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ABSTRACT
The role of affective states in learning has recently attracted
considerable attention in education research. The accurate
prediction of affective states can help increase the learning
gain by incorporating targeted interventions that are capa-
ble of adjusting to changes in the individual affective states
of students. Until recently, most work on the prediction of
affective states has relied on expensive and stationary lab
devices that are not well suited for classrooms and every-
day use. Here, we present an automated pipeline capable of
accurately predicting (AUC up to 0.86) the affective states
of participants solving tablet-based math tasks using signals
from low-cost mobile bio-sensors. In addition, we show that
we can achieve a similar classification performance (AUC
up to 0.84) by only using handwriting data recorded from
a stylus while students solved the math tasks. Given the
emerging digitization of classrooms and increased reliance on
tablets as teaching tools, stylus data may be a viable alter-
native to bio-sensors for the prediction of affective states.

Keywords
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sors

1. INTRODUCTION
Affective states are psycho-physiological constructs used to
characterize the emotions (short-lived) and moods (long-
lived) that arise and are experienced while individuals are
engaged with a stimulus. Affective states play an important
role in the educational context and can directly influence a
student’s learning gain [9, 26, 10]. For example, learning
outcomes have been found to decrease if frustration is per-
sistent during problem solving, whereas overcoming a state
of frustration can have a positive effect on learning [10].

Previous research has investigated the relationship between
affective states and learning performance by attempting to
detect the diverse emotions that occur during learning. The
logic behind this approach is that, depending on the emo-
tion of a student, appropriate actions can be taken in order
to assist students during learning (e.g., adapting task ele-
ments in the case of intelligent tutoring systems (ITS) and
self-regulation by providing affective feedback).

Previously, a wide range of data sources have been used to
measure and predict affective states in the learning context
including audio and video [32], interaction data [21, 14] and
bio-sensors [8, 4]. Systems that rely on the analysis of au-
dio (e.g., speech) and video (e.g., facial expression) data [32]
cannot guarantee full anonymity and are subject to privacy
issues. Given these limitations, researchers have attempted
to derive the affective state of individuals based on inter-
action data which contain log data of the user’s interaction
with the learning system, such as input and error behavior,
timing and help calls [21, 14]. Although large and powerful
interaction data sets can be easily collected especially in on-
line environments, the features are typically dependent on
the learning domain and on the specific learning system. At-
tempts towards a cross-domain or cross-system engagement
model have been presented (e.g., for learning spelling and
math [18]), but these generalized methods typically have
a lower accuracy as domain-specific features. Data from
bio-sensors (e.g., measuring muscle activity [8] and heart
rate [4]) have also been used to predict emotions. However,
most of these devices are typically restricted to lab settings,
expensive and difficult to operate, and somewhat intrusive.
Recently, a variety of portable and low-cost bio-sensor de-
vices have become available (e.g., Shimmer GSR+ and Polar
H10). These devices have the potential to transform educa-
tion research because they can be used to monitor a learner’s
physiological state at home or in a classroom.

In this paper, we explore a low-cost mobile setup to detect
the affective state of students. Our goal is a system to de-
tect affective states that is cheap and easy to operate, can be
used outside a lab setting, is non-intrusive, and minimizes
potential issues related to privacy. We consider bio-sensor
data from skin conductance, heart measures, and skin tem-
perature. In addition, and in contrast to previous work in

Rafael Wampfler, Severin Klingler, Barbara Solenthaler, Victor
Schinazi and Markus Gross "Affective State Prediction in a
Mobile Setting using Wearable Biometric Sensors and Stylus" In:
Proceedings of The 12th International Conference on
Educational Data Mining (EDM 2019), Collin F. Lynch, Agathe
Merceron, Michel Desmarais, & Roger Nkambou (eds.) 2019, pp.
198 - 207

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 198



the field of learning systems, we also evaluate handwriting
data recorded by a stylus to predict the affective state of
students. Here, we use the fact that tablets bundled with a
stylus are becoming increasingly available in households and
classrooms and are inherently non-intrusive and mobile.

We propose a generic pipeline in which we process the data
from the bio-sensors and stylus in order to extract a set of
features for each of the sensors. We then use a classification
model to predict the current affective region in the valence-
arousal space of emotions [29]. Valence describes how much
an emotion is perceived as positive or negative and arousal
represents the intensity of the emotion. Our method al-
lows researchers to define arbitrary areas of interest in the
valence-arousal space, and can be applied to a wide range
of applications and questions of interest. We evaluated our
method by applying it to a math problem solving scenario in
which participants provided answers in unstructured hand-
writing on a tablet device. Best performance was reached
when data from all sensors was used for prediction (0.88
AUC). Interestingly, we reached a comparable performance
using only the data acquired by the stylus (0.84 AUC). These
results suggest that a simple tablet with a stylus can be suffi-
cient to reliably predict a student’s emotional state. Finally,
we also explored whether the affective state model could be
generalized over domains. For this purpose, we applied the
trained model to a passive setting with picture stimuli lead-
ing to a performance of 0.68 AUC.

2. RELATED WORK
Affective States and Interaction Data. Due to their in-
fluence on learning gain, affective states play an important
role in education in general and in particular during math
learning [27, 21]. Boredom was shown to negatively influ-
ence the learning gain [9, 26], while engaged concentration
can improve the learning outcome [9]. Interestingly, frustra-
tion and confusion can positively affect learning in case the
student is able to resolve these states [10]. One line of re-
search tries to predict these affective states based on logged
user interactions only. Frustration, boredom, engaged con-
centration and confusion have been successfully predicted
using interaction data for math tutoring systems [21, 14].
On the other hand, valence and arousal have been pre-
dicted using mouse and keyboard interaction data from writ-
ing compositions in free text [31]. Moreover, generalized
models have been proposed, such as an engagement model
for two different learning domains and tutors (spelling and
math) [18]. Based on such automatically predicted affective
states, different intervention strategies have been explored.
An automatic student-centered affect-aware feedback loop
was shown to increase the learning gain [14] while other
work explored how teachers can provide better interventions
based on real-time information about the evolution of stu-
dent’s affective states [11].

Biometric Sensors. Biometric sensors provide an objec-
tive measure of the physiological reactivity of users engag-
ing with a learning environment while minimizing interfer-
ence with the actual task [19, 4, 17, 30]. Indeed, educa-
tion research has investigated the effectiveness of a variety
of physiological signals used to infer affective states. Elec-
trodermal activity, skin temperature, and heart rate were
generally found to be good predictors of emotions [19, 17,

30] and mind wandering [4] across different tasks including
math learning [17, 30], scientific text reading [4] and audio,
visual and cognitive stimuli in general [19]. However, these
previous works mainly focused on expensive, high quality
sensors to provide medical grade accuracy for the measure-
ment of physiological signals. In contrast, we focus on an
affective tutor that can be used in learning systems, hence
we gather such data in a non-intrusive and easy to use way.

Stylus. Predicting affective states based on stylus data is
still a relatively new research topic. Likforman-Sulem et al.
[24] predicted anxiety, depression and stress based on figure
drawings and writing given words. Fairhurst et al. [12] con-
ducted an experiment for predicting stress and happiness by
letting participants writing down a given list of words and
describing a visual scene in own words. Instead of predict-
ing a fixed set of affective states, our approach can capture
different affective regions which can be defined according
to the researchers need. Our approach is not restricted to
copying predefined sentences and figures but works with ar-
bitrary handwriting and drawing. To our knowledge, this is
the first work to leverage stylus data in order to predict the
affective state of a student during math solving.

3. METHOD
We present a classification pipeline that automatically pre-
dicts affective states based on low-cost and mobile bio-sensor
and stylus devices. Our pipeline assumes that we have access
to reports on affective states of users based on the circum-
plex model of affects [29]. The circumplex model is a two-
dimensional model representing affective states in terms of
valence and arousal. The classification task then amounts to
classifying regions within this space using a combination of
signals from bio-sensor and stylus devices. For this purpose,
we build a generic affective predictor (Figure 1). Recorded
stylus and bio-sensor data are preprocessed and the relevant
features are extracted to train a classification model for the
specific affective regions. We design our predictor to work
unobtrusively in the background of any ITS.

3.1 Input Signals
During the task solving process bio-sensor and stylus data
are recorded.

Electrodermal activity (EDA). EDA is an indicator of
the emotional state of a person reflected by the variation
in the electrical characteristics of the skin as a result of
sweating [2]. EDA is quantified by measuring the amount
of current flowing between electrodes attached to the skin.
Changes in affective states can lead to subtle variations in
the level of sweat that can be detected as the changes in the
current. Typically, the EDA signal is decomposed into tonic
(low frequency) and phasic (high frequency) components.

Interbeat Intervals (IBIs). IBIs are the time intervals
between consecutive heartbeats in normal heart function.
This natural variation is also known as heart rate variability
(HRV). The heart rate (HR) can be easily computed as the
inverse of the IBI averaged over a certain time window.

Skin Temperature (ST). ST measures the thermal re-
sponse of human skin. Vasoconstriction (e.g., provoked by
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Figure 1: The classification pipeline. Stylus and bio-sensor data are gathered during task solving processes. After preprocessing
the signals, features are extracted and used to classify the affective regions of interest.

an affective state) can result in an increase in blood flow and
a consequent increase in ST [19].

Stylus. Tablet devices often come equipped with stylus
pens as accessories that can provide precise and pressure-
sensitive input. Stylus data consists of the applied pressure
during writing and the pixel positions of the written text.
From these measurements, handwriting characteristics re-
lated to time and ductus can be calculated.

3.2 Preprocessing of Signals
During preprocessing, the raw input signals are filtered in
order to detect artifacts from movement and muscle contrac-
tion. The signals are also corrected for differences between
individuals using baseline recordings for each individual.

Artifact detection. We follow the procedure outlined by
Greco and colleagues [15] to decompose the EDA into tonic,
phasic and an additive white Gaussian noise component with
a convex optimization approach that accounts for signal fil-
tering and detrending. For IBIs, detrending is not necessary
in the preprocessing [36], and we use the criterion beat dif-
ference for artifact detection [16].

Baseline correction. Similar to previous work [30, 17],
we collect baseline data for all sensors in order to account
for individual differences in stylus and bio-sensor signals re-
lated to writing habit, ambient temperature and dryness of
the skin. Baseline data is collected while individuals remain
in a relaxed state (e.g., watching a nature video). We search
for the minimum value of each bio-sensor signal during the
relaxation phase over a 10 seconds window using a sliding
window approach to be robust against outliers. Due to pos-
sible signal lags, we search the minimum for each signal sepa-
rately. We then normalize the bio-sensor data by subtracting
the feature values calculated over the corresponding 10 sec-
onds interval of the baseline from the actual feature values
computed during task solving. Stylus data is normalized by
subtracting a baseline for all features computed over hand-
writing of an English sentence.

3.3 Feature Extraction
In the proposed pipeline, we extract several different fea-
ture types from the stylus and bio-sensor signals. Where
appropriate, we compute basic statistics for these features
types including the mean, standard deviation (SD), mini-
mum and maximum and the linear trend (slope of a fitted
linear regression line). A summary of all extracted features
is presented in Table 1.

EDA. For EDA, we decompose the signal into phasic and
tonic components and calculate standard statistics (i.e., mean,
SD, min, max, slope). For the phasic component, we also
calculate the area under the curve (AUC) [3] and the num-
ber of peaks using zero-crossings of the smoothed gradients
of the signal [19]. Based on the extracted peaks, we further
compute amplitude statistics (i.e., mean, min, max) [38].

IBI. From the IBI recordings, we extract temporal and fre-
quency features. In the temporal domain, we calculate the
percentage of successive IBIs that differ by more than 50
milliseconds (pNN50) and 20 milliseconds (pNN20) as well
as the SD and root mean square of successive differences
between adjacent IBIs (SDSD and RMSSD) [34, 25]. For
the frequency domain, it is well known that the distribution
of spectral power gives an indication of physiological activa-
tion [3]. Therefore, we extract a feature related to the high
frequency (HF) band of 0.15-0.40 Hz by a Fast Fourier trans-
form of the cubic spline interpolated signal [34, 25]. Based
on the IBIs, we compute the heart rate for which we extract
several standard statistics (i.e., mean, SD, min, max, slope).

ST. We extract several statistics (i.e., mean, SD, min, max,
slope) from the temperature signal [38, 35].

Stylus. From the stylus data, we derive features related to
the pressure applied by the pen as well as timing and lo-
cation information. Previous research has successfully em-
ployed these features to predict affective states [24, 12].
From the pressure data, we compute standard statistics (mean,
SD, max, min) per stroke and average these over an entire
task. Additionally, over each task we compute the slope of
a linear regression fit to the pressure values and the statisti-
cal skewness of the pressure distribution. We also compute
standard statistics (i.e., mean, SD, max, min, slope) of the
speed and acceleration of the strokes. For the handwriting
data, we discriminate between the actual writing process and
the think time while completing the task [24]. During writ-
ing there are always small time gaps between strokes which
cannot be attributed to thinking but belong to the writing
process itself. Because writing patterns are different for ev-
ery user, we infer an individual threshold for each user to
distinguish if the time between two strokes belongs to think-
ing or to the actual writing process. We chose this threshold
as the 80 % cut-off value of the distribution of the time be-
tween the strokes over the stylus baseline (cropping the right
tail of the distribution). Based on this threshold, we derive
a feature measuring the percentage of writing (i.e., the time
spent in the writing process). Additionally, we compute the
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statistics (i.e., mean, SD, max, min) on the speed between
consecutive strokes having time differences below threshold
(writing process) and on the distance between strokes having
time differences above threshold (thinking).

Table 1: Extracted bio-sensor and stylus features. For each
signal, the features are sorted according to their importance
(based on our experiments). The 10 most predictive features
are highlighted in bold. SD refers to the standard deviation.

Signals Features

EDA Phasic AUC, Phasic Mean, Tonic SD,
Tonic Max, Tonic Mean, Tonic Min, Phasic
SD, # Phasic Peaks, Tonic Slope, Max Phasic
Peak Amplitude, Min Phasic Peak Amplitude,
Phasic Slope, Mean Phasic Peak Amplitude

Heart IBI SDSD, IBI RMSSD, IBI SD, IBI
pNN20, HR Mean, IBI High Frequency, IBI
pNN50, IBI Mean, HR Min, HR Max, HR SD,
HR Slope

Temperature Max, Mean, Min, Slope, SD

Stylus #Strokes/Mean Speed, MeanDistance
between Strokes, Max Distance between
Strokes, SD Distance between Strokes,
Mean Pressure, Max Pressure, Mean Stroke
Acceleration, Max Stroke Acceleration, Max
Stroke Speed, Max Speed between Strokes,
Mean Speed between Strokes, SD Speed be-
tween Strokes, SD Stroke Speed, SD Stroke
Acceleration
Excluded1: %Writing, {SD, Slope, Skew-
ness} Pressure, {Mean, Min, Slope} Stroke
Speed, {Min, Slope} Stroke Acceleration, Min
Speed between Strokes, Min Distance between
Strokes, #Strokes/Minute

1 Excluded due to our experimental setup (see Section 5.1)

3.4 Classification
To train our classification algorithms ground truth is built
by defining arbitrary non-overlapping regions of interest in
the two-dimensional valence and arousal space based on the
affective labels which can be gathered, for example, through
self-reports or expert labelers. We then use a classification
model to predict the affective region an individual is likely
to be in during task solving based on the recorded bio-
sensor and stylus data. Before applying the classification
algorithm, we standardize all features to have zero mean
and unit variance. We propose the usage of four different
classifiers (i.e., Random Forest, Support Vector Machine, k-
Nearest Neighbors and Gaussian Naive Bayes). We select
these classifiers because they are among the most widely
used in machine learning and have shown to provide good
results on bio-sensor and stylus data [37, 24, 13]. All mod-
els are evaluated using leave-one-user-out cross-validation
which ensures that data from the same user is not in the
testing and training set at the same time. Hyperparameter
optimization is performed using nested cross-validation and
randomized search.

4. EXPERIMENT
We conducted a controlled lab experiment with 88 partici-
pants in order to test our pipeline. In the experiment, we
recorded bio-sensor and stylus data while participants solved

approximately 40 math tasks chosen to trigger different af-
fective states. The math tasks were chosen because they are
an integral part of the educational curriculum. However,
instead of relying on a math based ITS, we have designed
specific math tasks to increase the probability of evoking a
wider range of affective states.

4.1 Experimental Setup
Participants. We recruited 88 participants (45 female) be-
tween ages of 18 and 29 (mean = 22.1, SD = 2.0) from 10
different engineering and natural science departments of the
second and third year of the Bachelor program of an univer-
sity. We excluded participants suffering from cardiovascular
pathologies, smokers, and participants suffering from evi-
dent mental pathologies (score > 4 in the Patient Health
Questionnaire [22]). In order to control for external factors,
we kept the humidity and room temperature at an average
of 21.7 °C (SD = 0.59 °C) and 32.6 % (SD = 5.3 %), respec-
tively. Figure 2 presents the experimental setup.

Sensors. We measured EDA and wrist acceleration using
a Shimmer GSR+ device. To test the accuracy of the de-
vice, we compared its measurements with a state of the art
ADInstruments PowerLab 8/35 device (connected through
the ADInstruments FE116 GSRAmp signal amplifier) over a
23 minute recording of an user watching a nature video and
picture stimuli. Results revealed a strong and significant
cross-correlation value of 0.96 (p-value < 10−100) between
the two signals. These results suggest that the smaller,
mobile and more affordable Shimmer GSR+ device may be
sufficient to detect changes in affective states. During the
experiment, the Shimmer GSR+ device was worn on the
non-dominant hand with the electrodes placed at the prox-
imal phalanx of the index and middle finger [7]. Data was
recorded at a sampling rate of 100 Hz. As part of the Shim-
mer GSR+ setup, we also attached an optical pulse sensor
providing a photoplethysmogram signal on the ring finger.
However, photoplethysmogram data was of poor quality and
consequently discarded from analysis. Prior to electrode at-
tachment, we asked participants to wash their hands with
lukewarm water [5]. Heart activity was measured using a
Polar H10 chest belt. The Polar H10 belt provides IBIs
and post-processed heart rate data by monitoring electrical
changes on the surface of the skin. A predecessor of this
device (Polar H7) was shown to provide accurate data when
compared to an expensive lab device (Cosmed Quark T12x
system) [28]. We recorded the skin temperature using the
infrared thermopile sensor of the Empatica E4 device (sam-
pling rate = 4 Hz; resolution = 0.02 °C). Since the sensor was
attached to the dominant hand (used for writing during the
tasks), other signals that the wristband can provide (EDA
and blood volume pulse) were heavily affected by motion
artifacts and discarded from the analyses.

During the experiment, participants interacted with a Huawei
MediaPad M2 10.0 running Android 5.1 to solve the different
math tasks. All interactions with the tablet were conducted
with a Wacom Bamboo Ink stylus at an average sampling
rate of 250 Hz (SD = 25 Hz) and with 2048 levels of pres-
sure sensitivity. The signals from the bio-sensor devices were
streamed to the tablet using the Bluetooth Low Energy pro-
tocol. We also recorded the behaviour of participants with
the front camera of the tablet and a GoPro HERO3 camera.
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Figure 2: A participant completing the math tasks. A) During each session data is recorded from different devices. (1) An
Empatica E4 recording skin temperature on the dominant hand. (2) A Shimmer GSR+ measuring skin conductance and wrist
acceleration on the non-dominant hand. Participant behaviour was recorded by (3) the tablet front cam and (4) a GoPro
HERO3. All interactions with the tablet were conducted with a stylus (5). Participants also wore a Polar H10 chest belt (not
visible in the image) for recording heart activity. B) The task interface allows participants to write solution paths directly
onto the screen (the stylus pressure is color-coded for visualization purposes only).

4.2 Experimental Procedure
For measuring the affective states of the participants we have
used the self-assessment manikin (SAM) [6]. The SAM pro-
vides valence and arousal labels on a scale from 1 (most neg-
ative, lowest arousal) to 9 (most positive, highest arousal).
For triggering the affective states we have used math tasks
and pictures from the International Affective Picture System
(IAPS) [23]. The IAPS is a database of 1182 pictures typ-
ically used in emotion research and has been standardized
in terms of valence and arousal based on SAM ratings. We
used the IAPS to investigate whether the affective model for
the math tasks generalized to passive tasks, such as watch-
ing pictures (Section 5.6). As such, the set of IAPS pictures
presented to the participants was sampled to cover similar
affective regions as those expected to be evoked by the dif-
ferent math tasks.

An overview of the study procedure is presented in Figure
3A. The experiment lasted an average of 90 minutes for each
participant. Upon arriving at the lab, participants com-
pleted a demographics questionnaire and were given an oral
overview of the procedure. This included an explanation of
the SAM questionnaire based on 4 example pictures from the
IAPS presented on paper. Next, participants started work-
ing independently on the tablet by first watching a 7 minute
nature video (bio-sensor baseline), followed by the stylus
baseline that consisted of writing an English sentence with
the stylus. Participants were then presented with 40 pictures
from the IAPS in random order. Each picture was shown for
10 seconds and was directly followed by the SAM rating (va-
lence and arousal) and a 10 second fixation cross. In total,
we collected 3400 ratings from all participants. After rating
the IAPS pictures, participants were asked to watch the na-
ture video one more time before completing the math tasks.
Before finishing the experiment, participants completed a
paper questionnaire about their overall mood, comfort level
while wearing the sensors, nervousness and sweating level.

4.3 Experimental Tasks
To trigger different affective states, we have created three
different math task conditions by varying the difficulty level,

available time for completion and monetary reward of the
task. These types of manipulations were shown to be effec-
tive at eliciting different affective states in reading compre-
hension [4] and math tasks [32].

Task design. The math tasks were taken from an ACT
data set [1] that provided difficulty ratings from 0.12 (most
difficult) to 0.96 (simplest). We conducted a pilot study
(exact same conditions, 11 participants) to get an indication
of the time needed to solve the different tasks. Based on this
timing information and the tasks from the ACT data set we
generated the following three conditions.

1) Repetitive condition. For the repetitive condition we cre-
ated random variants (by substituting the numerical values
in the task) of two easy tasks from the ACT data set (diffi-
culty = 0.76 and 0.83). The time available to solve each task
was set between 60 and 75 seconds at random. This provided
participants with more than sufficient time to come up with
a solution for each task. Correctly solving a task in the
repetitive condition granted only a minor monetary reward
(+CHF 0.2) and a minor penalty (-CHF 0.2) for incorrect
solutions. The repetitive condition was designed to trigger
emotions such as boredom and fatigue.

2) Challenge condition. For the challenge condition we se-
lected math tasks from the ACT data set with medium dif-
ficulty (difficulty ∈ [0.58, 0.69]) and provided participants
with a larger monetary reward (+CHF 2) for correct solu-
tions and the same small penalty as the repetitive condi-
tion (-CHF 0.2) for incorrect solutions. Participants were
provided with sufficient time to solve the tasks based on
data from the pilot study (min = 53 seconds, max = 93
seconds). The challenge condition was designed to provide
diversified tasks for a more engaging and interesting experi-
ence, while the larger monetary reward provided a bigger in-
centive (higher-stakes) for participants to perform well with
relatively small penalty in case of mistakes.

3) Overchallenge condition. For the overchallenge condi-
tion, we selected the math tasks with high difficulty in the
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Figure 3: Overview over the different parts of the study. A) Overall experimental procedure. B) Changes in valence and
arousal for one participant in relation to task type and answer.

ACT data set (difficulty ∈ [0.25, 0.53]). Participants re-
ceived small monetary rewards for correct solutions (+CHF
0.2) and a large penalty (-CHF 2) for incorrect solutions.
The time to solve each task was set to be insufficient for
most participants based on data from the pilot study (min
= 25 seconds, max = 51 seconds). The overchallenge con-
dition was designed to provide a frustrating and annoying
experience to participants.

The math tasks were presented in six blocks (2 in each condi-
tion) each containing a different number of tasks (repetitive
condition 13 tasks, challenge condition 5 tasks, overchal-
lenge condition 6 tasks). A similar block design for math
tasks was already applied in previous work [32]. Moreover,
we believe that a sequence of tasks is necessary to trigger an
affective state. The first 3 blocks presented were randomly
sampled. However, the succeeding 3 blocks were fixed to
the same order as the first 3 blocks (but contained different
tasks). In addition, the maximum time for each block was
limited to 5 minutes to ensure that the math part of the
experiment does not go over 30 minutes. After each block, a
fixation cross was shown for 30 seconds to reduce potential
carry-over effects of affective states. At the end of each math
task, participants were asked to fill in the 9-point SAM scale
to report their current valence and arousal level (in total, we
have collected 3026 ratings from the participants). Figure
3B depicts the changes in the valence and arousal ratings for
one participant in relation to the block type and task answer
(correct vs. incorrect). We see that for the repetitive tasks,
valence and arousal are decreasing over time leading to a
shift towards boredom. Additionally, for incorrectly solved
tasks, valence drops and arousal tends to increase. After
the repetitive blocks we see a decrease in valence and an
immediate steep increase in arousal that may be attributed
to the increase in difficulty from the repetitive block to the
overchallenge block. On average participants finished with
CHF 44.3 (min = CHF 22.2, max = CHF 62.8). At the end
of the experiment, each participant was compensated with
a minimum of CHF 40.

Math task interface. Participants were asked to provide a
solution path for every task anywhere on the screen and then
to select their answers from 5 multiple-choice alternatives
(see Figure 2B). Participants received immediate feedback

on whether their answer was correct. A timer located on
the top right corner of the interface informed participants
about the time left to respond and started to blink when
less than 10 seconds remained. When the time was up and
the participant did not submit a solution, the answer was
considered wrong. The cumulative amount of money earned
was displayed on the top left of the interface.

5. RESULTS
We compared different versions of our classification pipeline
using only a subset of the sensors with a focus on the differ-
ence between stylus and bio-sensors. All results are based
on Random Forest (using 500 trees, balanced class weights
and hyperparameter optimization using randomized search
with 100 iterations) given that this was the best performing
classifier. In order to measure the performance of our clas-
sifiers, we have used accuracy (chance level = 1/# classes)
and micro-averaged area under curve (AUC) of the receiver
operating characteristic (ROC) curve (chance level = 0.5),
which aggregates the contributions of all classes to compute
the average metric. Because both metrics are affected by
class imbalance, we have also considered the macro-averaged
AUC (chance level = 0.5) which is the average of the class-
wise AUCs giving each class the same weight. To derive
the SD for each metric, we employed an additional 10-fold
cross-validation.

5.1 Study Validation
Our study was designed to trigger affective states across
the entire valence-arousal space. As a first step, we in-
vestigated if our study design worked by examining if the
different parameters acted as intended. In our task design
we varied task difficulty, monetary reward and the available
time for task completion. We have performed a per task
Kendall’s tau correlation analysis between these 3 parame-
ters and the arousal and valence ratings of the participants.
For the task difficulty and the percentage of remaining time,
we have found high correlations for both valence (−0.2; p-
value < 10−59 and 0.22; p-value < 10−80) and arousal (0.27;
p-value < 10−102 and −0.27; p-value < 10−117). Partic-
ipants shifted towards frustration (decreasing valence and
increasing arousal) with increasing task difficulty or with a
reduction in the time remaining to complete the task. In-
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Figure 4: Heat maps showing the distribution of the participants’ ratings on the math tasks. The red rectangles represent
the different regions. A) 5 regions automatically chosen using k-means clustering. B) Three regions manually selected. C)
Six regions manually selected.

terestingly, the effect size on valence and arousal is almost
identical. In contrast, monetary reward appears to have a
much larger effect on valence (0.47; p-value < 10−295) than
on arousal (−0.06; p-value < 10−4). Altogether, it appears
that our tasks worked as intended. Accounting for potential
superficial correlations (e.g., task duration) is an important
part of our study design. We found a significant Kendall’s
tau correlation between the task duration and the user rat-
ings of 0.17 (p-value < 10−48) and −0.11 (p-value < 10−22)
for arousal and valence, respectively. Because we have ex-
tracted the stylus features over the whole tasks, we have
excluded all features having a significant Spearman correla-
tion to the task duration (features greyed out in Table 1).

5.2 Data Analysis
Input Signals. Given that we detected a very low amount
of artifacts across participants (EDA = 0.015 % and IBI =
0.71 %), we refrained from removing them from the analysis.
Visual inspection of the ST recordings revealed a slow linear
increase of the temperature over the course of a participant’s
session. This change in temperature may be due to the skin
warming up under the wristband and independent of the
affective state of the participants. We removed this linear
trend from all measurements by subtracting the result of a
linear least-squares fit to the signal. We did not observe any
other artifacts for ST. The bio-sensor features listed in Table
1 have been computed using a window of 10 seconds since
the minimum task duration was 10 seconds. For the stylus
features, we have used an implicit window over the entire
task. In addition, we have excluded all data points having
at least one missing value.

Clustering of Ratings. Figure 4 presents the distribu-
tion of the participants’ ratings in the valence-arousal space
(dark and light blue refers to a high and low number of
data points, respectively). A v-shape is visible with most
ratings being made at a valence and arousal level of 7 and
5, corresponding to a positive medium intense state (e.g.,
interest). Several ratings were made at the extremes (top
left and top right) of the valence-arousal space correspond-
ing to states of distress and excitement that are associated
with very good and very poor performance. To uncover the
underlying clusters in the data, we have applied k-means

clustering in this two-dimensional valence and arousal space.
Using the Bayesian information criterion, we found an op-
timal number of 5 clusters. We defined region boundaries
(shown by the red rectangles in Figure 4A) as the arithmeti-
cally rounded value of the centroid of each cluster plus and
minus the standard deviation of the participants’ ratings in
the corresponding cluster. We observed that the regions are
all of equal size and cover the area of the v-shape. Based on
Russell’s [29] and Scherer’s [33] categorization we identify
the following regions, their sizes and corresponding affective
states: Region R1 (213 data points; frustrated, annoyed),
region R2 (284; bored, taken aback), region R3 (965; atten-
tive, serious), region R4 (861; expectant, confident), region
R5 (295; excited, triumphant). Together, it appears that the
math task covered a broad range of affective states relevant
for learning and that positive states (R3, R4, R5) dominate.

5.3 Classification Performance
Figure 5A and Table 2 present the predictive performance of
the model based on the 5 defined regions. Using all sensors,
the model achieved an accuracy of 65 % (chance level = 20
%). Here, the slightly lower value for the macro-averaged
AUC (0.83) compared to the micro-averaged AUC (0.88)
may be related to class imbalance. Figure 5C depicts the
confusion matrix based on all sensors. The matrix shows
that regions R1 and R2 are more difficult to predict than
the other regions. This may be due to the lower number
of data points collected for these regions. As expected, the
larger the distance between the regions, the easier it is for
the model to discriminate between them.

Feature Importance. Table 1 presents the 10 most im-
portant features (in bold). The features are sorted according
to their relative importance which we computed using per-
mutation feature importance (permuting each feature 100
times and measuring the mean decrease in micro-averaged
AUC). We obtained the same relative feature importance or-
dering using the Gini importance measure. EDA and heart
measures provided 3 out of the 10 most important features
and stylus features contributed with 4 of the most impor-
tant features. There were no ST features among the top
ten features. Regarding the heart measures, the features re-
lated to IBIs were more important than HR features. An
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interesting observation can be made for the stylus features.
Features related to the distance between strokes appear to
be more important than speed between stroke features indi-
cating that the spread of writing attributed to thinking (i.e.,
how the writing space is covered) provides more information
than the actual writing behaviour.

5.4 Sensor Comparison
Bio-Sensors. If we consider the individual sensors (Figure
5B), ST performs substantially worse (−0.11 AUC) com-
pared to EDA (0.80 AUC) and heart rate measures (0.81
AUC). The combination of all the bio-sensors (Figure 5A)
provides only marginal performance improvements (+0.05
AUC) compared to the individual sensors.

Stylus. Our most important finding is that the stylus per-
forms equally well as the bio-sensors (Figure 5B), rendering
the data from the bio-sensors redundant and unnecessary
for the prediction of affective states. The performance of
the stylus is only marginally inferior (−0.02 AUC) when
compared to the combination of all bio-sensors. In contrast,
the combination of the bio-sensors and the stylus achieves
a slightly higher performance (+0.02 AUC) compared with
the bio-sensors and stylus alone (Figure 5A). This might be
an indication that they may contain complementary infor-
mation, although the difference appears to be small.

5.5 Affective Region Analysis
In order to investigate the ability of our pipeline to predict
different affective regions based on the recorded bio-sensor
and stylus data we have defined two additional coverings of
the valence and arousal space (Figure 4B and 4C). Based
on Russell [29] and Scherer [33] we have manually defined
specific regions associated with frustration (annoying; re-
gion R6, 185 data points), boredom (taken aback; region
R7, 199) and interest (engaged concentration, flow; region
R8, 720) as shown in Figure 4B. Being able to distinguish
these 3 regions is important in education due to their im-
pact on learning gain [9, 26, 10]. To cover the valence and
arousal space evenly, we have manually defined the 6 regions
shown in Figure 4C, dividing arousal in two and valence in
3 components (The number of data points from region R9
to R14 are 287, 154, 134, 852, 432 and 506). The results
for both space partitionings are listed in Table 2 (note that
chance level for the accuracy is 33 % for 3 regions and 16.66
% for 6 regions). The performance of the classification of
3 regions outperforms the one for 5 and 6 regions in terms
of accuracy. On the other hand, when taking into account
the AUC, there is no substantial difference in performance
between the different coverings. This difference between ac-
curacy and AUC stems from the fact that predicting only
3 regions is a much easier task than predicting 5 or 6 re-
gions. This is in line with the finding that the accuracy
for predicting 5 regions is slightly higher than for 6 regions.
Nevertheless, we can conclude that we have seen that our
approach is able to provide good results for 3 different cov-
erings. Thus, we come to the conclusion that our pipeline is
rather flexible being able to handle different regions in the
valence-arousal space. Compared to previous work relying
on fixed affective states, our approach has the advantage
that the regions do not have to be pre-defined allowing for
much more flexible use.

Table 2: Performance of Random Forest on the math data
for different signals and regions. AUCmicro and AUCmacro

represent micro-averaged and macro-averaged AUC, respec-
tively. The chance level for accuracy is 1/# regions and for
AUC it is 0.5. The standard deviations are given in brackets.

Regions Signals AUCmicro AUCmacro Accuracy

k-means EDA 0.80 (0.02) 0.75 (0.03) 50 % (4 %)
(5 Regions) Heart 0.81 (0.01) 0.73 (0.01) 52 % (2 %)

Temperature 0.69 (0.03) 0.59 (0.03) 37 % (4 %)
Stylus 0.84 (0.01) 0.76 (0.02) 59 % (2 %)
Bio-Sensors 0.86 (0.01) 0.81 (0.02) 60 % (2 %)
Bio-Sensors & Stylus 0.88 (0.01) 0.83 (0.02) 64 % (2 %)

Manual EDA 0.81 (0.02) 0.69 (0.04) 66 % (2 %)
(3 Regions) Heart 0.79 (0.02) 0.66 (0.03) 62 % (3 %)

Temperature 0.76 (0.01) 0.60 (0.04) 60 % (3 %)
Stylus 0.83 (0.02) 0.72 (0.02) 67 % (3 %)
Bio-Sensors 0.84 (0.01) 0.76 (0.03) 67 % (1 %)
Bio-Sensors & Stylus 0.87 (0.01) 0.80 (0.02) 67 % (2 %)

Manual EDA 0.80 (0.02) 0.72 (0.03) 46 % (3 %)
(6 Regions) Heart 0.78 (0.01) 0.72 (0.02) 44 % (2 %)

Temperature 0.70 (0.02) 0.61 (0.02) 35 % (3 %)
Stylus 0.81 (0.01) 0.75 (0.02) 48 % (2 %)
Bio-Sensors 0.85 (0.02) 0.80 (0.02) 57 % (4 %)
Bio-Sensors & Stylus 0.87 (0.02) 0.83 (0.03) 61 % (3 %)

5.6 Model Transfer
In addition to the math tasks, we have also gathered bio-
sensor data as well as valence and arousal ratings from the
participants while they observed pictures from the IAPS. We
have used this data to investigate our model’s capacity to
generalize to more passive tasks, such as looking at pictures.
To predict the affective regions of interest, we applied our
model trained on the bio-sensor data recorded during math
task solving to data collected while participants viewed and
rated the set of IAPS pictures. When we consider the 5
different regions (Figure 4A), the model’s accuracy reaches
39 % (chance level = 20 %, AUCmicro = 0.68, AUCmacro =
0.64). When we train and evaluate a model directly on the
picture data, we achieve a slightly better classification per-
formance (accuracy = 42 %, AUCmicro = 0.74, AUCmacro =
0.66). There may be several reasons behind the suboptimal
performance when predicting affective states during the pic-
ture task. These include sociocultural aspects when rating
emotions based on pictures (e.g., rating how it is expected),
old and low resolution pictures from the IAPS data set, me-
dia influence desensitizing participants to the content of the
IAPS, and the fact that the math and picture domains are
very different. Together these initial results indicate that
building a general predictor of affective states might be pos-
sible, but further experiments are necessary.

6. CONCLUSION
In this paper we presented a generic pipeline for predict-
ing affective regions of interest using bio-sensor and stylus
data. We validated our pipeline for the case of math solv-
ing tasks and demonstrated that our pipeline can accurately
predict various regions in the valence-arousal space (up to
0.88 AUC). In addition, we have compared different input
signals with each other. The performance of the Shimmer
GSR+ and Polar H10 have been on the same level (up to
0.81 AUC). Moreover, we found that the classification per-
formance using only stylus data is comparable to the classifi-
cation performance based on the bio-sensors. Taking into ac-
count the emerging digitization of education and the spread
of tablets in schools and private households, these results
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B) ROC Curve for Individual SensorsA) ROC Curve for Bio-Sensors & Stylus C) Confusion Matrix

Figure 5: ROC curves and micro-averaged AUC scores for 5 regions chosen by k-means clustering for (A) the bio-sensors,
stylus and the combination of bio sensors and stylus and (B) the individual bio-sensors & stylus. (C) The confusion matrix
is computed by using the combination of bio-sensors and stylus.

make the stylus a preferred alternative to bio-sensors for
measuring affective states in classrooms. Using bio-sensors
in classroom settings can be cumbersome and costly as it re-
quires the purchase and synchronization of several devices.
In contrast, systems that depend on a stylus only are cheaper
than systems relying on bio-sensor devices, and styluses of-
ten come bundled with mobile devices, such as tablets or
smartphones. In addition to being cheaper and more ubiq-
uitous, styluses are easier to setup (e.g., no attachment of
electrodes, no motion artifacts) and less intrusive. Further-
more, stylus data is not only restricted to digital devices but
can also be recorded using digital pens. Finally, we have
demonstrated the possibility of a generalized model for pre-
dicting affective states by applying the model trained on the
data from the math tasks (active part) to pictures from the
IAPS (passive part) reaching a performance of 0.68 AUC.

There are some potential limitations to the approach pre-
sented here. First of all, the setup is restricted to a lab envi-
ronment and the population of Bachelor students may limit
generalization to students at other levels. We are optimistic
that our approach also works outside a controlled setting
and for a broader population. Participants reported that
the setup was comfortable and that they could act in a nat-
ural way. In addition, we assume that given a proper base-
line correction the signals are also predictive for a heteroge-
neous group of people. Another limitation is the restriction
to math tasks. Similar to bio-sensor data, we believe that
handwriting data carries affective information independent
of the task. Thus, we expect our approach to work also in
other domains involving handwriting, such as solving exer-
cises for different school subjects and writing essays.

Future research from our lab will test and refine our pipeline
for multiple domains. Potential refinements include using
non-linear IBI features and frequency features for skin tem-
perature. Additionally, an in depth analysis of handwriting
that takes into account the slant of the handwriting could
further improve the classification performance. Another in-
teresting direction would be to make use of large existing
bio-sensor databases for semi-supervised learning by using
auto-encoders to infer an efficient feature embedding [20].
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