-reality Environment for

Personal Fabrication. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI ’14), 3855–3864.

DOI: http://doi.org/10.1145/2556288.2557090

104. David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li,

David C. Shepherd, and Diana Franklin. 2018. Evaluating CoBlox: A

Comparative Study of Robotics Programming Environments for Adult

Novices. In Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems (CHI '18). ACM, New York, NY, USA.

DOI: https://doi.org/10.1145/3173574.3173940

105. Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural

modeling of structurally-sound masonry buildings. In ACM SIGGRAPH

Asia 2009 papers (SIGGRAPH Asia '09). Association for Computing

Machinery, New York, NY, USA, Article 112, 1–9.

DOI: https://doi.org/10.1145/1661412.1618458

106. Emily Whiting, Nada Ouf, Liane Makatura, Christos Mousas, Zhenyu

Shu, and Ladislav Kavan. 2017. Environment-Scale Fabrication:

Replicating Outdoor Climbing Experiences. In Proceedings of the 2017 CHI

Conference on Human Factors in Computing Systems (CHI '17). Association

for Computing Machinery, New York, NY, USA, 1794–1804.

DOI: https://doi.org/10.1145/3025453.3025465

107. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. 2012.

Printed Optics. In Proceedings of the 25th annual ACM symposium on User

interface software and technology (UIST ’12), 589.

DOI: http://doi.org/10.1145/2380116.2380190

108. Jan Willmann, Federico Augugliaro, Thomas Cadalbert, Raffaello

D’Andrea, Fabio Gramazio, and Matthias Kohler. 2012. Aerial Robotic

Construction Towards a New Field of Architectural Research.

International Journal of Architectural Computing 10, 3: 439–460.

DOI: http://doi.org/10.1260/1478-0771.10.3.439

136

109. Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2018. Bend-

it: design and fabrication of kinetic wire characters. ACM Trans. Graph.

37, 6, Article 239 (November 2018), 15 pages.

DOI: https://doi.org/10.1145/3272127.3275089

110. Suguru Yamada, Hironao Morishige, Hiroki Nozaki, Masaki Ogawa,

Takuro Yonezawa, and Hideyuki Tokuda. 2016. ReFabricator:

Integrating Everyday Objects for Digital Fabrication. In Proceedings of the

2016 CHI Conference Extended Abstracts on Human Factors in Computing

Systems (CHI EA ’16), ACM, New York, NY, USA, 3804–3807.

DOI: http://doi.org/10.1145/2851581.2890237

111. Hironori Yoshida, Syunsuke Igarashi, Takeo Igarashi, Yusuke Obuchi,

Yosuke Takami, Jun Sato, Mika Araki, Masaaki Miki, Kosuke Nagata,

Kazuhide Sakai, Kyungeun Sung, and Tim Cooper. 2015. Architecture-

scale Human-assisted Additive Manufacturing. ACM Transactions on

Graphics 34, 4: 88:1-88:8. DOI: http://doi.org/10.1145/2766951

112. Yonghao Yue, Yuki Koyama, Issei Sato, and Takeo Igarashi. 2021. User

interfaces for high-dimensional design problems: from theories to

implementations. In ACM SIGGRAPH 2021 Courses (SIGGRAPH '21).

Association for Computing Machinery, New York, NY, USA, Article 11,

1–34. DOI: https://doi.org/10.1145/3450508.3464551

113. Henrik Zimmer and Leif Kobbelt. 2014. Zometool Rationalization of

Freeform Surfaces. IEEE Transactions on Visualization and Computer

Graphics 20, 10: 1461–1473.

DOI: http://doi.org/10.1109/TVCG.2014.2307885

114. Ran Zhang, Thomas Auzinger, and Bernd Bickel. 2021. Computational

Design of Planar Multistable Compliant Structures. ACM Trans. Graph.

1, 1, Article 1 (January 2021), 16 pages.

115. Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and

Baining Guo. 2012. Motion-guided mechanical toy modeling. ACM Trans.

Graph. 31, 6, Article 127 (Nov. 2012), 10 pages.

DOI: http://dx.doi.org/10.1145/2366145.2366146

116. Sasa Zivkovic, and Christopher Battaglia. 2017. Open source factory:

democratizing large-scale fabrication systems. Proceedings of the 37th

Annual Conference of the Association for Computer Aided Design in

Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4

137

November, 2017), pp. 660- 669.

DOI: https://doi.org/10.52842/conf.acadia.2017.660

117. ABB RobotStudio. Retrieved on Nov. 15, 2021 from

https://new.abb.com/products/robotics/robotstudio

118. Adobe Premier’s keyframe editor. Retrieved on Nov. 15, 2021, from:

https://helpx.adobe.com/premiere-pro/using/adding-navigating-setting-

keyframes.html

119. Algoryx Momentum. Retrieved on Nov. 15, 2021, from:

https://www.algoryx.se/momentum/

120. Autodesk Fusion 360. Retrieved Nov. 15, 2021 from:

https://www.autodesk.com/products/fusion-360

121. Autodesk MeshMixer. Retrieved Nov. 15, 2021 from:

http://meshmixer.com

122. Autodesk Revit. Retrieved Nov. 15, 2021 from:

https://www.autodesk.com/products/revit/

123. Blender’s Keyframe editor,

https://docs.blender.org/manual/en/dev/animation/keyframes/editing.h

tml , last accessed at 31/03/2018.

124. Crayon Physics. Retrieved on Nov. 15, 2021 from:

http://crayonphysics.com/

125. DIN EN 1176 - Safety requirements and test methods for playground

equipment. Retrieved on Nov. 15, 2021 from:

https://www.din.de/de/meta/suche/62730!search?query=DIN+EN+1176

&submit-btn=Submit

126. freeCAD. Retrieved on April 3, 2018 from: http://www.ar-

cad.com/freecad/

127. G-Sensor Logger. Retrieved on Nov. 15, 2021, from:

https://play.google.com/store/apps/details?id=com.peterhohsy.gsensor_

debug&hl=en

128. GlobalTruss TRUSSTOOL. Retrieved on Nov. 15, 2021 from:

https://trusstool.com/

129. Gutekunst Federn. Retrieved on Nov. 15, 2021, from:

https://www.federnshop.com/de/produkte/druckfedern.html

https://new.abb.com/products/robotics/robotstudio
https://helpx.adobe.com/premiere-pro/using/adding-navigating-setting-keyframes.html
https://helpx.adobe.com/premiere-pro/using/adding-navigating-setting-keyframes.html
https://www.algoryx.se/momentum/
https://www.autodesk.com/products/fusion-360
http://meshmixer.com/
https://www.autodesk.com/products/revit/
https://docs.blender.org/manual/en/dev/animation/keyframes/editing.html
https://docs.blender.org/manual/en/dev/animation/keyframes/editing.html
http://crayonphysics.com/
https://www.din.de/de/meta/suche/62730!search?query=DIN+EN+1176&submit-btn=Submit
https://www.din.de/de/meta/suche/62730!search?query=DIN+EN+1176&submit-btn=Submit
http://www.ar-cad.com/freecad/
http://www.ar-cad.com/freecad/
https://play.google.com/store/apps/details?id=com.peterhohsy.gsensor_debug&hl=en
https://play.google.com/store/apps/details?id=com.peterhohsy.gsensor_debug&hl=en
https://trusstool.com/
https://www.federnshop.com/de/produkte/druckfedern.html

138

130. Homes Made from: Plastic Bottles. Retrieved on Nov. 15, 2021 from:

http://www.inspirationgreen.com/plastic-bottle-homes

131. KUKA.sim. Retrieved on Nov. 15, 2021 from:

https://www.kuka.com/en-de/products/robot-

systems/software/planning-project-engineering-service-

safety/kuka_sim

132. KUKA|prc. Retrieved on Nov. 15, 2021 from:

http://www.robotsinarchitecture.org/kuka-prc

133. Mathworks Simscape. Retrieved on Nov. 15, 2021, from:

https://www.mathworks.com/products/simscape.html

134. MeshLab. Retrieved on Nov. 15, 2021 from::

http://meshlab.sourceforge.net

135. MiTek-PAMIR Software. Retrieved on Nov. 15, 2021 from:

http://www.mitek.co.uk/PAMIR/

136. Newton Dynamics. Retrieved on Nov. 15, 2021 from:

http://newtondynamics.com/forum/newton.php

137. OpenSCAD parametric solid modeling software. Retrieved on Nov. 15,

2021, from: https://www.openscad.org/

138. React. Retrieved on Nov. 15, 2021 from: https://reactjs.org/SketchUp

139. RhinoVAULT by Matthias Rippmann. Retrieved on Nov. 15, 2021

from: https://www.food4rhino.com/en/app/rhinovault

140. ROS – Robot Operating System. Retrieved on Nov. 15, 2021 from:

https://www.ros.org/

141. SkyCiv cloud engineering software. Retrieved on Nov. 15, 2021 from:

https://skyciv.com/

142. Trimble SketchUp. Retrieved Nov. 15, 2021 from:

http://www.sketchup.com/

143. Vortex Studio. CM Labs. Retrieved on Nov. 15, 2021, from:

https://www.cm-labs.com/vortex-studio

http://www.inspirationgreen.com/plastic-bottle-homes
https://www.kuka.com/en-de/products/robot-systems/software/planning-project-engineering-service-safety/kuka_sim
https://www.kuka.com/en-de/products/robot-systems/software/planning-project-engineering-service-safety/kuka_sim
https://www.kuka.com/en-de/products/robot-systems/software/planning-project-engineering-service-safety/kuka_sim
http://www.robotsinarchitecture.org/kuka-prc
https://www.mathworks.com/products/simscape.html
http://meshlab.sourceforge.net/
http://www.mitek.co.uk/PAMIR/
http://newtondynamics.com/forum/newton.php
https://www.openscad.org/
https://reactjs.org/SketchUp
https://www.food4rhino.com/en/app/rhinovault
https://www.ros.org/
https://skyciv.com/
http://www.sketchup.com/
https://www.cm-labs.com/vortex-studio

