

Copyright © 2018-2021 Ettus Research, A National Instruments Brand

RF Network-On-Chip (RFNoC™) Specification
Version 1.0.1

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 2

RF Network-On-Chip (RFNoC™) Specification

Copyright © 2018-2021 Ettus Research, A National Instruments Brand

About this Guide

This guide describes RFNoC, which is a heterogeneous processing framework used to

implement high throughput DSP in the FPGA for Software Defined Radio (SDR) systems in an

easy-to-use and flexible way.

Intended Audience

This guide is written for hardware and software engineers who want to become familiar with the

RF Network-on-Chip (RFNoC™) architecture or want to develop intellectual property (IP) using

the RFNoC™ architecture.

Release Information

The following changes have been made to this specification:

Version Date Changes

0.1 2/1/2019 First Revision

0.2 5/6/2019 - Updated CHDR format to add virtual channel number and remove

user defined flags and 2 bits of metadata

- Dropped redundant “ctrlport” signal name in Table 18

- Updated management NodeInfo response value

- Renamed AXIS Raw Data to AXIS Payload Context

0.3 7/23/2019 - Added motherboard controllers

- Added default properties

0.4 8/6/2019 - Added description of RFNoC block user interface reset behavior

- Added “AXI-Stream Data” interface option to the Data-Plane

- Updated port numbering for user interfaces (eliminated “m<p>_”

and “s<q>_” in favor of concatenating multiple ports)

0.5 9/4/2019 - Update interfaces from Doxygen

0.6 11/20/2019 - Made various corrections and clarifications

0.7 8/28/2020 - Updated document title to make it consistent throughout

- Updated copyright year

- Added clarification about Initialize stream command behavior

based on NumBytes/NumPkts field values
- Added information on SIDEBAND_AT_END parameter

- Added YAML names to NoC Shell generation options

1.0 10/1/2020 - Changed version from number to string in YAML

1.0.1 10/26/2021 - Added explanation of the maximum amount of metadata that is

compatible with all CHDR bus widths

- Corrected errors where stream status and route setup packets

were mentioned instead of management packets

- Updated OpPayload description in the management packet field

definitions table

- Deleted statement saying that management word padding is

assumed to be zero and added clearer wording

- Added section “Data Item and Component Ordering”

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 3

TABLE OF CONTENTS

1 INTRODUCTION .. 5

1.1 What is RF Network-on-Chip (RFNoC™)? ... 5

1.2 RFNoC Basics ... 5

1.2.1 Components .. 5

1.2.2 Topology ... 5

1.2.3 Routing.. 6

1.2.4 Flow .. 6

1.3 The RFNoC Flow Graph .. 7

1.3.1 NoC Block ... 7

1.3.2 Stream Endpoint ... 7

1.3.3 Transport Adapter ... 8

1.3.4 Routing Core ... 8

1.3.5 Example Topology .. 9

1.3.6 Workflow ... 9

2 RFNOC FPGA FRAMEWORK OVERVIEW ...11

2.1 Basics ...11

2.1.1 Block Capabilities ...11

2.1.2 Integration with USRP Hardware ..12

2.2 RFNoC Packet Network ..12

2.2.1 CHDR Overview ...12

2.2.2 Data Packets ..16

2.2.3 Control Packets ..17

2.2.4 Stream Status Packets [Internal Only] ..21

2.2.5 Stream Command Packets [Internal Only] ..22

2.2.6 Management Packets [Internal Only] ..24

2.3 NoC Block User Interface ...26

2.3.1 Basic Signals..27

2.3.2 Control-Plane ...28

2.3.3 Data-Plane ...35

2.3.4 IO Ports (Advanced) ...45

2.3.5 Backend RFNoC Interface..46

2.4 RFNoC FPGA Image ..47

2.4.1 Workflow ..48

2.4.2 Design Assembly Toolflow ...48

2.4.3 Initialization and Usage ..49

3 RFNOC SOFTWARE FRAMEWORK OVERVIEW ..51

3.1 Basics ...51

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 4

3.2 Block Controller ..51

3.2.1 Block IDs ..51

3.2.2 Registers ..54

3.2.3 Block Properties ...61

3.2.4 Block Actions..63

3.2.5 C++ API ...63

3.2.6 Custom Block Controllers ...66

3.3 RFNoC Graph ..68

3.3.1 Capabilities ..68

3.3.2 C++ API ...68

3.4 Streamers ...74

3.5 Motherboard Controllers ...77

3.6 uhd::multi_usrp API ..77

4 RFNOC TOOLS OVERVIEW ...79

4.1 Basics ...79

4.2 RFNoC ModTool...80

4.2.1 Overview ..80

4.2.2 Input Format ...81

4.3 RFNoC Image Builder ..84

4.3.1 Overview ..84

4.3.2 Input Format ...84

5 INDEX ..86

5.1 Figures ...86

5.2 Tables ..86

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 5

1 Introduction

1.1 What is RF Network-on-Chip (RFNoC™)?

RFNoC is a heterogeneous processing framework that can be used to implement high

throughput DSP in the FPGA, for Software Defined Radio (SDR) systems, in an easy-to-use

and flexible way. RFNoC and GNU Radio can be used to implement heterogenous DSP

systems that can span CPU-based hosts, embedded systems and FPGAs.

RFNoC can be used to implement DSP “flow-graphs” where DSP algorithms and IP blocks are

represented as nodes in the graph and the data-flow between them as edges. RFNoC, which is

a network-on-chip architecture, abstracts away the setup associated with the nodes and edges

of the graph and provides seamless and consistent interfaces to implement IP in the FPGA and

software.

1.2 RFNoC Basics

As a network-on-chip architecture, RFNoC employs the following design philosophies for its

choice of topology, routing, flow and microarchitecture.

1.2.1 Components

RFNoC flow graphs have the following components:

• NoC Block: A core processing block that implements user-defined IP like DSP, radio

communication, hardware communication, etc.

• Stream Endpoint: A block that serves at the starting point or termination point for a data

or control stream.

• Transport Adapter: An abstraction for physical transports like Ethernet, USB, PCIe, etc.

Transport adapters are typically specific to the hardware that RFNoC is running on.

• Routers: Modules that connect NoC Blocks, Stream Endpoints and Transport Adapters

to allow the user to build a DSP flow-graph.

Each NoC block has two communication planes: 1) Data and 2) Control. The control plane is

used for setup and configuration and is assumed to be a low-throughput transaction-based

interface. The data plane is a high-throughput streaming interface for samples, bits, etc. It is

possible to inject optional, high-throughput metadata into the data-plane.

1.2.2 Topology

The topology is defined as the set of connections between the various RFNoC components. The

topology of an RFNoC network is completely user-defined, given that the network meets the

bandwidth and resource requirements of the underlying hardware. RFNoC allows the user to

connect their own DSP blocks to the available Ettus Research SDR-specific blocks in a flexible

and arbitrary fashion to create any custom flow graph. RFNoC also provides the ability to

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 6

reconfigure the graph within certain user specified constraints. Reconfigurability can fall into the

following categories:

1. Run-time Reconfiguration: A part of the topology can be modified at runtime by changing

software settings or physical connections between USRPs and FPGA accelerators. Run-

time reconfiguration allows the software application to change the topology dynamically.

2. Build-time Reconfiguration: A part of the topology is hard-coded into the FPGA image

and requires an FPGA rebuild (or partial bitstream download using partial

reconfiguration) to reconfigure.

3. No Reconfiguration: There are hard-coded connections, primarily due to hardware

design decisions, that do not allow certain parts of the topology to be modified.

Run-time reconfiguration provides the most flexibility but has a higher implementation cost in

terms of FPGA resources and upper limits on processing blocks. Build-time reconfiguration

provides less flexibility but reduces some of the resource costs. RFNoC allows users to choose

between build-time and run-time topology reconfiguration. Automated tools and scripts will allow

users to make these tradeoffs in an easy-to-use way.

1.2.3 Routing

The routing backbone in RFNoC is responsible for moving data from block to block using a

clearly defined strategy. RFNoC uses the following routing strategies for the control and data

plane.

• Source Routing: A routing algorithm that chooses the entire path at the source. For

source routing to be possible, the source must know every hop that a transaction will

take and the local router port at each hop. This is different from, say, distributed or

incremental routing, where the transit decision is taken locally at each router instead of

globally.

• Deterministic Routing: If there are two paths from the source to the destination, then the

source routing algorithm will pick the path deterministically.

• (Data Only) Circuit Switched: A circuit (a path between a source and destination) must

be established and reserved when a stream between two ports on NoC blocks is active.

When a circuit is reserved, the source port cannot talk to a different destination.

• (Control Only) Packet Switched: Any NoC block can send and receive control

transactions from any other NoC block without restrictions. The source and destination

are encoded in the packet.

1.2.4 Flow

The smallest unit of transfer in RFNoC is a packet or datagram, the Condensed Hierarchical

Datagram for RFNoC (CHDR). Both data-plane and control-plane traffic is packetized in the

CHDR format, and the packet-type is encoded within the packet. Data streams are always

bidirectional. Within the FPGA, data flows in AMBA AXI4-Stream packets and uses the standard

ready/valid flow control scheme (flit-buffer flow control). For lossy transports, the stream

endpoint implements a high-level flow control scheme which is packet based (packet-buffer flow

control).

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 7

1.3 The RFNoC Flow Graph

As shown in Figure 1 an RFNoC flow graph has the following major components

• NoC Blocks

• Stream Endpoints

• Transport Adapters

• Routing Core (Routers and Crossbars)

Legend

 NoC
 Shell

User
Logic

 NoC
 Shell

User
Logic

 NoC
 Shell

User
Logic

 NoC
 Shell

User
Logic

 NoC
 Shell

User
Logic

Control Crossbar

Static Router NoC Blocks
(N instances)

Stream Endpoints
(M instances)

CHDR Crossbar

AXIS CHDR
AXIS Ctrl

AXIS Data

Misc
Control Port

Transport
Adapter

(Eth, PCIe, etc)

Transport
Adapter

(Eth, PCIe, etc)

Autogenerated NoC Core

Transport Blocks
(P instances)

Misc
Logic

IO
AXIS CTRL

to
CTRL Port

0

STATIC

Stream
Endpoint

XB
C

D

Stream
Endpoint

XB
C

D

Stream
Endpoint

XB
C

D

Figure 1: A typical RFNoC flow graph

1.3.1 NoC Block

A NoC block contains the core processing IP (user logic) sandboxed from the rest of the blocks

and from the framework. The user logic interacts with the RFNoC infrastructure using the NoC

Shell module. The NoC shell provides a separate control and data interface that the user logic

can use to send and receive control transactions and processing data, respectively. The details

of each interface will be covered in later sections. A NoC block may also interface with outside

logic or IO that is unmanaged by RFNoC. An RFNoC flow graph can have at most about 1000

NoC blocks per device (if they fit in the FPGA). This maximum number of ports in each FPGA is

limited by a 10-bit address field which is shared for blocks, stream endpoints and transports.

1.3.2 Stream Endpoint

A stream endpoint serves as the start and end for a unique sample stream. The number of

stream endpoints in a USRP design must scale with the number of parallel streams of data

to/from the device. A stream endpoint can exist in the FPGA or in software. A bidirectional

stream can be initiated between any two endpoints dynamically at any point in the application.

Streams can be destroyed and recreated without having to rebuild or partially reconfigure the

FPGA image. RFNoC implements flow control between stream endpoints, so they can flow over

any transport. An RFNoC flow graph can have a user-selectable number of stream endpoints.

The number of stream endpoints is independent of the number NoC blocks. The stream

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 8

endpoint can optionally support multiple virtual streams that are multiplexed through the same

physical transport. The multiplexing and demultiplexing will be performed by the framework

using the “virtual channel” field in the packet header.

1.3.3 Transport Adapter

A transport adapter is a wrapper around a specific transport implementation like Ethernet,

Aurora, PCI Express, etc. Transport adapters provide logic to enable RFNoC-formatted dataflow

between two FPGAs, or FPGA and software in a hardware-transparent way. The number of

stream endpoints is independent of the number of transport adapters; a transport is capable of

multiplexing multiple streams of data.

1.3.4 Routing Core

The routing core handles connecting NoC blocks, stream endpoints and transport adapters. The

routing core has three main routers:

• CHDR Crossbar: This crossbar is a full-bandwidth full-mesh dynamic crossbar. It

connects the transport adapters to the stream endpoints. The CHDR crossbar enables

communication within an FPGA between any two of its crossbar ports. This allows

communication between two stream endpoints or between a stream endpoint and

another FPGA through a transport adapter.

• Control Crossbar: This crossbar is a local crossbar, also full-mesh, but with reduced

bandwidth. It allows control transactions to be sent between any two of its ports. This

allows control transactions to be sent from software to a NoC block, from a NoC block to

software, between two NoC blocks, or from a NoC block to another FPGA.

• Static Router: The static router encodes a fixed topology between data ports of NoC

blocks. This topology can only be reconfigured by rebuilding the FPGA image. A static

router requires significantly fewer FPGA resources than a dynamic router.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 9

1.3.5 Example Topology

Legend

 NoC
 Shell

Radio
0

 NoC
 Shell

Radio
1

 NoC
 Shell

DMA
FIFO

0

 NoC
 Shell

DDC
0

 NoC
 Shell

DDC
1

Control Crossbar

Static Router

NoC Blocks
(8 instances)

Stream Endpoints
(2 instances)

CHDR Crossbar

AXIS CHDR
AXIS Ctrl

AXIS Data

Misc
Control Port

10 GigE
Transport
Adapter

10 GigE
Transport
Adapter

Autogenerated NoC Core

Transport Blocks
(3 instances)

AXIS CTRL
to

CTRL Port

0

PCI Express
Transport
Adapter

 NoC
 Shell

DUC
0

 NoC
 Shell

DUC
1

EP0 => DMAFIFO0 => DUC0 => Radio0

EP1 => DMAFIFO1 => DUC1 => Radio1

Radio0 => DDC0 => EP0

Radio1 => DDC1 => EP1

 NoC
 Shell

DMA
FIFO

1

STATIC

Stream
Endpoint

EP0

XB
C

D

Stream
Endpoint

EP1

XB
C

D

Radio
Iface

DRAM
Iface

Radio

Iface

DRAM

Iface

Figure 2: Example topology with for a multi_usrp compatible image (X310_XG)

Figure 2 shows an example topology for the USRP-X310 that can function with the multi_usrp

API and a UBX daughter board (i.e., it has all the necessary radio and DSP blocks to implement

the API). This design has:

• 3 transport adapters: 2 for 10 GigE and one for PCIe

• 2 stream endpoints: Each X310 supports 2 UBX daughter boards with a total 2 transmit

and 2 receive channels. So, we instantiate 2 (bidirectional) stream endpoints.

• 8 NoC blocks: We have 2 each of the radio, DMA FIFO, DDC and DUC blocks. Together

they form 4 chains (subgraphs). These chains hook up two of the 4 ports (TX and RX) of

the stream endpoints.

• 2 crossbars: The 8 blocks in this image tunnel through 2 stream endpoints into the 5-port

CHDR crossbar. The control crossbar has 11 ports for full control connectivity between

blocks and endpoints.

1.3.6 Workflow

The primary goal for RFNoC is to allow DSP engineers to build heterogenous applications that

may be comprised of standard blocks provided by Ettus Research, as well as custom user-

authored blocks. The framework provides tools to 1) allow users to create custom blocks and 2)

assemble an FPGA image and a software application that uses standard or custom blocks.

The general workflow for a user to build an RFNoC application thus is:

1. Partition the DSP/algorithm problem into software components and FPGA components

(this can be done iteratively).

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 10

2. For the FPGA components, partition the problem into basic functions i.e. blocks.

3. Identify if any of the basic functions (blocks) are already available. Blocks can be found

in the standard Ettus Research repositories or in third-party/open-source repositories.

4. Develop the FPGA and software source code for each new block using the tools

provided by RFNoC.

a. FPGA: Develop the core acceleration algorithm in Verilog, VHDL, SystemVerilog

or Vivado HLS

b. FPGA: Write testbenches for the block using the RFNoC framework

c. Software: Write a block definition and an optional C++ controller to command and

control the FPGA block from UHD software

5. Use the provided RFNoC tools to assemble an FPGA image that contains all the

necessary blocks to implement the desired application.

a. Connections between blocks can be fixed in the FPGA (for performance) or

dynamic (for flexibility)

b. Blocks can also be connected to transports on the USRP to build multi-FPGA

applications

6. Once an FPGA image is ready, write an application in UHD (in C, C++ or Python) or

GNU Radio to control and connect the dynamic blocks in the design to implement the

desired application.

Usage Guidelines

• The user develops individual blocks, so the user interface in the FPGA and software will

be abstracted at a block level.

• Blocks have a control and data plane, and those planes will be the primary interface

points in the software and the FPGA.

• To build an application, the user must compose blocks in a specified topology, so the

framework will provide tools to do so on the FPGA and provide APIs in the software to

build a graph of blocks.

• Device specific details and the board support package for a USRP will be abstracted

away by the framework.

NOTE: RFNoC has several features that are marked as “advanced” that may be disabled or not

exposed in the standard interfaces for performance or efficiency reasons. The advanced

features will allow users to implement more complex applications but that may require detailed

understanding of the framework.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 11

2 RFNoC FPGA Framework Overview

2.1 Basics

2.1.1 Block Capabilities

Fundamentally, an RFNoC block has three main types of interfaces:

• Control: A transaction-based interface that can be used for low-speed control through

software or other blocks. The three basic transaction types are register read, register

write and bus sleep. More complex transactions are possible, but most applications

should be possible with the basic three. All transactions on this interface can be

deterministic and executed at user-specified times.

• Data: A streaming interface that can be used for high-speed and low-latency data

movement between blocks. This interface also supports deterministic and timed

streaming with optional (advanced) capabilities to insert inline metadata in the stream.

• External: A block may need access to other IO in addition to control and data. Blocks

that control USRP hardware (advanced) can have access to low-level pins. Blocks can

also get access to time to implement hardware timed operations. More advanced blocks

can get access to user-defined IO ports. Most RFNoC processing blocks will not need

the miscellaneous interfaces.

Each block has one bidirectional slave (or master and slave) control interface, zero or more data

ports and zero or more external IO.

RFNoC is a network-on-chip and has a packetized transport network. Utilities are available to

abstract packets into simple interfaces (discussed later), however the understanding of the data

flow and packet formats should allow users to build better and more efficient applications.

RFNoC provides the following capabilities for the control and data planes:

2.1.1.1 Control-Plane Capabilities

• The control plane is transaction based. RFNoC has pre-defined transactions like reads,

writes and sleeps, but it is possible to add more transactions (advanced). Transactions

have a bit width of 32 bits and each transaction has a 20-bit address and a payload of up

to eight 32-bit data words.

• Transactions are blocking and have an optional execution status.

• Transactions can be executed immediately or have an associated timestamp for

deterministic execution or alignment with data samples.

• Any block can send transactions to any other block at any time. Blocks within an FPGA

have connectivity through a control crossbar, so other blocks can be addressed with a

10-bit “port” whereas blocks on remote FPGAs can be addressed through a stream

endpoint by specifying an “endpoint-ID” and a “port” on the remote FPGA.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 12

2.1.1.2 Data-Plane Capabilities

• The data plane has a streaming interface where it is possible to stream “bursts” of

“vectors” of “items”. An item is defined as a single atomic data word with a user-defined

bit-width (e.g., a common item would be an RF data sample). A vector is a 1-

dimensional collection of items. A burst is a collection of vectors.

• Data is received in packets which is independent of the items, vectors and bursts. The

parameters of a packet, like the size, are hardware dependent and can be used to make

low-level throughput/latency tradeoffs.

• Each packet can have user-defined metadata (advanced)

• Each packet can have a 64-bit timestamp (which is a counter in a time-base clock

domain)

• It is possible to build a sequence of packets using an embedded sequence number field.

2.1.2 Integration with USRP Hardware

RFNoC provides seamless integration with USRP Hardware. As an SDR, a USRP has the

following external input/output interfaces:

• ADCs/DACs

• RF Signal Chain Control

• Memory Interfaces (DDR, SRAM, etc.)

• Digital IO

• Transports (Ethernet, PCIe, etc.)

Each USRP will come equipped with NoC Blocks that seamlessly connect to the above IO.

Transports will have corresponding transport adapters. It is possible to reassign that IO to other

blocks in the design but that is an advanced feature.

2.2 RFNoC Packet Network

Before looking at the FPGA interfaces, it is important to understand how data flows between

blocks and stream endpoints. With the provided RFNoC tools, it is possible to choose between

a simple interface that abstracts the data movement or a low-level interface that gives the block

full control (and responsibility).

2.2.1 CHDR Overview

The Condensed Hierarchical Datagram for RFNoC (CHDR) is a protocol that defines the

fundamental unit of data transfer in an RFNoC network. As shown in Table 1, it has a header

that encodes packet info, routing info, metadata and the data payload. CHDR is used as a

transport protocol between stream endpoints. CHDR can handle control, data, flow control and

status messages. The format is dependent on the width of the CHDR bus in the FPGA

(CHDR_W). NOTE: CHDR_W can be a power of 2 that is equal to or greater than 64 bits.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 13

Memory Layout

<------ CHDR_W = 64 bits ------>

Requir
ed?

0 VC

(6)

EOB

(1)

EOV

(1)

PktType

(3)

NumMData

(5)

Value=M

SeqNum

(16)

Length

(16)

Value=L

DstEPID

(16)

Y

1 Timestamp (64) N

2 Metadata[0] (CHDR_W) N

.

M+1 Metadata[M-1] (CHDR_W) N

M+2 Payload[0] (CHDR_W) Y

.

M+N+1 Payload[N-1] (CHDR_W) N

Table 1: Memory layout of a CHDR packet

The individual fields are described in detail in Table 2.

Field Width Description Type

Virtual

Channel

(VC)

6 The virtual channel number for a stream. It is possible to

have multiple virtual streams flowing over the same

physical stream (EPID-pair). This field identifies the

index of the virtual stream. The default value of this field

is zero.

NOTE: Any virtual streams that are incorrectly

addressed will go to port 0.

Required

Delimiters

(EOV/EOB)

2 Delimiter flags for the user logic to use. These bits are

unused by the core framework but have the following

definitions:

• Delimiter[0] = EOV (End of Vector)

• Delimiter[1] = EOB (End of Burst)

NOTE: Data in RFNoC has three kinds of delimiters: 1)

Packets, 2) Vectors and 3) Bursts. A vector is a

collection of packets (of items), and a burst is a

collection of vectors.

Required

PktType 3 The type of this CHDR packet. Can be one of the

following:

0x0 = Management

0x1 = Stream Status

0x2 = Stream Command

0x3 = <Reserved>

Required

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 14

0x4 = Control Transaction

0x5 = <Reserved>

0x6 = Data Packet without a Timestamp

0x7 = Data Packet with a Timestamp

NumMData 5 The number of metadata words in this packet. Each

metadata word is CHDR_W bits wide. If NumMData is

zero, then the packet has no metadata. The maximum

value for NumMData is 30.

NOTE: Metadata is considered to be an advanced

feature of RFNoC, and its interpretation is assumed to

be block-specific. The framework will provide the ability

for the user logic to extract and insert metadata into a

packet but the user logic in the block is responsible for

defining its format.

Required

SeqNum 16 Packet sequence number. The value shall start at 0 and

increment by 1 for every packet of a given type in a

stream. The counter shall roll over to 0 after 65535 (216-

1).

NOTE: The sequence number is useful for detecting

gaps and reordering issues in a stream. During error-

free operation, the sequence number will increase

monotonically (by 1) for every packet for each:

• Stream (unique source and dest. endpoints)

• Packet type

The sequence should thus be independently monotonic

for each stream and each packet type. A gap in the

sequence number at any point is considered a sequence

error.

Required

Length 16 Length of the packet in bytes. This includes the header,

timestamp, metadata and payload.

Required

DstEPID 16 The Endpoint ID of the stream endpoint that this packet

is destined for. The EPID is used to make routing

decisions.

(The details of routing are covered in the following

sections)

NOTE: EPID = 0 is reserved and may not be used

Required

Timestamp 64 A 64-bit integer timestamp for the payload in the packet.

This field is valid only when the packet type is “Data

Packet with a Timestamp”

Optional

Metadata Variable User-defined metadata. These bits are unused by the

core framework and their format is undefined. The

Optional

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 15

definition of the format can be block-specific.

Payload Variable User-defined payload

NOTE: Every CHDR packet must have at least one line

of payload.

Required

Table 2: CHDR field descriptions

The memory layout for various CHDR widths and configurations is shown below.

Byte CHDR_W = 64

0 HEADER (64)

8 METADATA[0]

16 METADATA[1]

24 PAYLOAD[0]

32 PAYLOAD[1]

… …

… PAYLOAD[N-1]

Table 3: Memory layout for CHDR_W = 64 (Example without a timestamp and 2 metadata words)

Byte CHDR_W = 64

0 HEADER (64)

8 TIMESTAMP (64)

16 METADATA[0]

24 METADATA[1]

32 PAYLOAD[0]

40 PAYLOAD[1]

… …

… PAYLOAD[N-1]

Table 4: Memory layout for CHDR_W = 64 (Example with a timestamp and 2 metadata words)

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 16

Byte CHDR_W = 128

0 TIMESTAMP (64) HEADER (64)

16 METADATA[0]

32 METADATA[1]

48 PAYLOAD[0]

64 PAYLOAD[1]

… …

… PAYLOAD[N-1]

Table 5: Memory layout for CHDR_W = 128 (Example with a timestamp and 2 metadata words)

Byte CHDR_W = 256 or higher

0 RESERVED TIMESTAMP (64) HEADER (64)

32 METADATA[0]

64 METADATA[1]

96 PAYLOAD[0]

128 PAYLOAD[1]

… …

… PAYLOAD[N-1]

Table 6: Memory layout for CHDR_W = 256 (Example with a timestamp and 2 metadata words)

The amount of metadata in a packet depends on the NumMData field and the width of the

CHDR bus. For compatibility between different CHDR widths, it is recommended to limit the

amount of metadata to 248 bytes, the maximum amount supported by the smallest CHDR width,

CHDR_W = 64.

2.2.2 Data Packets

When the CHDR PktType field is 0x6 or 0x7, the payload is interpreted as a data packet. The

data packet is the simplest type of CHDR packet because the format is flexible, and the payload

is defined by the blocks generating and consuming it. When the PktType is 0x7, the header

contains a valid timestamp. When the PktType is 0x6, the timestamp word is ignored. Note that

when the PktType is 0x6 and CHDR_W is 64, there is no timestamp word and the first word of

metadata or payload immediately follows the header word.

The stream endpoints separate control traffic from data traffic so that the AXIS-CHDR Data

ports on the client side of the stream endpoint only carry data packets (see Figure 1). Data

packets are designed to have the lowest overhead to enable low-latency and high-throughput

streaming of samples.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 17

2.2.2.1 Timestamps and Data Bursts

The exact meaning of the timestamp field in data packets is a block-dependent feature. For

example, the radio will add the current timestamp to each outgoing packet but will interpret the

timestamp on incoming packets as an instruction to start sending at this time. Other blocks may

also have block-specific behavior regarding timestamps. To harmonize the usage of

timestamps, the following conventions should be used, where possible, to design blocks and/or

software that uses timestamps:

• A burst is understood to be a contiguous string of samples or other data units. For

example, the software might request 10000 samples from a radio, at a packet size of

1000 samples per packet. The burst will thus consist of 10 packets of 1000 samples

each.

• The last packet of a burst must be tagged with an end-of-burst (EOB) marker.

• Assuming the burst is carrying timestamps, the first packet of the burst must carry the

timestamp (the PktType field must be set to 0x7, and the 64-bit timestamp must be

filled).

• The following packets of the burst are not required to carry a timestamp. The assumption

is that timestamps can be calculated in the receiver, since the number of samples is

known per packet.

• If mid-burst timestamps are set, then it is up to the downstream consumer to make use

of them or ignore them.

o Example: The DDC block will calculate timestamps internally within a burst. This

is because the DDC typically comes directly after a radio, and thus the input to

the DDC is predictable. The RX Streamer (in software) however does read all

incoming timestamps and passes them on the user. This is because the data link

between the FPGA and the host computer can be lossy (e.g., when using UDP),

and thus, the host software will not assume it can internally calculate new

timestamps.

• The first packet after an EOB must carry a timestamp again, if the new burst is timed.

The rationale for not requiring timestamps mid-burst is twofold: First, timestamps mid-burst are

redundant, and thus leaving them out might make block designs simpler, and potentially reduce

bandwidth usage. The second reason is due to the fixed-point nature of timestamps. Take the

example of a radio block producing data at a rate of 200 Msps, which is in the same clock

domain as the timekeeper, running at 200 MHz. Following the radio block is a fractional

resampler which turns the 200 Msps into a 122.88 Msps stream. Due to the fractional

relationship between input and output rates at the resampler, it will not be able to calculate mid-

burst timestamps without rounding errors. The timestamp in the first packet, however, does not

need to be converted, since the beginning of the packet keeps the same time regardless of the

sampling rate. The redundancy of the mid-burst timestamps is thus used to avoid potential

pitfalls of fixed-point rounding errors.

2.2.3 Control Packets

When the CHDR PktType field is 0x4, the payload is interpreted as a control packet. The

control packet encodes memory-mapped transactions. It has a variable length that can range

from 16 bytes (no timestamp and NumData = 1) to 80 bytes (timestamp and NumData = 15).

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 18

Table 7 shows the format of the CHDR payload of a control packet. For simplicity, the rest of the

CHDR packet is not shown. Note that a timestamp may be present in both the CHDR packet

header and in the control packet contents. This simplifies the parsing of control and data

packets.

Memory Layout

<------ 64-bits ------>

Required
?

0 Reserved

(16)

SrcEPID

(16)

IsACK

(1)

HasTime

(1)

SeqNum

(6)

NumData

(4)

SrcPort

(10)

DstPort

(10)

Y

1 Timestamp (64) N

2 Data[0]

(32)

Status

(2)

Reserved

(2)

OpCode

(4)

ByteEnable

(4)

Address

(20)

Y

3 Data[2]

(32)

Data[1]

(32)

N

… … … N

9 Data[14]

(32)

Data[13]

(32)

N

Table 7: Memory layout of the CHDR payload of a control packet

A detailed description of the fields is listed in Table 8. Each control packet has the source and

destination stream endpoint. The packet also has a source and destination port which allows

addressing up to 1024 NoC blocks from each endpoint.

Field Width Description Type

SrcEPID 16 The ID of the stream endpoint that this packet is

originated from.

Note: EPID = 0 is reserved

Required

IsACK 1 Is this an acknowledgement of a transaction

completion?

Required

HasTime 1 A bit that indicates if the control transaction has the

timestamp field

Required

SeqNum 6 Packet sequence number. For each master, the

value shall start at 0, increment by 1 and roll over

to 0 after 63 (26-1). This control-specific sequence

number is independent of the CHDR sequence

number.

NOTE: The sequence number may not be

sequential over the wire in a multi-master case. It

will be sequential in the masters’ ingress queue

because the slave and the transport modules will

Required

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 19

not modify it.

NumData 4 Number of 32-bit lines in the Data field

Note: NumData = 0 is reserved

Required

SrcPort 10 The port within the source stream endpoint that

this transaction originated from.

Required

DstPort 10 The port within the stream endpoint that this

transaction needs to go to

Required

Timestamp 64 If the transaction is timed, then this field signifies

the start time of the transaction. The Timestamp

word is not present if HasTime is 0.

Optional

Status 2 When IsACK is high, this field indicates the

transaction completion status:

Value Status

0x0 OKAY (Transaction successful)

0x1 CMDERR (Slave asserted a
command error)

0x2 TSERR (Slave asserted a timestamp
error)

0x3 WARNING (Slave asserted a non-
critical error)

Required

OpCode 4 The operation code of this transaction. See

OpCode definitions below.

Required

ByteEnable 4 A bitmask of the bytes to keep from the Data field Required

Address 20 The byte address for the transaction Required

Data[i] Variable The transaction data. Number of data values

depends on the NumData field and their

interpretation depends on the OpCode.

Optional

Table 8: CHDR Control field definitions

A control transaction is a memory mapped transaction that contains a 20-bit Address field and a

4-bit byte-enable field (with behavior similar to tkeep/tstrb in AXI4). It may have one to fifteen

32-bit data fields. A transaction can be timed, i.e., only executed when the sample timestamp

matches a command timestamp. The OpCode determines the behavior of the transaction. All

register transactions must be acknowledged after they are consumed. The packet size of the

response will be the same as the packet size of the request. Using this information, the sender

is responsible for flow controlling control transactions to ensure that the control packet FIFO is

not overrun.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 20

Note that the use of some control transaction features is block-dependent. For example, some

NoC blocks may ignore ByteEnable and/or the Timestamp if those blocks do not support those

features. This allows NoC blocks to be simpler if such features are not required.

Table 9 shows the meaning of the OpCode field values.

OpCode Operation Arguments Description

0 Sleep [0]: Stall cycles Do nothing and stall the control endpoint for

Data[0] clock cycles of the control interface

clock.

1 Write [0]: Data Write Data to a single register at Address at

all bytes p where by ByteEnable[p] = 1.

2 Read [0]: Scratch Read a single register at Address.

3 Read then

Write

[0]: Data Read the register at Address then Write

Data to it at all bytes p where by

ByteEnable[p] = 1.

4 Block Write [0]: Data[0]

..

[N-1]: Data[N-1]

Write Data[n] to registers sequentially at

(Address + 4n) at all bytes p where by

ByteEnable[p] = 1 where n = 0 .. N-1.

5 Block Read [0]: Scratch [0]

..

[N-1]: Scratch [N-1]

Read sequentially from registers at

(Address + 4n) where n = 0 .. N-1.

6 Poll [0]: Data

[1]: Mask

[2]: Timeout

Poll on Address until its value for all bits in

Mask matches Data&Mask, or until Timeout

cycles of control interface clock have

elapsed. Acknowledge with CMDERR if

timeout occurs, otherwise with OKAY.

7-9 Reserved Reserved Reserved

>9 User Defined User Defined 6 opcodes are reserved for user-specific

implementation.

Table 9: OpCode definitions for control transactions

2.2.3.1 AXI-Stream Control (AXIS-Ctrl) Interface

The CHDR Control packet is an example of a hierarchical packet format because the control

payload itself forms another packet type, called AXIS-Ctrl, that is routed through the control

infrastructure. AXIS-Ctrl is a 32-bit bus which is a serialized version of the payload of a CHDR

Control packet. The stream endpoint will serialize CHDR to AXIS-Ctrl, where it is passed to the

control crossbar. Each NoC Block will also receive and send control transactions/responses in

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 21

the AXIS-Ctrl format. The stream endpoint will then de-serialize these transactions back to

CHDR.

NOTE: The AXIS-Ctrl data width is always 32 bits, regardless of the value of CHDR_W.

2.2.4 Stream Status Packets [Internal Only]

NOTE: This is an internal-only packet, i.e., the NoC blocks will never see this type of

packet. The RFNoC infrastructure is responsible for generating and consuming this

packet type.

When the CHDR PktType field is 0x1, the payload is interpreted as a stream status packet.

Data streams in RFNoC are always bidirectional. Stream status packets always flow in the

opposite direction of a data packet stream to communicate stream health and flow control

information.

The following is a 64-bit serialized representation of the stream status packet. For CHDR widths

larger than 64, serialization/de-serialization to 64 bits is done least-significant word first.

Memory Layout

<------ 64-bits ------>

Requir
ed?

0 CapacityBytes

(40)

Reserved

(4)

Status

(4)

SrcEPID

(16)

Y

1 XferCountPkts

(40)

CapacityPkts

(24)

Y

2 XferCountBytes

(64)

Y

3 StatusInfo

(48)

BuffInfo

(16)

Y

Table 10: Memory layout of the CHDR payload of a stream status packet

Field Width Description Type

Capacity

Bytes

40 The buffer capacity of the downstream endpoint in bytes Required

Status 4 The current status of the stream. Possible values:

0x0 = Okay (No Error)

0x1 = Command Error (Command execution failed)

0x2 = Sequence Error (Sequence number discontinuity)

0x3 = Data Error (Data integrity check failed)

0x4 = Routing Error (Unexpected destination)

Required

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 22

Others = Reserved

SrcEPID 16 Endpoint ID of the source of this message

NOTE: The endpoint ID of the destination is present in

the CHDR header

Required

XferCount

Pkts

40 Number of packets received by the destination stream

endpoint.

Required

Capacity

Pkts

24 The buffer capacity of the downstream endpoint in

packets

Required

XferCount

Bytes

64 Number of bytes received by the destination stream

endpoint.

Required

StatusInfo 48 Extended information about the status.

NOTE: The format of this field is unspecified. It shall be

used for diagnostics only.

Required

BuffInfo 16 Extended information about the buffer state.

NOTE: The format of this field is unspecified. It shall be

used for diagnostics only.

Required

Table 11: Stream status packet field definitions

2.2.5 Stream Command Packets [Internal Only]

NOTE: This is an internal-only packet, i.e., the NoC blocks will never see this type of

packet. The RFNoC infrastructure is responsible for generating and consuming this

packet type.

When the CHDR PktType field is 0x2, the payload is interpreted as a stream command. Data

streams in RFNoC are always bidirectional. Stream command packets always flow in the

direction of a data packet stream to trigger stream state changes.

The following is a 64-bit serialized representation of the stream status packet. For CHDR widths

larger than 64, serialization/de-serialization to 64 bits is done least-significant word first.

Memory Layout

<------ 64-bits ------>

Requi
red?

0 NumPkts

(40)

OpData

(4)

 OpCode

(4)

SrcEPID

(16)

Y

1 NumBytes

(64)

Y

Table 12: Memory layout of the CHDR payload of a stream command packet

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 23

Field Width Description Type

NumPkts 40 The number of packets associated with the operation.

The exact interpretation of this field depends on the

OpCode.

Required

OpData 4 The data associated with the operation. The exact

interpretation of this field depends on the OpCode.

Required

OpCode 4 A code that describes what needs to be done.

Value Operation

0x0 Initialize stream

Flush buffers and reset stream state.

NOTE: When an Initialize stream

command packet with NumBytes==0

and NumPkts==0 is received by the

RFNoC infrastructure, one and only one

stream status packet shall be sent in

response. No flow control stream status

packets shall be sent in response to

incoming data on the given stream until

an Initialize stream command packet

with either NumBytes>0 or NumPkts>0

is received.

0x1 Ping

Trigger a stream status response at
endpoint.

0x2 Resynchronize flow control

Use NumPkts and NumBytes to resync
flow control.

Others Reserved

Required

SrcEPID 16 Endpoint ID of the source of this message.

NOTE: The endpoint ID of the destination is present

in the CHDR header

Required

NumBytes 64 The number of bytes associated with the operation.

The exact interpretation of this field depends on the

OpCode.

Required

Table 13: Stream command packet field definitions

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 24

2.2.6 Management Packets [Internal Only]

NOTE: This is an internal-only packet, i.e., the NoC blocks will never see this type of

packet. The RFNoC infrastructure is responsible for generating and consuming this

packet type.

When the CHDR PktType field is 0x0, the payload is interpreted as a management packet.

Management packets are sent and received by internal RFNoC framework components for

discovery and internal configuration. The following information can be discovered:

• The RFNoC protocol version and capabilities

• The physical connection topology including all transport endpoints and routers

A management packet can configure and discover information on the various nodes in the

network. Nodes can be transport endpoints, crossbars and stream endpoints. The packet is a

multi-hop transaction where operations are encoded in layers that are “peeled off” as they are

consumed by the various nodes. A hop may contain several operations to execute (with a

minimum of one). Each operation has an 8-bit opcode and a 48-bit payload. The interpretation

of the payload is operation specific. The various opcodes defined below can allow the following:

• Discovering the RFNoC connection topology one node at a time (in DFS or a BFS

manner)

• Configuring transport endpoints to setup EPID-specific settings

• Configuring stream endpoints with flow-control and other settings

Configuration is done via a basic memory mapped writes with a 16-bit address and 32-bit data.

In the case of a route setup, the management packet can be configured to terminate at the

stream endpoint. For other situations, it can be configured to return to the host.

The following is a 64-bit serialized representation of a management packet. For CHDR widths

larger than 64, only the lower 64 bits of each management packet word are used and the upper

bits will be ignored. Management packets are NOT serialized.

Memory Layout

<------ 64-bits ------>

Requir
ed?

0 ProtoVer

(16)

CHDRWidth

(3)

Reserved

(19)

NumHops

(10)

SrcEPID

(16)

Y

1 OpPayload

(48)

OpCode

(8)

OpsPending

(8)

Y

… … … … N

N-1 OpPayload

(48)

OpCode

(8)

OpsPending

(8)

N

Table 14: Memory layout of the CHDR payload of a management packet

Field Width Description Type

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 25

ProtoVer 16 RFNoC protocol version

The top 8 bits represent the major version, and the

bottom 8 bits represent the minor version

Required

CHDRWidth 3 RFNoC CHDR bus width (CHDR_W)

0x0 = 64 bits

0x1 = 128 bits

0x2 = 256 bits

0x3 = 512 bits

Others = Reserved

Required

NumHops 10 Number of hops that this management packet will

take before it is consumed completely

Required

SrcEPID 16 Endpoint ID of the source of this message Required

OpsPending 8 Number of operations left to be executed for the

current node/hop. Each node (hop) must have at

least one operation associated with it.

Required

OpCode 8 Operation code (what to do)

0x0 = No-op

0x1 = Advertise

0x2 = Select Destination

0x3 = Return To Sender

0x4 = Node Info Request

0x5 = Node Info Response

0x6 = Config Write

0x7 = Config Read Request

0x8 = Config Read Response

Others = Reserved

Required

OpPayload 48 The payload associated with the specified operation

(instruction). The format of the payload is operation

specific.

Operation Format

No-op N/A

Advertise N/A

Select

Destination

Dest = OpPayload[9:0]

Return to

Sender

N/A

Node Info N/A

Required

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 26

Request

Node Info

Response

DeviceID = OpPayload[15:0]

NodeType = OpPayload[19:16]

NodeInst = OpPayload[29:20]

ExtendedInfo = OpPayload[47:30]

Config

Write

Address = OpPayload[15:0]

Data = OpPayload[47:16]

Config

Read Req

Address = OpPayload[15:0]

Config

Read Resp

Address = OpPayload[15:0]

Data = OpPayload[47:16]

Table 15: Management packet field definitions

Management Operations

• No-op: Do nothing. The minimum number of operations per hop is 1, and a no-op can be

used to meet that requirement.

• Advertise: The operation is effectively a no-op but it asserts a strobe that advertises the

passing management packet to the outside logic. An advertisement includes the

associated source and destinations EPIDs.

• Select Destination: Select the downstream destination for this management packet.

Useful for situations where a router is expected downstream but it has not been

configured yet. The select destination command can be used to temporarily allocate a

route to send this packet to the specified Dest port.

• Return to Sender: Turn the packet around and return it to the sender. The return

command can be coupled with a Node Info Request or a Config Read Request to allow

an upstream node to query data from a downstream node.

• Node Info Request: Request the current node/hop to return information about itself. This

operation will route the packet back to the sender.

• Node Info Response: This is the response to the above info request.

• Config Write: Perform a Control-Port write using the specified Address and Data.

• Config Read Request: Request a read of the specified Address.

• Config Read Response: The read data for the last read request.

2.3 NoC Block User Interface

Figure 3 shows the anatomy of a NoC Block in the FPGA. It consists of two main components:

1) the user logic and 2) the NoC Shell. The NoC Shell is the user logic’s interface to the rest of

the RFNoC framework. A NoC Shell is custom generated for each block based on user-

specified interface options. It is also possible to generate IO interfaces to outside logic from a

NoC Block, but that feature is advanced. RFNoC provides a utility (see RFNoC ModTool below)

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 27

to generate a unique instantiation of a NoC Shell that is custom for each block. Depending on

the level of abstraction desired, for most interfaces, there is an option for a simple but potentially

less featured interface and a low-level but full-featured interface.

CHDR

CHDR

CHDR

CHDR

...
...

NoC Shell
Data

Subsystem

CTRL

CTRL

NoC Shell
Control

Subsystem

Backend
RFNoC
CHDR
Ports

Backend
RFNoC
Control

Ports

CLK NoC Shell
Clocking

SubsystemCLK

RFNoC Clocks

User Clocks

NoC Block
User Logic

Interfaces auto-generated
based on user parameters

NoC Shell

IO

IO

IO Ports
(Advanced)

NoC Block

RFNoC Interface User Interface

Figure 3: Anatomy of a NoC Block (FPGA)

2.3.1 Basic Signals

2.3.1.1 Bus Widths

Each block can choose the CHDR width that it wishes to support. A block will generally have a

fixed CHDR width and a block can only be used in designs that use the same CHDR width. In

an FPGA design, the CHDR widths of all blocks and the device must be the same.

2.3.1.2 Clocks and Resets

2.3.1.2.1 RFNoC Clocks

The following two clocks are always available for the user logic to use:

• rfnoc_chdr_clk

This is the clock for the rfnoc_chdr port (described in Section 2.3.5).

• rfnoc_ctrl_clk

This is the clock for the rfnoc_ctrl port (described in Section 2.3.5).

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 28

These are always-on clocks that will be used by the framework for data movement. Their

frequencies are USRP device dependent.

2.3.1.2.2 RFNoC Resets

Two resets are exposed through the user interface, named rfnoc_chdr_rst and

rfnoc_ctrl_rst. These resets are both synchronous to their respective clocks and are driven

by the backend interface toward user logic. Both resets will assert for at least 32 of their

respective clock cycles to ensure a sufficiently long reset for connected user IP. These resets

should be used to reset user IP so that the entire block is reset when a reset is requested by the

backend interface. A synchronizer may be used to import these resets to other clock domains, if

needed.

2.3.1.2.3 User Clocks

If a block needs additional clocks, it is possible to add additional clock ports to a block. User

clocks for a block must be driven by device clocks when a design is assembled. Frequency

ranges can be specified on clocks to ensure that block requirements are met. RFNoC assumes

asynchronous data processing so, it is not possible specify the phase or synchronization of

optional clocks. If there is a need for low level synchronization with hardware or other blocks,

then the advanced IO Ports must be used. These are described in Section 2.3.4.2.

2.3.1.3 NoC Shell Generator Options

RFNoC ModTool has the following options to generate the basic interface for a NoC block.

• CHDR Width (chdr_width)

o Definition: Width of the CHDR bus

o Options: 64, 128, 256, ...

o Constraints: None

• Optional Clocks

o Definition: An option that indicates if additional clocks are needed by the block

o Options: A list of clock names and frequency ranges

o Constraints: None

2.3.2 Control-Plane

The control-plane in the FPGA can be exposed using a low-level AXI4-Stream interface called

AXI-Stream CTRL or using a simpler abstracted interface called Control Port.

2.3.2.1 AXI-Stream Control (Low-level Interface)

AXI-Stream Control (AXIS-Ctrl) defines an interface and a packet format to encode control

transactions in a standard 32-bit wide AXI-Stream bus. Regardless of the CHDR widths, AXIS-

Ctrl will always be 32-bit wide. The data transferred over this interface is identical to the payload

of a CHDR control packet except for the top 32 bits of the first payload line. All other fields are

identical. Table 16 shows the various fields of an AXIS-Ctrl packets formatted with a 32-bit word

width. Note that the payload is identical to that of Table 7, except for the second line in the

packet. The fields are described in Table 8 and Table 17.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 29

AXIS-Ctrl packets traverse over the control network which consists of the control crossbar. This

network is different for the typical CHDR network in RFNoC. It allows transactions to originate

from and terminate in any NoC block in the device, despite the static data connections. The host

software can issue an AXIS-Ctrl transaction going to any FPGA block and any FPGA block can

send a transaction to any other FPGA block or to software. It is also possible to communicate

with blocks in different devices. These are defined as remote transactions and require the use of

two additional fields, RemDstEPID and RemDstPort.

Memory Layout

<------ 32-bits ------>

Requi
red?

0 IsACK

(1)

HasTime

(1)

Seqnum

(6)

NumData

(4)

SrcPort

(10)

DstPort

(10)

Y

1 Reserved

(6)

RemDstPort

(10)

RemDstEPID

(16)

Y

2 Timestamp[31:0] (32) N

3 Timestamp[63:32] (32) N

4 Status

(2)

Reserved

(2)

OpCode

(4)

ByteEnable

(4)

Address

(20)

Y

5 Data[0] (32) Y

… … N

1
9

Data[14] (32) N

Table 16: Memory layout of an AXIS-Ctrl packet

Field Width Description Type

RemDstEPID 16 Remote Destination Endpoint ID: The ID of the

remote stream endpoint that this packet is destined

towards.

Note: EPID = 0 implies that the transaction is local

Required

RemDstPort 10 The port index of the crossbar downstream of the

remote stream endpoint that this packet is destined

towards.

Required

Table 17: Additional AXIS-Ctrl field definitions

For the NoC block interface, AXIS-Ctrl is a simple 32-bit AXI-Stream interface. Users can

request this interface in a clock domain of their choice and are responsible for implementing the

framer/de-framer for control packets. When the AXIS-Ctrl port is instantiated, the NoC Shell will

expose the following signals for the user-logic to use:

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 30

• axis_ctrl_clk

This is the clock that all the control port signals are synchronous to. The user may

choose which clock source drives this clock. This is an output of the NoC Shell.

• axis_ctrl_rst
This is the synchronous reset for the AXIS-Ctrl logic. This is an output of the NoC Shell.

This reset will be asserted for at least one clock cycle after which the client logic will

have 100 us to complete the following tasks:

o Abort all pending transactions. Pending transactions may not be acknowledged

o Reset all software configuration block state to the initial powerup/startup values

• m_axis_ctrl_<signal>

This is the master AXI-Stream port from which the user logic will receive all requests for

incoming transactions and responses for outgoing ones. This is an output of the NoC

Shell. <signal> refers to the following standard AXI4-Stream signals: tdata (32 bits),

tvalid, tready and tlast. Each AXI-Stream packet will contain the contents of Table 7, that

the user logic will have to interpret manually.

• s_axis_ctrl_<signal>

This is the slave AXI-Stream port where the user logic will send all requests for outgoing

transactions and responses for incoming ones. This is an input to the NoC Shell.

<signal> refers to the following standard AXI4-Stream signals: tdata (32 bits), tvalid,

tready and tlast. Each AXI-Stream packet will contain the contents of Table 7, that the

user logic will have to interpret manually.

2.3.2.2 Control Port (Simple Interface)

The control port provides a simpler interface to generate and consume control transactions. This

interface supports blocking reads/writes, timed commands, backpressure and (N)ACKs, and

allows the users to not worry about parsing the AXIS-Ctrl packet. The NoC Shell will internally

de-frame AXIS-Ctrl packets, post a transaction on the slave bus and then frame the response

back to AXIS-Ctrl. The simplicity of the interface does yield the following limitations:

• Only the read, write and sleep (trivially) opcodes are supported

• Block reads and writes will be split into multiple single reads and writes respectively

• The priority bit is not supported

When the control port is instantiated, NoC Shell will expose the following ports for the user-logic

to use:

• ctrlport_clk

This is the clock that all the control port signals are synchronous to. The user may

choose which clock source drives this clock. This is an output of the NoC Shell.

• ctrlport_rst

This is the synchronous reset for the control port logic. This reset will be asserted for at

least one clock cycle and the client logic will have 100 us to complete the following

tasks:

o Abort all pending transactions. Pending transactions may not be acknowledged

o Reset all software configuration block state to the initial powerup/startup values

• m_ctrlport_<signal>

This is the master control port from which the user logic will receive all transaction

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 31

requests and to which the user logic will send responses. A slave port is always

instantiated. Table 18 shows the various signals represented by <signal>.

• s_ctrlport_<signal>

This is the slave control port to which the user logic will send all transaction requests and

from which it will receive responses. The slave port is optional. Table 18 shows the

various signals represented by <signal>

Signal Direction

(Master)

Width Purpose Usage

req_wr out 1 A single-cycle strobe that indicates the

start of a write transaction.

Required

req_rd out 1 A single-cycle strobe that indicates the

start of a read transaction.

Required

req_addr out 20 Address for transaction.

This field is valid only when req_rd or

req_wr is high.

Required

req_portid out 10 Port ID within the device to send the

transaction to. This is the local port

number.

This field is valid only when req_rd or

req_wr is high.

Required

(Master

Only)

req_rem_epid out 16 Endpoint ID of the stream endpoint to

send the transaction to.

This field is valid only when req_rd or

req_wr is high.

Required

(Remote

Master

Only)

req_rem_portid out 10 Port ID within the stream endpoint to

send the transaction to.

This field is valid only when req_rd or

req_wr is high.

Required

(Remote

Master

Only)

req_data out 32 Data for write transaction.

This field is valid only when req_wr is

high.

Required

req_byte_en out 4 A bitmask indicating which of the 4

bytes to use for transaction. If bit ‘i’ is

high in keep then byte ‘i’ will be used

from req_data.

(If not present, use all 32 bits)

This field is valid only when req_rd or

req_wr is high.

Optional

req_has_time out 1 Does the transaction need to happen at

a given time?

Optional

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 32

(If not present, perform transaction

ASAP)

This field is valid only when req_rd or

req_wr is high.

req_time out 64 Timestamp to execute the transaction

at.

(If not present, perform transaction

ASAP)

This field is valid only when req_rd or

req_wr is high.

Optional

resp_ack in 1 A strobe that indicates transaction

completion

Required

resp_status in 2 The status associated with the

transaction ack. The interpretation of

these bits is defined in Table 8.

(If not present, the value is 0 i.e. OKAY)

This field is valid only when resp_ack is

high.

Optional

resp_data in 32 Response data for a read transaction.

This field is valid only when resp_ack is

high.

Required

Table 18: Control Port signal definitions

READ and WRITE Transaction

A write transaction is defined as the assertion of reg_wr for 1 clock cycle and a read transaction

is defined as a similar assertion of reg_rd. The value of reg_addr and reg_data (and other

optional signals) can be used as arguments for the write. An untimed write will start executing in

the same cycle as the assertion of reg_wr. The example in Figure 4 shows two writes (A0, A1)

that execute in 0 clock cycles and one write that takes multiple cycles to execute. Figure 5

shows two 0 cycle reads and one multi-cycle read.

Control-Port Transaction Rules

• After the transaction completes, the client must assert resp_ack (along with other

optional response signals) to indicate transaction completion. For a read, the resp_data

is used for the readback data. resp_ack must be asserted at least 1 clock cycle after the

assertion of the req_wr or req_rd signal.

• It is permissible for a read or write to take multiple clocks cycles. Regardless of the

execution time, the ack must be asserted 1 clock cycle after completion.

• There is no upper limit on the execution time of a transaction; this allows blocking

transactions that wait on hardware, but it also requires flow control on the sender’s part

to guarantee that transactions don’t clog upstream routers.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 33

• After a response ACK, the ctrlport slave must be ready to receive the next transaction in

the next clock cycle.

• If reg_wr and reg_rd are asserted in the same clock cycle, then the read must be

executed before the write.

Figure 4: ctrlport write transaction

Figure 5: ctrlport read transaction

Transaction Status

It is possible for a control slave to acknowledge a transaction with an optional status. The status

bits must have the appropriate value when resp_ack is high. Figure 6 shows two transaction

where the first one was successful and the second one failed.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 34

Figure 6: Read completion status (Success and Failure)

Timed Transactions

A transaction (read or write) can also be timed i.e. the execution of the transaction will begin at

the specified time. The optional signals req_has_time will be asserted to indicate that a

transaction is timed. The contents of req_time will be used as the timestamp at which

transaction execution should start. It is permissible for the transaction to take multiple clock

cycles to finish executing, after which the resp_ack must be asserted. Figure 7 shows three

timed transactions: The first one executes immediately (because time = req_time) and executes

in 1 clock cycle. The second one must wait for the time to tick up to 2000 at which point it

executes (in 1 clock cycle) and asserts an ack. The third one is late and responds with a

Timestamp error (TSERR).

Figure 7: Timed write transactions

2.3.2.3 NoC Shell Generation Options

RFNoC ModTool has the following options to generate the control interface for the NoC Shell of

a NoC block.

• Control Interface (fpga_iface)

o Definition: Which HDL interface to expose

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 35

o Options: “AXIS-Ctrl” (axis_ctrl) or “Control Port” (ctrlport)

o Constraints: None

• Interface Direction (interface_direction)

o Definition: Direction of the interface

o Options: “Slave Only” (slave), “Master and Slave” (master_slave), or “Remote-

Master and Slave” (remote_master_slave)

o Constraints: “Slave Only” not allowed for “AXIS-Ctrl” interface

• Buffer Depth (fifo_depth)

o Definition: Depth of the input AXI-Stream Control FIFO in words

o Options: 32 – 4096 (in powers of 2)

o Constraints: None

• Clock Domain (clk_domain)

o Definition: Clock domain to export the interface in

o Options: All available RFNoC and User clocks

o Constraints: None

• Control Port Settings

o Byte Mode (byte_mode)

▪ Definition: Expose the “req_byte_en” field on the interface.

▪ Options: “On” (True) or “Off” (False) (Off implies 32-bit mode)

▪ Constraints: None

o Timed Commands (timed)

▪ Definition: Expose the “req_has_time” and “req_time” fields on the

interface.

▪ Options: “On” (True) or “Off” (False) (Off implies immediate or non-timed

commands)

▪ Constraints: None

o Transaction Status (has_status)

▪ Definition: Expose the “resp_status” field on the interface.

▪ Options: “On” (True) or “Off” (False) (Off implies transactions that are

always successful)

▪ Constraints: None

2.3.3 Data-Plane

The data plane in the FPGA can be exposed using a low-level AXI4-Stream interface called

AXI-Stream CHDR (AXIS-CHDR) or using the simpler abstracted interfaces AXI-Stream

Payload Context and AXI-Stream Data. This plane of communication is intended for high-

throughput data transfer between blocks. The CHDR header information is retained in the data

plane so blocks can attach additional information like metadata and timestamps to packets. The

CHDR header information (Table 2) must be accurate for all packets entering and leaving a

block except for the destination endpoint ID (DstEPID). The destination endpoint is used for

routing between stream endpoints and is not relevant between adjacent blocks; the value of this

field is reserved and will be overwritten by the framework.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 36

2.3.3.1 Data Item and Component Ordering

The width of the bus presented to the user is configurable. It is therefore possible to receive

multiple data items per clock cycle on the data bus. The first item shall be placed in the least-

significant position of the data bus. For complex data types, the real or in-phase (I) component

shall be placed in the most-significant position within the data item and the imaginary or

quadrature (Q) component shall be placed in the least significant position within the data item.

The figures below illustrate the item and complex component ordering within the bus.

Note: Third-party IP may use a different IQ order and/or format than that used by RFNoC. For

example, many Xilinx IP blocks put the real (I) component in the least-significant position and

imaginary (Q) component in the most-significant position, and the format may not be SC16 by

default.

31 16 15 0

Item 0

Real (I) Imaginary (Q)

Figure 8: 32-bit bus with SC16 data items

63 48 47 32 31 16 15 0

Item 1 Item 0

Real (I) Imaginary (Q) Real (I) Imaginary (Q)

Figure 9: 64-bit bus with SC16 data items

2.3.3.2 AXI-Stream CHDR (Low-level Interface)

The AXI-Stream CHDR (AXIS-CHDR) interface provides direct access to the data ports. The

client can request this interface for maximum control over the stream, but the client is

responsible for implementing the framer/de-framer for CHDR packets.

A block may have between 0 and 64 input/output data ports. For a block with P input ports, the

NoC Shell will contain P separate slave CHDR streams. For a block with Q output ports, the

NoC Shell will contain Q separate master CHDR streams. All the streams share the same clock

and reset.

When the AXI-Stream CHDR interface is used, the NoC Shell will expose the ports listed below

for the user-logic to connect to. In this list, <name> refers to the name provided by the user for

this port and <signal> refers to one of the standard AXI4-Stream signals: tdata (CHDR width),

tvalid, tready and tlast. Additionally, these signals may be a concatenation of multiple data

streams if a parameter is used to define the number of ports. For example, the signal

s_myports_chdr_tvalid[1] would refer to tvalid of the slave stream for port 1 of “myports”.

• axis_chdr_clk

This is the clock that all the axis_chdr signals are synchronous to. The user may

choose which clock source drives this clock. This is an output of the NoC Shell.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 37

• axis_chdr_rst

This is the synchronous reset for the data-path logic. This is an output of the NoC Shell.

This reset will be asserted for at least one clock cycle after which the client logic will

have 1 ms to complete the following tasks:

o Reset the data-path state to the initial powerup/startup values

o Stop generating data on the master interface

o Drop all data on the slave interface (Note that the slave interface may have

partial CHDR packets that need to be dropped)

• s_<name>_chdr_<signal>

This is the slave interface to which the user logic will send all outgoing items/samples.

Each AXI-Stream packet must be of the format described in Table 1 and must be a

CHDR Data Packet (PktType = 6 or 7).

• m_<name>_chdr_<signal>

This is the master interface from which the user logic will receive incoming

items/samples. Each AXI-Stream packet will be in the format described in Table 1 and

will be a CHDR Data Packet (PktType = 6 or 7). The user logic will be required to parse

this packet format.

2.3.3.3 AXI-Stream Payload Context (Simple Interface)

The payload context interface provides a simpler interface to connect processing IP. The

payload context interface abstracts away the CHDR stream into two separate AXI-Stream

interfaces: Payload and context. The payload stream contains the payload data of a CHDR

packet and can often be directly connected to processing blocks that support AXI-Stream. The

payload stream is comprised of items (the smallest processing unit; e.g., a data sample) and

can deliver one or more items per cycle. The context stream contains additional information

about the payload stream such as the header, timestamp and metadata. Splitting the payload

and context streams allows separate (but coupled) state machines for data and header

processing. The following abbreviations are used below:

• CHDR_W: The bit-width of the CHDR bus that the block can support.

• ITEM_W: The bit-width of a raw data item. ITEM_W must be a multiple of 8 (AXI-Stream

requires transfers to be in bytes).

• NIPC: The number of items delivered per cycle between the interface and the

processing IP.

A block may have 0 to 64 input/output data ports. For a block with P input ports, the NoC shell

will contain P separate master CHDR streams. For a block with Q output ports, the NoC shell

will contain Q separate slave CHDR streams. All the streams share the same clock and reset.

When the AXI-Stream Payload Context interface is used, the NoC Shell will expose the ports

listed below for the user-logic to connect to. In this list, <name> refers to the name provided by

the user for this port and <signal> refers to one of the standard AXI4-Stream signals: tdata

(CHDR width), tvalid, tready and tlast. Additionally, these signals may be a concatenation of

multiple data streams if a parameter is used to define the number of ports. For example, the

signal s_myports_payload_tvalid[1] would refer to tvalid of the slave payload stream for

port 1 of “myports”.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 38

• axis_data_clk

This is the clock that all the AXI-Stream signals are synchronous to. The user may

choose which clock source drives this clock. This is an output of the NoC Shell.

• axis_data_rst

This is the synchronous reset for the data-path logic. This is an output of the NoC Shell.

This reset will be asserted for at least one clock cycle after which the client logic will

have 1 ms to complete the following tasks:

o Reset the data-path state to the initial powerup/startup values

o Stop generating data on the master interface

o Drop all data on the slave interface (Note that the slave interface may have

partial CHDR packets that need to be dropped)

• s_<name>_payload_<signal>, s_<name>_context_<signal>

These are the slave interfaces to which the user logic will send outgoing items. Table 19

shows the various signals represented by <signal>.

• m_<name>_payload_<signal>, m_<name>_context_<signal>
These are the master interfaces from which the user logic will receive incoming items.

Table 19 shows the various signals represented by <signal>.

Signal Direction

(Master)

Width Purpose Usage

payload_tdata out NIPC *

ITEM_W

The primary data payload word for

this transfer

Required

payload_tkeep out NIPC An item qualifier that indicates

whether the content of the associated

item in tdata is processed in the

stream.

NOTE: The granularity of this field is

item and not byte. This behavior is

different from the standard AXI4-

Stream tkeep.

NOTE: This may only used to indicate

trailing items at the end of a packet.

Required
for
NIPC > 1

payload_tlast out 1 Indicates the last word (transfer) in the

current payload packet

Required

payload_tvalid out 1 Indicates that the master is driving a

valid packet payload word (transfer)

Required

payload_tready in 1 Indicates that the slave can accept a

payload word (transfer) in the current

cycle

Required

context_tdata out CHDR_W The primary context word for this

transfer

Required

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 39

Table 19: AXI-Stream Payload Context port signal definitions

NOTE: The data in a context packet represents CHDR header information and thus must be in

the same order as the CHDR field. The following sequences on context_tuser are valid, and all

others will be regarded as a protocol violation for the context port.

• Packet with no timestamp and no metadata (all CHDR Widths)

HDR

• Packet with timestamp and no metadata (CHDR Width = 64)

HDR TS

• Packet with timestamp and no metadata (CHDR Width > 64)

HDR_TS

• Packet with timestamp and metadata (CHDR Width = 64)

HDR TS MDATA … MDATA

• Packet with timestamp and metadata (CHDR Width > 64)

HDR_TS MDATA … MDATA

• Packet with no timestamp and metadata (all CHDR Widths)

HDR MDATA … MDATA

context_tuser out 4 Indicates the type of context word

Value Type

0x0 CHDR Header (HDR)

0x1 CHDR Header +

Timestamp (HDR_TS)

0x2 Timestamp Only (TS)

0x3 Metadata (MDATA)

Rest Reserved

Required

context_tlast out 1 Indicates the last word (transfer) in the

current context packet.

Required

context_tvalid out 1 Indicates that the master is driving a

valid context word (transfer)

Required

context_tready in 1 Indicates that the slave can accept a

context word (transfer) in the current

cycle

Required

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 40

Figure 10: A 4-word packet with only the header on AXIS Payload Context port

Figure 11: A 4-word packet with a header and timestamp on the AXIS Payload Context port

(CHDR_W = 64)

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 41

Figure 12: A 4-word packet with a header, timestamp and 2 metadata words on the AXIS Payload

Context port (CHDR_W = 64)

Figure 13: A 4-word packet on the AXIS Payload Context port with a gap between the context and

payload (CHDR_W = 64)

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 42

Figure 14: Two back-to-back packets on the AXIS Payload Context port (with header prefetching;

CHDR_W = 64)

2.3.3.4 AXI-Stream Data (Simple Interface)

The AXI-Stream Data interface provides another simple user interface. It uses an AXI-Stream

data interface but does not require the user to packetize header information. It also supports

timestamps, EOB, and EOV. The following abbreviations are used below:

• CHDR_W: The bit-width of the CHDR bus that the block can support.

• ITEM_W: The bit-width of a raw qq1qqqdata item. ITEM_W must be a multiple of 8 (AXI-

Stream requires transfers to be in bytes).

• NIPC: The number of items delivered per cycle between the interface and the

processing IP.

A block may have 0 to 64 input/output data ports. For a block with P input ports, the NoC shell

will contain P separate master CHDR streams. For a block with Q output ports, the NoC shell

will contain Q separate slave CHDR streams. All the streams share the same clock and reset.

When the AXI-Stream Data interface is used, the NoC Shell will expose the ports listed below

for the user-logic to connect to. In this list, <name> refers to the name provided by the user for

this port and <signal> refers to one of the standard AXI4-Stream signals: tdata (CHDR width),

tvalid, tready and tlast. Additionally, these signals may be a concatenation of multiple data

streams if a parameter is used to define the number of ports. For example, the signal

s_myports_axis_tvalid[1] would refer to tvalid of the slave stream for port 1 of “myports”.

• axis_data_clk

This is the clock that all the AXI-Stream signals are synchronous to. The user may

choose which clock source drives this clock. This is an output of the NoC Shell.

• axis_data_rst

This is the synchronous reset for the data-path logic. This reset will be asserted for at

least one clock cycle and the client logic will have 1 ms to complete the following tasks:

o Reset the data-path state to the initial powerup/startup values

o Stop generating data on the master interface

o Drop all data on the slave interface (Note that the slave interface may have

partial CHDR packets that need to be dropped)

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 43

• s_<name>_axis_<signal>

This is the slave interface to which the user logic will send outgoing items. Table 20

shows the various signals represented by <signal>.

• m_<name>_axis_<signal>

This is the master interface from which the user logic will receive incoming items. Table

20 shows the various signals represented by <signal>.

The signals tlength, ttimestamp, thas_time, teov, and teob are sideband signals and

behave like tuser in traditional AXI4-Stream. Rather than having a single tuser signal, these

signals have been separated into individual signals for ease of use. On the NoC Shell’s master

data interface, these signals are valid for the duration of the packet (i.e., whenever tvalid is

true).

When the sideband signals are read by the NoC Shell’s slave data interface depends on the

SIDEBAND_AT_END parameter. If SIDEBAND_AT_END is True then these signals must be valid on

the last transfer of each packet (i.e., when tlast is asserted) and tlength is calculated

automatically by the NoC Shell. If SIDEBAND_AT_END is False, then these signals must be

valid on the first transfer of each packet and tlength must be provided as an input to indicate the

length of the packet.

The SIDEBAND_AT_END = True setting is required in situations where one or more items

associated with the CHDR header (e.g., length, timestamp, EOB, EOV) are not known until the

end of the packet is ready to be output. An important side-effect of this setting is that all output

packets sent to the NoC Shell’s slave interface will be completely buffered before they are sent

out. This adds latency to the packets and requires that the NoC Shell implement an MTU-sized

buffer to store outgoing packets.

Signal Direction

(Master)

Width Purpose Usage

tdata out NIPC *

ITEM_W

The data payload word for this

transfer

Required

tkeep out NIPC An item qualifier that indicates

whether the content of the associated

item in tdata is processed in the

stream.

NOTE: The granularity of this field is

item and not byte. This behavior is

different from the standard AXI4-

Stream tkeep.

NOTE: This may only be used to

indicate trailing items at the end of a

packet.

Required
for
NIPC > 1

tlast out 1 Indicates the last word (transfer) in the

current payload packet.

Required

tvalid out 1 Indicates that the master is driving a

valid packet payload word (transfer)

Required

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 44

Table 20: AXI-Stream Data port signal definitions

2.3.3.5 NoC Shell Generation Options

RFNoC Modtool has the following options to generate the data interface for the NoC Shell of a

NoC block.

• Data Interface (fpga_iface)

o Definition: Which HDL interface to expose

o Options: “AXI-Stream CHDR” (axis_chdr), “AXI-Stream Payload Context”

(axis_pyld_ctxt), or “AXI-Stream Data” (axis_data)

o Constraints: None

• Number of Input Ports

o Definition: The number of input ports

o Options: 0 - 64

o Constraints: None

• Number of Output Ports

o Definition: The number of output ports

o Options: 0 - 64

o Constraints: None

• Port Specific Settings (for each input and output port)

o Clock Domain (clk_domain)

▪ Definition: The clock domain for the payload or data interface

▪ Options: All available RFNoC and User clocks

tready in 1 Indicates that the slave can accept a

payload word (transfer) in the current

cycle

Required

ttimestamp out 64 The timestamp for the first item in the

packet

Optional

thas_time out 1 Indicates if the ttimstamp field is being

used. This will be 0 if there is not

timestamp for the current packet.

Optional

tlength out 16 The byte length of the data packet.

This signal is only used by the NoC

Shell’s master interface and is not

required by the slave interface.

NOTE: This port is used by the slave

interface only when

SIDEBAND_AT_END is True and is

ignored by the slave interface when

SIDEBAND_AT_END is False.

Optional

teov out 1 Indicates if the EOV bit was set in the

packet

Optional

teob out 1 Indicates if the EOB bit was set in the

packet

Optional

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 45

▪ Constraints: None

o Item Width (item_width)

▪ Definition: Bit width of each data item

▪ Options: 32, 64, 128, etc.

▪ Constraints: Only valid when using the AXI-Stream Payload Context or

AXI-Stream Data interfaces

o Number of Items per Cycle (nipc)

▪ Definition: Number of data items to deliver per clock cycle

▪ Options: 1-256 (in powers of 2)

▪ Constraints: Only valid when using the AXI-Stream Payload Context or

AXI-Stream Data interfaces

o Payload FIFO Depth (payload_fifo_depth)

▪ Definition: Depth of the AXI-Stream buffer for the payload data path

▪ Options: 1 or larger (in powers of 2)

▪ Constraints: Only valid when using the AXI-Stream Payload Context or

AXI-Stream Data interfaces

o Context FIFO Depth (context_fifo_depth)

▪ Definition: Depth of the AXI-Stream buffer for the context data path

▪ Options: 1 or larger (in powers of 2)

▪ Constraints: Only valid when using the AXI-Stream Payload Context

interface

o Info FIFO Depth (info_fifo_depth)

▪ Definition: Depth of the AXI-Stream buffer for queued packet information

▪ Options: 1 or larger (in powers of 2)

▪ Constraints: Only valid when using the AXI-Stream Data interface

o Context Prefetching

▪ Definition: Allow prefetching context data for the next packet when the

current packet is in flight.

▪ Options: “On” or “Off”

▪ Constraints: Only valid when using the AXI-Stream Payload Context

interface

2.3.4 IO Ports (Advanced)

IO Ports are interfaces to the user-logic that don’t interact with the RFNoC framework. IO Ports

may interact with other blocks in an assembled design (for backdoor inter-block communication)

or with IO on the USRP device.

2.3.4.1 Hardware Timestamp Interface

The user logic can get access to a hardware time-base and timestamp. The capabilities of a

hardware time-base are device specific. The timestamp can be used with real-time blocks like

the radio which interfaces with ADCs/DACs.

• tb_clk: The time-base clock.

• tb_rst: A synchronous reset in tb_clk domain. tb_rst = 1 indicates that the time-base is

disabled.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 46

• tb_timestamp: A 64-bit global timestamp that is synchronous to tb_clk. The timestamp

is a counter that may start at an arbitrary value and count up by one every clock cycle of

tb_clk after tb_rst is released.

• tb_period_ns_q32: A 64-bit fixed point number in the Q32 format that represents the

period of the time-base in nanoseconds.

Figure 15: An example of a time-base reconfiguration from 200 MHz to 160 MHz

2.3.4.2 Generic IO Ports

It is possible to add more generic IO to a NoC block. A generic IO port is a collection of signals,

their types, widths and directions. This collection is called an IO Signature. An IO Signature can

be inherited from a specific USRP device or be user-defined. Each IO Signature contains the

following information:

• Name: A unique name for this IO Signature

• Drive: The drive direction of this IO Port. The driver direction can be “Slave” (driven by a

master), “Master” (driven a single slave), “Listener” (a special slave with only inputs) or

“Broadcaster” (a special master with only outputs).

• Port List: A list of signals each with the following properties:

o Name: Name of the signal

o Type: Is this a “Clock”, “Reset” or “Generic” signal?

o Direction: Is this an input or an output on the master?

o Width: The bit-width of the signal

If a block defines a generic IO Port, then the IO port must be assigned to another IO Port with

the same signature during design image assembly. The other IO Port may be a part of the

USRP device or an IO Port on another block. The following connection rules apply:

• A Master can drive exactly one Slave

• A Slave can be driven by exactly one Master

• A Broadcaster can drive zero or more listeners

• A Listener must be driven by at least one Broadcaster

• A Master cannot drive a Listener

• A Broadcaster cannot drive a Slave

2.3.5 Backend RFNoC Interface

Because NoC Shell is a part of the user NoC block, there will be certain interfaces exposed as

inputs/outputs from the block that the user logic can ignore. These interfaces are termed as

“backend” and are used by NoC Shell to communicate with the rest of the framework.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 47

2.3.5.1 CHDR

• rfnoc_chdr_clk

This is the clock for the rfnoc_chdr port (described below).

• rfnoc_chdr_rst

This is the synchronous reset for the rfnoc_chdr port. This reset is driven by the backend

interface.

• s_rfnoc_chdr_<signal>

The slave rfnoc_chdr port. This interface accepts CHDR packets from the framework.

<signal> refers to the following standard AXI4-Stream signals: tdata (CHDR_W bits),

tvalid, tready and tlast. The widths of these signals depend on the number of input ports

and the CHDR_W setting.

• m_rfnoc_chdr_<signal>

The master rfnoc_chdr port. This interface outputs CHDR packets to the framework.

<signal> refers to the following standard AXI4-Stream signals: tdata (CHDR_W bits),

tvalid, tready and tlast. The widths of these signals depend on the number of output

ports and the CHDR_W setting.

2.3.5.2 Control

• rfnoc_ctrl_clk

This is the clock for the rfnoc_ctrl port (described below).

• rfnoc_ctrl_rst

This is the synchronous reset for the rfnoc_ctrl port. This reset is driven by the backend

interface.

• s_rfnoc_ctrl_<signal>

The slave rfnoc_ctrl port. This interface accepts AXIS-Ctrl packets from the framework.

<signal> refers to the following standard AXI4-Stream signals: tdata (32 bits), tvalid,

tready and tlast.

• m_rfnoc_ctrl_<signal>

The master rfnoc_ctrl port. This interface outputs AXIS-Ctrl packets to the framework.

<signal> refers to the following standard AXI4-Stream signals: tdata (32 bits), tvalid,

tready and tlast.

2.3.5.3 Configuration and Status

• rfnoc_core_config

A 512-bit interface for the framework to configure the state of the NoC shell logic. The

interpretation of the bits in this bus is determined by the framework. Client logic is not

expected to use this signal.

• rfnoc_core_status

A 512-bit interface for the framework to read the state of the NoC shell logic. The

interpretation of the bits in this bus is determined by the framework. Client logic is not

expected to use this signal.

2.4 RFNoC FPGA Image

The RFNoC FPGA image is a standalone design for a USRP that has a collection of block

instantiations and a partial topology preconfigured in the FPGA (static connections). This design

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 48

can be configured using software to create a full flow-graph or be a part of a multi-USRP flow-

graph.

2.4.1 Workflow

After all blocks are developed, the RFNoC framework has built-in tools to generate an FPGA

image with user-specified block instantiations and a central router core with user-specified block

connections. The following user information will be used to define a topology of the blocks and

build an FPGA bitfile.

• USRP Device Info

• CHDR Width

• Number of Stream endpoints

o Number of Input and Output ports for each stream endpoint

o Optional: Buffer size for each endpoint

• NoC blocks to Build in the FPGA Image

o Optional: Clock choices for each block

o Optional: IO Port connections for each block

• Static connections between blocks, stream endpoints and transport adapters

2.4.2 Design Assembly Toolflow

The following information is inferred based on the user-specified preferences, device info (part

of the board support package) and meta-data from each block:

• CHDR Width (Wchdr)

• Stream endpoints (M)

o Buffer size for each endpoint (Bep)

• NoC blocks (Nuser)

o Number of input and output ports

o Datapath connection topology

o Clock choices for the data and control clock

• Number of transport adapters (P)

• Number of IO-based NoC blocks (Radio, DDR-based blocks, etc.) (Nfixed)

The code generator will determine the following parameters using that info:

• CHDR Crossbar

o Number of ports = P + M

o Data Width = Wchdr

• Stream Endpoints

o Number of endpoints = M

o Data Width = Wchdr

o Buffer Size = Bep

• Control Crossbar

o Number of Ports = (M + Nfixed + Nuser + 1)

• Static Router

o Number of Ports = (M + Ports(Nfixed) + Ports(Nuser))

o Inter-port connections

o Adjacency list

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 49

Using this info, the code generator will do the following

1. For a given device, look the number of transport adapters (P) and read the number of

requested stream endpoints (M), then instantiate a CHDR Crossbar with P+M ports

2. Instantiate M stream endpoints

3. Connect the P transport adapters to the first P ports of the chdr_crossbar and the next M

ports to the stream endpoints

4. Read the number of NoC blocks (N) and instantiate a Control Crossbar with Nfixed + Nuser

+ M + 1 ports

5. Connect the first port of the control crossbar to a core config endpoint, then connect the

next M ports to the M control endpoints and then connect the remaining N ports to the

NoC blocks’ control interfaces.

6. Generate a static router with M + Ports(Nfixed) + Ports(Nuser) ports and hook it up to the M

stream endpoints and X NoC block ports (each block may have an arbitrary number of

ports)

7. Read in the inter-block connections and build a table of the connections as an adjacency

list that is readable by UHD.

2.4.3 Initialization and Usage

The RFNoC software will ensure that all the blocks in the FPGA image are initialized before use.

RFNoC defines the following as three phases of initialization:

1. All Blocks Idle: Each block in the design (regardless of its previous state) must first be

put in an idle streaming state, i.e. no data is streaming though the data-path.

2. All Blocks Reset: Each block in the design (regardless of its previous state) must then be

put into a known state for settings and software configurable registers.

3. Network Ready: All blocks are initialized, and the core framework is ready to begin

executing an application.

RFNoC is a network that may consist of multiple FPGA designs so “All Blocks” above refers to

all blocks in the collection of USRPs controlled by the RFNoC software. Both, the RFNoC

framework and the individual blocks share the responsibility for initialization. The control and

data path resets (Section 2.3.2 and 2.3.3) will be asserted for each block to begin the reset

operations and the framework imposes a time limit to allow the block to finish its reset

procedure. Before the resets are asserted, the framework will also flush data at the input and

output of each block. Flushing is an internal framework operation (not visible to the NoC blocks

or the user) that ensures that no data is generated downstream of the flush point and all data is

consumed at the flush point. Figure 16 shows the full initialization sequence for an image with

multiple blocks (Block 0 … Block N) and multiple stream endpoints (SEP 0 … SEP N).

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 50

Block 0

Block N

...

SEP 0

SEP N

...

Flush

Flushing

Ctrl-path Reset

Reseting

Flush

Flushing

Flush

Flushing

Flush

Flushing

Data-path Reset

Reseting

Data-path Reset

Reseting

Ctrl-path Reset

Reseting

All Blocks
IDLE

All Blocks
RESET

Reset

Reset

Network
READY

Core

Reset

1ms 100us

Figure 16: Initialization sequence for an RFNoC flow-graph

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 51

3 RFNoC Software Framework Overview

3.1 Basics

On the software side (UHD) RFNoC has the following interfaces:

• Block Controller: This is a control interface to each block in the design. Block controllers

are discovered automatically by UHD based on the blocks in an FPGA, and they can be

retrieved by the user to send and receive commands from blocks.

• Graph: The graph object manages a topology of blocks in an application. The static

connections in the FPGA and the dynamic connections made by the user will be

reflected in the graph. The graph will ensure state integrity between blocks if there are

inherent dependencies.

• Streamers: Streamers are used to send/receive data to/from blocks in the FPGA.

 NoC
 Shell

A

 NoC
 Shell B

Stream
Endpoint

EP0

C

D

Stream
Endpoint

EP2

C

D

Ctrl
Crossbar

CHDR
Crossbar

Transport
Adapter

 NoC
 Shell C

 NoC
 Shell

D

Blocks:

A: 1 in, 1 out

B: 2 in, 2 out

C: 1 in, 1 out

D: 1 in, 1 out

Stream
Endpoint

EP1

C

D

Chains:

EP0 => A_0 => B_0

B_0 => C_0 => EP0

EP1 => D_0 => EP1

EP2 => B_1 => EP2

block_ctrl_base
(A)

block_ctrl_base
(B)

block_ctrl_base
(C)

block_ctrl_base
(D)

EP0
TX

EP0
RX

EP1
TX

EP1
RX

EP2
TX

EP2
RX

A

B

C

D

FPGA UHD

Data Plane
(multi_usrp_graph)

Ctrl Plane

usrp::tx_streamer

usrp::rx_streamer

connection

Figure 17: Example FPGA and SW objects in an RFNoC graph

3.2 Block Controller

The block controller is the UHD (C++) counterpart of the NoC Shell. It is a block-level API to

interface with the clients of NoC shell. UHD has a default block controller object but it is possible

to override it (via inheritance) with a custom controller C++ class. UHD maintains a list of block

controllers for each block type and dynamically creates instances of it in software when the

block is present in the FPGA image for the target USRP.

3.2.1 Block IDs

An identifier is needed to retrieve a block controller from UHD. Each block has two kinds of

identification tags:

1. Each block in the FPGA must have a NoC ID which serves as a unique identifier of the

function of the block. NoC IDs are 32 bits wide and can take on any value as long as it is

unique among blocks. For example, the FIR filter block will have a unique NoC ID that is

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 52

different from the FFT block NoC ID. Multiple instances of the FIR block have the same

NoC ID.

2. Each instance of a block in an FPGA has a Block ID. It is used to locate a specific block

in an RFNoC network. For instance, if the same NoC block is instantiated twice, then the

two instances will have the same NoC ID but different Block IDs. The syntax of a Block

ID is as follows: <Device>/<BlockName>:<BlockInstance>

blockid_t Class Reference

Public Member Functions

1. block_id_t ()

2. block_id_t (const std::string &block_str)

3. block_id_t (const size_t device_no, const std::string &block_name, const size_t block_ctr=0)

4. std::string to_string () const

Return a string like this: "0/FFT#1" (includes all components, if set)

5. bool match (const std::string &block_str)

Check if block_str matches this block.

6. std::string get () const

Short for to_string()

7. std::string get_local () const

Like get(), but only returns the local part ("FFT#1")

8. uhd::fs_path get_tree_root () const

Returns the property tree root for this block (e.g. "/mboards/0/xbar/FFT#1/")

9. size_t get_device_no () const

Return device number.

10. size_t get_block_count () const

Return block count.

11. std::string get_block_name () const

Return block name.

12. bool set (const std::string &new_name)

Set from string such as "0/FFT#1", "FFT#0", ...

13. bool set (const size_t device_no, const std::string &block_name, const size_t block_ctr=0)

Sets from individual compontents, like calling set_device_no(), set_block_name()

14. void set_device_no (size_t device_no)

Set the device number.

15. bool set_block_name (const std::string &block_name)

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 53

Set the block name. Will return false if invalid block string.

16. void set_block_count (size_t count)

Set the block count.

Static Public Member Functions
17. static bool is_valid_blockname (const std::string &block_name)

Check if a given string is valid as a block name.

18. static bool is_valid_block_id (const std::string &block_id)

Check if a given string is valid as a block ID.

Detailed Description

Identifies an RFNoC block.

An RFNoC block ID is a string such as: 0/FFT#1

The rules for formatting such a string are:

DEVICE/BLOCKNAME#COUNTER

DEVICE: Identifies the device (usually the motherboard index) BLOCKNAME: A name given to this

block COUNTER: If is are more than one block with a BLOCKNAME, this counts up.

So, 0/FFT#1 means we're addressing the second block called FFT on the first device.

This class can represent these block IDs.

Constructor & Destructor Documentation
block_id_t::block_id_t ()
block_id_t::block_id_t (const std::string & block_str)
block_id_t::block_id_t (const size_t device_no, const std::string & block_name, const
size_t block_ctr = 0)

Parameters

device_no Device number

block_name Block name

block_ctr Which block of this type is this on this device?

Member Function Documentation
std::string block_id_t::get () const

Short for to_string()

size_t block_id_t::get_block_count () const

Return block count.

std::string block_id_t::get_block_name () const

Return block name.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 54

size_t block_id_t::get_device_no () const

Return device number.

std::string block_id_t::get_local () const

Like get(), but only returns the local part ("FFT#1")

uhd::fs_path block_id_t::get_tree_root () const

Returns the property tree root for this block (e.g. "/mboards/0/xbar/FFT#1/")

static bool block_id_t::is_valid_block_id (const std::string & block_id)[static]

Check if a given string is valid as a block ID.

static bool block_id_t::is_valid_blockname (const std::string & block_name)[static]

Check if a given string is valid as a block name.

bool block_id_t::match (const std::string & block_str)

Check if block_str matches this block.

bool block_id_t::set (const size_t device_no, const std::string & block_name, const
size_t block_ctr = 0)

Sets from individual compontents, like calling set_device_no(), set_block_name()

bool block_id_t::set (const std::string & new_name)

Set from string such as "0/FFT#1", "FFT#0", ...

void block_id_t::set_block_count (size_t count)

Set the block count.

bool block_id_t::set_block_name (const std::string & block_name)

Set the block name. Will return false if invalid block string.

void block_id_t::set_device_no (size_t device_no)

Set the device number.

std::string block_id_t::to_string () const

Return a string like this: "0/FFT#1" (includes all components, if set)

3.2.2 Registers

Each block has a unique register space for low-level configuration. In the FPGA, this space is

accessible using the AXIS-Ctrl port or the CtrlPort interface. Registers have a fixed bit width of

32 bits. Each block in software will provide an implementation for the rfnoc::register_iface

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 55

interface that can be used to access registers in the FPGA. The rfnoc::register_iface interface

supports the following:

• Peek/poke functionality for 32-bit registers

• Sleep functionality to time-sequence operations

• Timed commands

• Callbacks for asynchronous messages from the block

• Optional resilience parameters to trade throughput for robustness

register_iface Class Reference

Public Types
• using sptr = std::shared_ptr< register_iface >

• using async_msg_validator_t = std::function< bool(uint32_t addr, const std::vector< uint32_t >

&data)>

• using async_msg_callback_t = std::function< void(uint32_t addr, const std::vector< uint32_t > &data,

boost::optional< uint64_t >)>

Public Member Functions
• virtual void poke32 (uint32_t addr, uint32_t data, uhd::time_spec_t time=uhd::time_spec_t::ASAP, bool

ack=false)

• void poke64 (uint32_t addr, uint64_t data, time_spec_t time=uhd::time_spec_t::ASAP, bool ack=false)

• virtual void multi_poke32 (const std::vector< uint32_t > addrs, const std::vector< uint32_t > data,

uhd::time_spec_t time=uhd::time_spec_t::ASAP, bool ack=false)

• virtual void block_poke32 (uint32_t first_addr, const std::vector< uint32_t > data, uhd::time_spec_t

time=uhd::time_spec_t::ASAP, bool ack=false)

• virtual uint32_t peek32 (uint32_t addr, time_spec_t time=uhd::time_spec_t::ASAP)

• uint64_t peek64 (uint32_t addr, time_spec_t time=uhd::time_spec_t::ASAP)

• virtual std::vector< uint32_t > block_peek32 (uint32_t first_addr, size_t length, time_spec_t

time=uhd::time_spec_t::ASAP)

• virtual void poll32 (uint32_t addr, uint32_t data, uint32_t mask, time_spec_t timeout, time_spec_t

time=uhd::time_spec_t::ASAP, bool ack=false)

• virtual void sleep (time_spec_t duration, bool ack=false)

• virtual void register_async_msg_validator (async_msg_validator_t callback_f)

• virtual void register_async_msg_handler (async_msg_callback_t callback_f)

• virtual void set_policy (const std::string &name, const uhd::device_addr_t &args)

• virtual uint16_t get_src_epid () const

• virtual uint16_t get_port_num () const

Detailed Description

A software interface to access low-level registers in a NoC block.

This interface supports the following:

19. Writing and reading registers

20. Hardware timed delays (for time sequencing operations)

21. Asynchronous messages (where a block requests a "register write" in software)

class has no public factory function or constructor.

Member Typedef Documentation
using register_iface::async_msg_callback_t = std::function<void(uint32_t addr, const
std::vector<uint32_t>& data, boost::optional<uint64_t>)>

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 56

Callback function for acting upon an asynchronous message.

When a block in the FPGA sends an asynchronous message to the software, and it has been validated,

the async message callback function is called. An async message can be modelled as a simple register

write (key-value pair with addr/data) that is initiated by the FPGA.

When this message is called, the async message was previously verified by calling the async message

validator callback.

using register_iface::async_msg_validator_t = std::function<bool(uint32_t addr, const
std::vector<uint32_t>& data)>

Callback function for validating an asynchronous message.

When a block in the FPGA sends an asynchronous message to the software, the async message

validator function is called. An async message can be modelled as a simple register write (key-value

pair with addr/data) that is initiated by the FPGA. If this message returns true, the message is

considered valid.

using register_iface::sptr = std::shared_ptr<register_iface>

Constructor & Destructor Documentation
virtual register_iface::~register_iface ()[virtual], [default]

Member Function Documentation
virtual std::vector<uint32_t> register_iface::block_peek32 (uint32_t first_addr, size_t
length, time_spec_t time = uhd::time_spec_t::ASAP)

Read multiple 32-bit consecutive registers implemented in the NoC block.

Parameters

first_addr The byte address of the first register to read from (truncated to

20 bits).

length The number of 32-bit values to read

time The time at which the transaction should be executed.

Returns

data New value of this register.

Example: If first_addr is set to 0, and length is 4, then this function will return a vector of

length 4, with the content of registers at addresses 0, 4, 8, and 12, respectively.

Note: There is no guarantee that under the hood, the implementation won't separate the reads.

Exceptions

op_failed if the transaction fails

op_timeout if no response is received

op_seqerr if a sequence error occurs

virtual void register_iface::block_poke32 (uint32_t first_addr, const std::vector<
uint32_t > data, uhd::time_spec_t time = uhd::time_spec_t::ASAP, bool ack = false)

Write multiple consecutive 32-bit registers implemented in the NoC block.

This function will only allow writes to adjacent registers, in increasing order. If addr is set to 0, and

the length of data is 4, then this method will trigger four writes, in order, to addresses 0, 4, 8, 12. For

arbitrary addresses, cf. multi_poke32().

Note: There is no guarantee that under the hood, the implementation won't separate the writes.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 57

Parameters

first_addr The byte addresses of the first register to write

data New values of these registers

time The time at which the first transaction should be executed.

ack Should transaction completion be acknowledged?

Exceptions

op_failed if an ACK is requested and the transaction fails

op_timeout if an ACK is requested and no response is received

op_seqerr if an ACK is requested and a sequence error occurs

op_timeerr if an ACK is requested and a time error occurs (late command)

virtual uint16_t register_iface::get_port_num () const

Get the port number of the software counterpart of this register interface. This information is useful

to send async messages to the host.

Returns

The 10-bit port number

virtual uint16_t register_iface::get_src_epid () const

Get the endpoint ID of the software counterpart of this register interface. This information is useful

to send async messages to the host.

Returns

The 16-bit endpoint ID

virtual void register_iface::multi_poke32 (const std::vector< uint32_t > addrs, const
std::vector< uint32_t > data, uhd::time_spec_t time = uhd::time_spec_t::ASAP, bool
ack = false)

Write multiple 32-bit registers implemented in the NoC block.

This method should be called when multiple writes need to happen that are at non-consecutive

addresses. For consecutive writes, cf. block_poke32().

Parameters

addrs The byte addresses of the registers to write to (each truncated to

20 bits).

data New values of these registers. The lengths of data and addr

must match.

time The time at which the first transaction should be executed.

ack Should transaction completion be acknowledged?

Exceptions

uhd::value_error if lengths of data and addr don't match

op_failed if an ACK is requested and the transaction fails

op_timeout if an ACK is requested and no response is received

op_seqerr if an ACK is requested and a sequence error occurs

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 58

op_timeerr if an ACK is requested and a time error occurs (late command)

virtual uint32_t register_iface::peek32 (uint32_t addr, time_spec_t time =
uhd::time_spec_t::ASAP)

Read a 32-bit register implemented in the NoC block.

Parameters

addr The byte address of the register to read from (truncated to 20

bits).

time The time at which the transaction should be executed.

Exceptions

op_failed if the transaction fails

op_timeout if no response is received

op_seqerr if a sequence error occurs

uint64_t register_iface::peek64 (uint32_t addr, time_spec_t time =
uhd::time_spec_t::ASAP)[inline]

Read two consecutive 32-bit registers implemented in the NoC block and return them as one 64-bit

value.

Note: This is a convenience call, because all register peeks are 32-bits. This will concatenate two

peeks in a block peek, and then return the combined result of the two peeks.

Parameters

addr The byte address of the lower 32-bit register to read from

(truncated to 20 bits).

time The time at which the transaction should be executed.

Exceptions

op_failed if the transaction fails

op_timeout if no response is received

op_seqerr if a sequence error occurs

virtual void register_iface::poke32 (uint32_t addr, uint32_t data, uhd::time_spec_t
time = uhd::time_spec_t::ASAP, bool ack = false)

Write a 32-bit register implemented in the NoC block.

Parameters

addr The byte address of the register to write to (truncated to 20 bits).

data New value of this register.

time The time at which the transaction should be executed.

ack Should transaction completion be acknowledged?

Exceptions

op_failed if an ACK is requested and the transaction fails

op_timeout if an ACK is requested and no response is received

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 59

op_seqerr if an ACK is requested and a sequence error occurs

op_timeerr if an ACK is requested and a time error occurs (late command)

void register_iface::poke64 (uint32_t addr, uint64_t data, time_spec_t time =
uhd::time_spec_t::ASAP, bool ack = false)[inline]

Write two consecutive 32-bit registers implemented in the NoC block from one 64-bit value.

Note: This is a convenience call, because all register pokes are 32-bits. This will concatenate two

pokes in a block poke, and then return the combined result of the two pokes.

Parameters

addr The byte address of the lower 32-bit register to read from

(truncated to 20 bits).

data New value of the register(s).

time The time at which the transaction should be executed.

Exceptions

op_failed if the transaction fails

op_timeout if no response is received

op_seqerr if a sequence error occurs

virtual void register_iface::poll32 (uint32_t addr, uint32_t data, uint32_t mask,
time_spec_t timeout, time_spec_t time = uhd::time_spec_t::ASAP, bool ack = false)

Poll a 32-bit register until its value for all bits in mask match data&mask

This will insert a command into the command queue to wait until a register is of a certain value. This

can be used, e.g., to poll for a lock pin before executing the next command. It is related to sleep(),

except it has a condition to wait on, rather than an unconditional stall duration. The timeout is

hardware-timed. If the register does not attain the requested value within the requested duration,

${something bad happens}.

Example: Assume readback register 16 is a status register, and bit 0 indicates a lock is in place (i.e.,

we want it to be 1) and bit 1 is an error flag (i.e., we want it to be 0). The previous command can

modify the state of the block, so we give it 1ms to settle. In that case, the call would be thus:

// iface is a register_iface::sptr:

iface->poll32(16, 0x1, 0x3, 1e-3);

Parameters

addr The byte address of the register to read from (truncated to 20

bits).

data The values that the register must have

mask The bitmask that is applied before checking the readback value

timeout The max duration that the register is allowed to take before

reaching its new state.

time When the poll should be executed

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 60

ack Should transaction completion be acknowledged? This is

typically only necessary if the software needs a condition to be

fulfilled before continueing, or during debugging.

Exceptions

op_failed if an ACK is requested and the transaction fails

op_timeout if an ACK is requested and no response is received

op_seqerr if an ACK is requested and a sequence error occurs

op_timeerr if an ACK is requested and a time error occurs (late command)

virtual void register_iface::register_async_msg_handler (async_msg_callback_t
callback_f)

Register a callback function for when an async message is received

Only one callback function can be registered. When calling this multiple times, only the last callback

will be accepted.

Parameters

callback_f The function to call when an asynchronous message is received.

virtual void register_iface::register_async_msg_validator (async_msg_validator_t
callback_f)

Register a callback function to validate a received async message

The purpose of this callback is to provide a method to the framework to make sure a received async

message is valid. If this callback is provided, the framework will first pass the message to the

validator for validation. If the validator returns true, the async message is ACK'd with a

ctrl_status_t::CMD_OKAY response, and then the async message is executed. If the validator

returns false, then the async message is ACK'd with a ctrl_status_t::CMD_CMDERR, and the async

message handler is not excecuted.

This callback may not communicate with the device, it can only look at the data and make a valid/not

valid decision.

Only one callback function can be registered. When calling this multiple times, only the last callback

will be accepted.

Parameters

callback_f The function to call when an asynchronous message is received.

virtual void register_iface::set_policy (const std::string & name, const
uhd::device_addr_t & args)

Set a policy that governs the operational parameters of this register bus. Policies can be used to make

tradeoffs between performance, resilience, latency, etc.

Parameters

name The name of the policy to apply

args Additional arguments to pass to the policy governor

virtual void register_iface::sleep (time_spec_t duration, bool ack = false)

Send a command to halt (block) the control bus for a specified time. This is a hardware-timed sleep.

Parameters

duration The amount of time to sleep.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 61

ack Should transaction completion be acknowledged?

Exceptions

op_failed if an ACK is requested and the transaction fails

op_timeout if an ACK is requested and no response is received

op_seqerr if an ACK is requested and a sequence error occurs

3.2.3 Block Properties

A block property is a high-level representation of the state of the block. The author of the block

can define zero or more properties to represent the total state of the block. The data type and

number of properties is flexible and user-defined. Properties can be read and written using the

public API of the block. A change in a particular property must be resolved for the state to

correctly reflect in the FPGA counterpart of the block. This is done using user-defined resolver

functions that depend on one or more properties. For example, for the Radio block, the analog

gain can be a property of the type float and translate to a sequence of registers writes to

program attenuators, etc. that will be sent using rfnoc::register_iface.

Block properties have two scopes:

• User Scope: User-scoped properties are defined by the block designer to be accessible

by the user of the block. These are properties that can be read and written by the public

API of the block using getter and setter functions, respectively. User-scoped properties

are inherently related to the behavior of the block and not influenced by how the block is

used (i.e., topology).

• Port Scope: Port-scoped properties are defined by the block designer to represent state

inherited from the topology that the block is connected to. These properties travel along

the data ports of the block. Port-scoped properties allow a state change in one block to

accurately propagate to other blocks if there are dependencies as a result of the

connection topology of the block. For this reason, port-scoped properties cannot be

accessed directly using the public block API.

Properties are defined in the constructor of a block and must be registered with the framework.

The API for a property is detailed below.

property_t<data_t> Class Template Reference

Public Member Functions

• const std::string & get_id () const

Gets the string identifier for this property.

• const res_source_info & get_src_info () const

Returns the source info for the property.

• bool read_access_granted () const

Returns true if read access has been granted for this property.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 62

• bool write_access_granted () const

Returns true if write access has been granted for this property.

• void set (const data_t &value)

Set the value of this property.

• const data_t & get () const

Get the value of this property.

• operator const data_t & () const

• bool operator== (const data_t &rhs)

• bool operator!= (const data_t &rhs)

• property_t< data_t > & operator= (const data_t &value)

• property_t< data_t > & operator= (const property_t< data_t > &value)

3.2.3.1 Properties used by UHD

Properties are user-definable, and there is little limitation to what can be stored as properties.

There are some properties that either have special meaning within UHD, or simply have a

convention of what they mean and which type they are. While the framework imposes almost no

restrictions on properties, it is highly recommended to follow these conventions so that RFNoC

blocks stay compatible with one another. The following table contains a list of port properties

(also known as edge properties) which parts of UHD interpret in a specific way.

Property ID Type Meaning

tick_rate double This property is created by the framework for every port. It

signifies the number of ticks per second, i.e., it provides the

data required to translate command times into ticks and vice

versa. User-defined blocks cannot register properties with

this key, since the property is already created.

Interaction with these properties is also rarely required, as

the API calls get_tick_rate() and set_tick_rate() are available

to all block controllers.

samp_rate double These properties are read to or written by the Radio blocks,

the DDC/DUC blocks, and the streamers. The unit is

samples/sec. Blocks that require knowledge of the sampling

rate, or produce data at a given rate, should implement these

edge properties.

type string This port property identifies its data type. The value for this

property is the same as the otw_type within

uhd::stream_args, e.g., “sc16” for complex 16-bit data, “sc8”,

“sc12”, “s16”, “f32”, “u8”, etc.

Most blocks that implement this type are not actually capable

of handling different data types, in which case the property

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 63

resolvers should either throw an exception of type

resolve_error, or should re-set the property value to the

type they can handle. The Radio block, DDC, DUC, FFT, FIR

filter, Vector IIR, and fosphor are all blocks that implement

this property.

scaling double This property is relevant for DSP chains. For example, the

Radio block, the DDC and the DUC, and the streamers all

implement this. The only blocks that should implement this

are blocks that have sample-in, sample-out flows, and that

use fixed-point arithmetic on the FPGA that distorts the

amplitude.

The value of this property is the relative (multiplicative)

amplitude error of a signal, also knows as its full-scale

amplitude.

3.2.4 Block Actions

An action is an ephemeral operation that can be performed on a block. An action does not

change the state of a block (although the block can implement an action handler that will

change its state). Like a property, an action may propagate across the graph. Actions provide a

mechanism for blocks to communicate in the software domain (i.e., not by sending command

CHDR packets, but by calling into APIs provided by the graph). An example of an action is a

stream command. A stream command that issues on a block that is not a source or a sink will

eventually propagate through the topology to a source or sink, and be executed there. Actions

are exposed through the public API via an action code and an action payload. Actions are

defined by the block designer, and they can be handled internally in the block or be forwarded

on an upstream or downstream port.

3.2.5 C++ API

The noc_block_base class provides functionality to access registers, properties and to

execute actions on a block. The API for the block is detailed below (Note that all fields/functions

that are public are intended for the users (clients) of a block; and all fields/functions that are

protected are intended for the designers of custom block controllers).

noc_block_base Class Reference

Public Member Functions

• std::string get_unique_id () const

• size_t get_num_input_ports () const

• size_t get_num_output_ports () const

• noc_id_t get_noc_id () const

• const block_id_t & get_block_id () const

• double get_tick_rate () const

• size_t get_mtu (const res_source_info &edge)

• uhd::device_addr_t get_block_args () const

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 64

• uhd::property_tree::sptr & get_tree () const

• uhd::property_tree::sptr & get_tree ()

Protected Member Functions
• noc_block_base (make_args_ptr make_args)

• void set_num_input_ports (const size_t num_ports)

• void set_num_output_ports (const size_t num_ports)

• void set_tick_rate (const double tick_rate)

• void set_mtu_forwarding_policy (const forwarding_policy_t policy)

• void set_mtu (const res_source_info &edge, const size_t new_mtu)

• property_base_t * get_mtu_prop_ref (const res_source_info &edge)

• std::shared_ptr< mb_controller > get_mb_controller ()

• virtual void deinit ()

Detailed Description

The primary interface to a NoC block in the FPGA.

The block supports three types of data access:

• Low-level register access

• High-level property access

• Action execution

main difference between this class and its parent is the direct access to registers, and the NoC- and block

IDs.

Member Function Documentation

virtual void noc_block_base::deinit ()

Safely de-initialize the block

This function is called by the framework when the RFNoC session is about to finish to allow blocks

to safely perform actions to shut down a block. For example, if your block is producing samples,

like a radio or signal generator, this is a good place to issue a "stop" command.

After this function is called, register access is no more possible. So make sure not to interact with

regs() after this was called. Future access to regs() won't throw, but will print error messages and do

nothing.

The rationale for having this separate from the destructor is because rfnoc_graph allows exporting

references to blocks, and this function ensures that blocks are safely shut down when the rest of the

device control goes away.

uhd::device_addr_t noc_block_base::get_block_args () const

Return the arguments that were passed into this block from the framework

const block_id_t& noc_block_base::get_block_id () const

Returns the unique block ID for this block.

Returns

block_id The block ID of this block (e.g. "0/FFT#1")

std::shared_ptr<mb_controller> noc_block_base::get_mb_controller ()[protected]

Get access to the motherboard controller for this block's motherboard

This will return a nullptr if this block doesn't have access to the motherboard. In order to gain access

to the motherboard, the block needs to have requested access to the motherboard during the

registration procedure. See also registry.hpp.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 65

Even if this block requested access to the motherboard controller, there is no guarantee that UHD

will honour that request. It is therefore important to verify that the returned pointer is valid.

size_t noc_block_base::get_mtu (const res_source_info & edge)

Return the current MTU on a given edge

The MTU is determined by the block itself (i.e., how big of a packet can this block handle on this

edge), but also the neighboring block, and possibly the transport medium between the blocks. This

value can thus be lower than what the block defines as MTU, but never higher.

Parameters

edge The edge on which the MTU is queried. edge.type must be

INPUT_EDGE or OUTPUT_EDGE!

Returns

the MTU as determined by the overall graph on this edge

Exceptions

uhd::value_error if edge is not referring to a valid edge

property_base_t* noc_block_base::get_mtu_prop_ref (const res_source_info &
edge)[protected]

Return a reference to an MTU property

This can be used to make the MTU an input to a property resolver. For example, blocks that have an

spp property, such as the radio, can now trigger a property resolver based on the MTU.

noc_id_t noc_block_base::get_noc_id () const

Return the NoC ID for this block.

Returns

noc_id The 32-bit NoC ID of this block

size_t noc_block_base::get_num_input_ports () const, [virtual]

Number of input ports. Note: This gets passed into this block from the.

Implements node_t (p.Error! Bookmark not defined.).

size_t noc_block_base::get_num_output_ports () const, [virtual]

Number of output ports. Note: This gets passed outto this block from the.

Implements node_t (p.Error! Bookmark not defined.).

double noc_block_base::get_tick_rate () const

Returns the tick rate of the current time base

Note there is only ever one time base (or tick rate) per block.

uhd::property_tree::sptr& noc_block_base::get_tree ()

Return a reference to this block's subtree (non-const version)

uhd::property_tree::sptr& noc_block_base::get_tree () const

Return a reference to this block's subtree.

std::string noc_block_base::get_unique_id () const, [virtual]

Unique ID for an RFNoC block is its block ID.

Reimplemented from node_t (p.74).

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 66

void noc_block_base::set_mtu (const res_source_info & edge, const size_t
new_mtu)[protected]

Update the MTU

This is another data point in the MTU discovery process. This means that the MTU cannot be

increased using the method, only decreased.

void noc_block_base::set_mtu_forwarding_policy (const forwarding_policy_t
policy)[protected]

Change the way MTUs are forwarded

The policy will have the following effect:

DROP: This means that the MTU of one port has no bearing on the MTU of another port. This is usually a

valid choice if the FPGA is repacking data, for example, a block could be consuming continous streams

of data, and producing small packets of a different type.

ONE_TO_ONE: This means the MTU is passed through from input to output and vice versa. This is

typically a good choice if packets are being passed through without modifying their size. The

DDC/DUC blocks will choose this policy, because the want to relay MTU information to the radio.

ONE_TO_ALL: This means the MTU is being set to the same value on all ports.

ONE_TO_FAN: This means the MTU is forwarded from any input port to all opposite side ports. This is an

appropriate policy for the split-stream block.

The default policy is DROP.

void noc_block_base::set_num_input_ports (const size_t num_ports)[protected]

Update number of input ports.

void noc_block_base::set_num_output_ports (const size_t num_ports)[protected]

Update number of output ports.

void noc_block_base::set_tick_rate (const double tick_rate)[protected]

Update tick rate for this node and all the connected nodes

Careful: Calling this function will trigger a property propagation to any block this block is connected

to.

3.2.6 Custom Block Controllers

Custom block controllers can be built by inheriting from noc_block_base. The protected

functions in the base class must be used to correctly register properties and handle actions.

UHD will provide a mechanism to retrieve controllers for discovered blocks, and it will have the

capability to dynamic_cast the generic block controller to the user-defined type. The following

is an example of a sample custom block controller.

class null_block_control_impl : public null_block_control
{
public:
 RFNOC_BLOCK_CONSTRUCTOR(null_block_control)
 {
 uint32_t initial_state = regs().peek32(REG_CTRL_STATUS);
 _nipc = (initial_state >> 24) & 0xFF;
 _item_width = (initial_state >> 16) & 0xFF;
 register_property(&_lpp);
 add_property_resolver(
 {&_lpp}, // Input/trigger list
 {&_lpp}, // Output list

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 67

 [this](){
 set_lines_per_packet(_lpp.get());
 _lpp = get_lines_per_packet();
 });
 register_issue_stream_cmd();
 }

 void issue_stream_cmd(const stream_cmd_t& stream_cmd)
 {
 /* Implement functionality to start and stop streaming */
 }

 void set_lines_per_packet(const uint32_t lpp)
 {
 const uint32_t reg_val = /* figure out from lpp */;
 regs().poke32(REG_SRC_LINES_PER_PKT, reg_val);
 }

 uint32_t get_lines_per_packet()
 {
 return regs().peek32(REG_SRC_LINES_PER_PKT) + 2;
 }

private:

 /*! Action API: Register a handler for stream commands
 */
 void register_issue_stream_cmd()
 {
 register_action_handler(ACTION_KEY_STREAM_CMD,
 [this](const res_source_info& src, action_info::sptr action) {
 stream_cmd_action_info::sptr stream_cmd_action =
 std::dynamic_pointer_cast<stream_cmd_action_info>(action);
 if (!stream_cmd_action) {
 throw uhd::runtime_error(
 "Received stream_cmd of invalid action type!");
 }
 if (src.instance != 0 || src.type != res_source_info::OUTPUT_EDGE) {
 throw uhd::runtime_error(
 "The null source can only stream from output port 0!");
 }
 RFNOC_LOG_DEBUG("Received stream command action request!");
 issue_stream_cmd(stream_cmd_action->stream_cmd);
 });
 }

 void deinit()
 {
 // This is the last time we can do any kind of peek or poke
 issue_stream_cmd(stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
 }

 /**
 * Attributes
 ***/
 property_t<int> _lpp{"lpp", 100, {res_source_info::USER}};

 //! Number of items per clock
 uint32_t _nipc;

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 68

 //! Bits per item
 uint32_t _item_width;

};

3.3 RFNoC Graph

The graph object in UHD allows users to build functional applications using individual blocks by

connecting them together in a meaningful topology. The RFNoC graph has the following

properties:

• The edges of the graph represent the data flow paths. It is thus directed.

• There can be multiple connections between nodes (e.g., for blocks that handle MIMO

applications). It is thus a multigraph.

• A block can have multiple inputs or outputs (e.g., a summation block might have two

inputs and one output). A property of an edge is thus which port of a node it is connected

to. If there are multiple edges between the same nodes, they are not interchangeable.

• It is disconnected, meaning there can be multiple, disconnected sub-graphs.

• It cannot have loose (unconnected) edges.

• If the blocks support such a usage, data connections can be cyclic.

• All nodes have a unique identifier of type string.

3.3.1 Capabilities

There are three types of connections (edges) supported by the graph:

• Block to Block: A connection between two blocks that are connected by some transport

• Block to Stream: A connection between a block in the FPGA and a host-resident RX

streamer

• Stream to Block: A connection between a host-resident TX streamer and a block in the

FPGA

The graph object is responsible for making the appropriate data connections between blocks

and/or the host streamers. It is also responsible for propagating port (edge) properties between

blocks. Multi-block state resolution is handled by the framework and is not the responsibility of

the application designer.

Note: The architecture of RFNoC does not preclude software running on a remote computer that

acts like an RFNoC device. From the perspective of the graph, this would also register as a

block controller, even if the remote computer is using a streamer object. When the software is

running on the same context as the UHD session, it is considered a streamer.

3.3.2 C++ API

rfnoc_graph Class Reference

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 69

Public Member Functions

• virtual ~rfnoc_graph ()

• virtual std::vector< block_id_t > find_blocks (const std::string &block_id_hint) const

• template<typename T > std::vector< block_id_t > find_blocks (const std::string &block_id_hint) const

• virtual bool has_block (const block_id_t &block_id) const

• template<typename T > bool has_block (const block_id_t &block_id) const

• virtual noc_block_base::sptr get_block (const block_id_t &block_id) const

• template<typename T > std::shared_ptr< T > get_block (const block_id_t &block_id) const

• virtual bool is_connectable (const block_id_t &src_blk, size_t src_port, const block_id_t &dst_blk,

size_t dst_port)

• virtual void connect (const block_id_t &src_blk, size_t src_port, const block_id_t &dst_blk, size_t

dst_port, bool skip_property_propagation=false)

• virtual void connect (uhd::tx_streamer::sptr streamer, size_t strm_port, const block_id_t &dst_blk,

size_t dst_port, uhd::transport::adapter_id_t adapter_id=uhd::transport::NULL_ADAPTER_ID)

• virtual void connect (const block_id_t &src_blk, size_t src_port, uhd::rx_streamer::sptr streamer, size_t

strm_port, uhd::transport::adapter_id_t adapter_id=uhd::transport::NULL_ADAPTER_ID)

• virtual std::vector< uhd::transport::adapter_id_t > enumerate_adapters_from_src (const block_id_t

&src_blk, size_t src_port)

• virtual std::vector< uhd::transport::adapter_id_t > enumerate_adapters_to_dst (const block_id_t

&dst_blk, size_t dst_port)

• virtual std::vector< graph_edge_t > enumerate_static_connections () const

• virtual std::vector< graph_edge_t > enumerate_active_connections ()

• virtual void commit ()

• virtual void release ()

• virtual rx_streamer::sptr create_rx_streamer (const size_t num_ports, const stream_args_t &args)

• virtual tx_streamer::sptr create_tx_streamer (const size_t num_ports, const stream_args_t &args)

• virtual size_t get_num_mboards () const

• virtual std::shared_ptr< mb_controller > get_mb_controller (const size_t mb_index=0)

• virtual bool synchronize_devices (const uhd::time_spec_t &time_spec, const bool quiet)

• virtual uhd::property_tree::sptr get_tree (void) const

Static Public Member Functions
• static sptr make (const device_addr_t &dev_addr)

Detailed Description

The core class for a UHD session with (an) RFNoC device(s)

This class is a superset of uhd::device. It does not only hold a device session, but also manages the

RFNoC blocks on those devices. Only devices compatible with a modern version of RFNoC can be

addressed by this class.

Member Function Documentation
virtual void rfnoc_graph::commit ()

Commit graph and run initial checks

This method needs to be called when the graph is ready for action. It will run checks on the graph

and run a property propagation.

Exceptions

uhd::resolve_error if the properties fail to resolve.

virtual void rfnoc_graph::connect (const block_id_t & src_blk, size_t src_port, const
block_id_t & dst_blk, size_t dst_port, bool skip_property_propagation = false)

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 70

Connect a RFNOC block with block ID src_block to another with block ID dst_block .

Note you need to also call this on statically connected blocks if you desire to use them.

Parameters

src_blk The block ID of the source block to connect.

src_port The port of the source block to connect.

dst_blk The block ID of the destination block to connect to.

dst_port The port of the destination block to connect to.

skip_property_propagation Skip property propagation for this edge

Exceptions

uhd::routing_error if the source or destination ports are statically connected to a

different block

virtual void rfnoc_graph::connect (const block_id_t & src_blk, size_t src_port,
uhd::rx_streamer::sptr streamer, size_t strm_port, uhd::transport::adapter_id_t
adapter_id = uhd::transport::NULL_ADAPTER_ID)

Connect RX streamer to an output of an NoC block

Parameters

src_blk The block ID of the source block to connect.

src_port The port of the source block to connect.

streamer The streamer to connect.

strm_port The port of the streamer to connect.

adapter_id The local device ID (transport) to use for this connection.

Exceptions

connect_disallowed_on_src if the source port is statically connected to a different

block

virtual void rfnoc_graph::connect (uhd::tx_streamer::sptr streamer, size_t strm_port,
const block_id_t & dst_blk, size_t dst_port, uhd::transport::adapter_id_t adapter_id =
uhd::transport::NULL_ADAPTER_ID)

Connect TX streamer to an input of an NoC block

Parameters

streamer The streamer to connect.

strm_port The port of the streamer to connect.

dst_blk The block ID of the destination block to connect to.

dst_port The port of the destination block to connect to.

adapter_id The local device ID (transport) to use for this connection.

Exceptions

connect_disallowed_on_dst if the destination port is statically connected to a

different block

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 71

virtual rx_streamer::sptr rfnoc_graph::create_rx_streamer (const size_t num_ports,
const stream_args_t & args)

Create a new receive streamer from the streamer arguments The created streamer is still not

connected to anything yet. The graph::connect call has to be made on this streamer to start using it.

If a different streamer is already connected to the intended source then that call may fail.

Parameters

num_ports Number of ports that will be connected to the streamer

args Arguments to aid the construction of the streamer

Returns

a shared pointer to a new streamer

virtual tx_streamer::sptr rfnoc_graph::create_tx_streamer (const size_t num_ports,
const stream_args_t & args)

Create a new transmit streamer from the streamer arguments The created streamer is still not

connected to anything yet. The graph::connect call has to be made on this streamer to start using it.

If a different streamer is already connected to the intended sink then that call may fail.

Parameters

num_ports Number of ports that will be connected to the streamer

args Arguments to aid the construction of the streamer

Returns

a shared pointer to a new streamer

virtual std::vector<graph_edge_t> rfnoc_graph::enumerate_active_connections ()

Enumerate all the active connections in the graph

Returns

A vector containing all the active edges in the graph.

virtual std::vector<uhd::transport::adapter_id_t>
rfnoc_graph::enumerate_adapters_from_src (const block_id_t & src_blk, size_t
src_port)

Enumerate all the possible host transport adapters that can be used to receive from the specified

block

If addr and second_addr were specified in device_args, the adapter_id_t associated with addr will

come first in the vector, then second_addr.

Parameters

src_blk The block ID of the source block to connect to.

src_port The port of the source block to connect to.

virtual std::vector<uhd::transport::adapter_id_t>
rfnoc_graph::enumerate_adapters_to_dst (const block_id_t & dst_blk, size_t
dst_port)

Enumerate all the possible host transport adapters that can be used to send to the specified block

If addr and second_addr were specified in device_args, the adapter_id_t associated with addr will

come first in the vector, then second_addr.

Parameters

dst_blk The block ID of the destination block to connect to.

dst_port The port of the destination block to connect to.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 72

virtual std::vector<graph_edge_t> rfnoc_graph::enumerate_static_connections ()
const

Enumerate all the possible static connections in the graph

Returns

A vector containing all the static edges in the graph.

template<typename T > std::vector<block_id_t> rfnoc_graph::find_blocks (const
std::string & block_id_hint) const

Type-cast version of find_blocks().

virtual std::vector<block_id_t> rfnoc_graph::find_blocks (const std::string &
block_id_hint) const

Returns the block ids of all blocks that match the specified hint Uses block_id_t::match() internally.

If no matching block is found, it returns an empty vector.

To access specialized block controller classes (i.e. derived from noc_block_base), use the templated

version of this function, e.g.
// Assume DEV is an rfnoc_graph::sptr

auto null_blocks = DEV->find_blocks<null_noc_block>("NullSrcSink");

if (null_blocks.empty()) { cout << "No null blocks found!" << endl; }

Note

this access is not thread safe if performed during block enumeration

template<typename T > std::shared_ptr<T> rfnoc_graph::get_block (const block_id_t
& block_id) const

Same as get_block(), but with a type cast.

If you have a block controller class that is derived from noc_block_base, use this function to access

its specific methods. If the given block ID is not valid (i.e. such a block does not exist on this device)

or if the type does not match, it will throw a uhd::lookup_error.

// Assume DEV is a device3::sptr

auto block_controller = get_block<my_noc_block>("0/MyBlock#0");

block_controller->my_own_block_method();

Note

this access is not thread safe if performed during block enumeration

virtual noc_block_base::sptr rfnoc_graph::get_block (const block_id_t & block_id)
const

Returns a block controller class for an NoC block.

If the given block ID is not valid (i.e. such a block does not exist on this device), it will throw a

uhd::lookup_error.

Parameters

block_id Canonical block name (e.g. "0/FFT#1").

Note

this access is not thread safe if peformed during block enumeration

virtual std::shared_ptr<mb_controller> rfnoc_graph::get_mb_controller (const size_t
mb_index = 0)

Return a reference to a motherboard controller.

virtual size_t rfnoc_graph::get_num_mboards () const

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 73

virtual uhd::property_tree::sptr rfnoc_graph::get_tree (void) const

Return a reference to the property tree.

template<typename T > bool rfnoc_graph::has_block (const block_id_t & block_id)
const

Same as has_block(), but with a type check.

Returns

true if a block of type T with the specified id exists

Note

this access is not thread safe if performed during block enumeration

virtual bool rfnoc_graph::has_block (const block_id_t & block_id) const

Checks if a specific NoC block exists on the device.

Parameters

block_id Canonical block name (e.g. "0/FFT#1").

Returns

true if a block with the specified id exists

Note

this access is not thread safe if performed during block enumeration

virtual bool rfnoc_graph::is_connectable (const block_id_t & src_blk, size_t src_port,
const block_id_t & dst_blk, size_t dst_port)

Verify if two blocks/ports are connectable.

If this call returns true, then connect() can be called with the same arguments. It does not, however,

check if the block was already connnected.

Returns

true if the two blocks are connectable

static sptr rfnoc_graph::make (const device_addr_t & dev_addr)[static]

Make a new USRP graph from the specified device address(es).

Parameters

dev_addr the device address

Returns

A new rfnoc_graph object

Exceptions

uhd::key_error no device found

uhd::index_error fewer devices found than expected

virtual void rfnoc_graph::release ()

Release graph: Opposite of commit()

Calling this will disable property propagation until commit() has been called an equal number of

times.

virtual bool rfnoc_graph::synchronize_devices (const uhd::time_spec_t & time_spec,
const bool quiet)

Run any routines necessary to synchronize devices

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 74

The specific implementation of this call are device-specific. In all cases, it will set the time to a

common value.

Any application that requires any kind of phase or time alignment (if supported by the hardware)

must call this before operation.

Parameters

time_spec The timestamp to be used to sync the devices. It will be an input

to set_time_next_pps() on the motherboard controllers.

quiet If true, there will be no errors or warnings printed if the

synchronization happens. This call will always be called during

initialization, but preconditions might not yet be met (e.g., the

time and reference sources might still be internal), and will fail

quietly in that case.

Returns

the success status of this call (true means devices are now synchronized)

3.4 Streamers

Streamers allow users to send data to or receive data from an RFNoC block. The API for

streamers will be the same as what multi_usrp has today.

rx_streamer Class Reference

Public Types

• typedef std::shared_ptr< rx_streamer > sptr

• typedef ref_vector< void * > buffs_type

Public Member Functions

• size_t get_num_channels (void) const

• size_t get_max_num_samps (void) const

• size_t recv (const buffs_type &buffs, const size_t nsamps_per_buff, rx_metadata_t &metadata, const

double timeout=0.1, const bool one_packet=false)

• void issue_stream_cmd (const stream_cmd_t &stream_cmd)

Detailed Description

The RX streamer is the host interface to receiving samples. (Unchanged in UHD)

Member Typedef Documentation

typedef ref_vector<void *> rx_streamer::buffs_type

Typedef for a pointer to a single, or a collection of recv buffers

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 75

typedef std::shared_ptr<rx_streamer> rx_streamer::sptr

A shared pointer to allow easy access to this class and for automatic memory management.

Member Function Documentation

size_t rx_streamer::get_max_num_samps (void) const

Get the max number of samples per buffer per packet

size_t rx_streamer::get_num_channels (void) const

Get the number of channels associated with this streamer

void rx_streamer::issue_stream_cmd (const stream_cmd_t & stream_cmd)

Issue a stream command to the usrp device. This tells the usrp to send samples into the host. See the

documentation for stream_cmd_t for more info.

With multiple devices, the first stream command in a chain of commands should have a time spec

in the near future and stream_now = false; to ensure that the packets can be aligned by their time

specs.

Parameters:

stream_cmd the stream command to issue

size_t rx_streamer::recv (const buffs_type & buffs, const size_t nsamps_per_buff,
rx_metadata_t & metadata, const double timeout = 0.1, const bool one_packet = false)

Receive buffers containing samples described by the metadata.

Receive handles fragmentation as follows: If the buffer has insufficient space to hold all samples

that were received in a single packet over-the-wire, then the buffer will be completely filled, and the

implementation will hold a pointer into the remaining portion of the packet. Subsequent calls will

load from the remainder of the packet and will flag the metadata to show that this is a fragment. The

next call to receive, after the remainder becomes exhausted, will perform an over-the-wire receive

as usual. See the rx metadata fragment flags and offset fields for details.

This is a blocking call and will not return until the number of samples returned have been written

into each buffer. Under a timeout condition, the number of samples returned may be less than the

number of samples specified.

The one_packet option allows the user to guarantee that the call will return after a single packet has

been processed. This may be useful to maintain packet boundaries in some cases.

Note on threading: recv() is not thread-safe, to avoid locking overhead. The application calling

recv() is responsible for making sure that not more than one thread can call recv() at the same time.

Parameters:

buffs a vector of writable memory to fill with samples

nsamps_per_buff the size of each buffer in number of samples

metadata data to fill describing the buffer

timeout the timeout in seconds to wait for a packet

one_packet return after the first packet is received

Returns:

the number of samples received or 0 on error

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 76

tx_streamer Class Reference

Public Types

• typedef std::shared_ptr< tx_streamer > sptr

• typedef ref_vector< const void * > buffs_type

Public Member Functions

• size_t get_num_channels (void) const

• size_t get_max_num_samps (void) const

• size_t send (const buffs_type &buffs, const size_t nsamps_per_buff, const tx_metadata_t &metadata,

const double timeout=0.1)

• bool recv_async_msg (async_metadata_t &async_metadata, double timeout=0.1)

Detailed Description

The TX streamer is the host interface to transmitting samples. (Unchanged in UHD)

Member Typedef Documentation

typedef ref_vector<const void *> tx_streamer::buffs_type

Typedef for a pointer to a single, or a collection of send buffers

typedef std::shared_ptr<tx_streamer> tx_streamer::sptr

A shared pointer to allow easy access to this class and for automatic memory management.

Member Function Documentation

size_t tx_streamer::get_max_num_samps (void) const

Get the max number of samples per buffer per packet

size_t tx_streamer::get_num_channels (void) const

Get the number of channels associated with this streamer

bool tx_streamer::recv_async_msg (async_metadata_t & async_metadata, double timeout =
0.1)

Receive and asynchronous message from this TX stream.

Parameters:

async_metadata the metadata to be filled in

timeout the timeout in seconds to wait for a message

Returns:

true when the async_metadata is valid, false for timeout

size_t tx_streamer::send (const buffs_type & buffs, const size_t nsamps_per_buff, const
tx_metadata_t & metadata, const double timeout = 0.1)

Send buffers containing samples described by the metadata.

Send handles fragmentation as follows: If the buffer has more items than the maximum per packet,

the send method will fragment the samples across several packets. Send will respect the burst flags

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 77

when fragmenting to ensure that start of burst can only be set on the first fragment and that end of

burst can only be set on the final fragment.

This is a blocking call and will not return until the number of samples returned have been read out

of each buffer. Under a timeout condition, the number of samples returned may be less than the

number of samples specified.

Parameters:

buffs a vector of read-only memory containing samples

nsamps_per_buff the number of samples to send, per buffer

metadata data describing the buffer's contents

timeout the timeout in seconds to wait on a packet

Returns:

the number of samples sent

3.5 Motherboard Controllers

The motherboards are represented by a “motherboard controller”. This object can be used to

configure, modify, or query properties that are specific to the motherboard itself, and are not tied

to any particular block. A very common motherboard-level setting is the source for time and/or

clock reference. The timekeepers are also controlled on the motherboard level and are

controlled through the motherboard controller.

The indexing for motherboard controllers is consistent between block IDs and device

arguments. For example, suppose an rfnoc_graph was created with the arguments

addr0=192.168.10.2,addr1=192.168.10.3, in which case there will be two

motherboards in this RFNoC graph. A call to get_mb_controller(0) will return the

motherboard controller for the first motherboard (the one who’s IP address ends in 10.2 in this

example), and the block ID 0/Radio#0 will correspond to the first radio on this same

motherboard.

In RFNoC versions prior to UHD 4.0, the only API to interact with the graph were the block

controllers. This left an API gap, and some API calls that affected the motherboard were

attached to the radio block controllers instead. By splitting up block controllers and motherboard

controllers, API calls are attached to the actual component they’re controlling.

However, block controllers may request access to the motherboard controllers themselves,

which they sometimes require (e.g., to control or query clocks on the motherboard). This

mechanism may also allow blocks, such as the radio blocks, to expose functionality that is

technically tied to the motherboard.

3.6 uhd::multi_usrp API

An RFNoC capable USRP must work out of the box using the multi_usrp API. To do so,

multi_usrp will expect a default image with Radios, DDCs, DUCs and buffering to implement the

native USRP API. Internally, multi_usrp will build a graph to make the appropriate connections,

much like a user application.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 78

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 79

4 RFNoC Tools Overview

4.1 Basics

The RFNoC framework provides code generation tools to create blocks and to assemble an

FPGA design using existing blocks. All tools have a command line interface (CLI) and graphical

user interface (GUI). The block creation tool, called RFNoC ModTool, accepts basic parameters

(Section 2.3.1.3), control-plane parameters (Section 2.3.2.3), data-plane parameters (Section

2.3.3.5), and other user options to generate Verilog and C++ code templates for a new block,

units tests and the supporting metadata files for design assembly and for use by UHD. After a

basic template for a block has been created, users can iteratively develop the FPGA and

software implementation for the block, and then move to the next step of design assembly. The

design assembly tool, called RFNoC Image Builder, accepts parameters and performs the steps

described in Section 2.4.2 to build an FPGA image that instantiates blocks from the local block

database, with connections specified statically at compile time. The generated image can then

be deployed onto a USRP for UHD to automatically detect and target the blocks on the device.

User preferences can be communicated using files or GUI actions. The YAML format is used to

describe all user-options and the XML format is used for generated files. In almost all cases, it

should not be necessary to modify the XML files generated by the tools. The overview and

interaction of the tools is shown in Figure 18 and is described in the following sections.

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 80

Block Generation
User Preferences

RFNoC ModTool

RFNoC ModTool GUI

YAML

C++ Source
- Block Controller
 Template
- Block Controller
 Build Script
- Block Unit Tests

HDL Source
- NoC Shell
- NoC Block Template
- Block Testbenches

Metadata
- Block Definition
XML

GNU Radio
- GRC XML
- GNU Radio Shim

Development Development

User Preferences

RFNoC Image Builder

RFNoC Image Builder GUI

YAML

Block Database

XML

XML

XML

XML

USRP Database

XML

XML

XML

XML

Design HDL (Verilog)

FPGA Image Generation

XML (User Authored)

XML (Ettus Authored)

User Application

User Application

UHD

USRP Hardware
(w/ Bitfile Loaded)

Xilinx Vivado USRP Base Design

Design Bitstream

Figure 18: RFNoC Tool flow Overview

4.2 RFNoC ModTool

4.2.1 Overview

RFNoC ModTool should be used to generate a new RFNoC block which may have custom

user-defined logic. The FPGA and software interfaces to the block are detailed in Section 2.3

and Section 3.2. The inputs to RFNoC ModTool are described above, and using these User

Preferences, the tool will generate the following files:

• C++ Source

o Block Controller Template: The block controller template contains boilerplate

UHD code to communicate with the block in the FPGA. It will contain a basic

register interface, and placeholders to define and implement block arguments

and block properties.

o Block Controller Build Script: The build script is a cmake project that can be used

to build a dynamic library that UHD can call into to instantiate the custom block.

o Unit Tests: A template to implement basic unit tests to validate the block

controller.

• HDL Source

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 81

o NoC Shell: A fully functional Verilog NoC Shell that has all the interfaces

requested by the user.

o NoC Block Template: A Verilog template for the NoC Block, which includes an

instantiation for the NoC shell and a placeholder for users to insert their custom

logic.

o Block Testbench Template: A testbench template to allow users to write HDL unit

tests for their block.

• GNU Radio Bindings (if GNU Radio is installed)

o A GRC XML file to include the block into a GNU Radio flow graph

o Any additional shim code to enable the block to function in GNU Radio

• Metadata

o Block Definition File: This is an XML file that defines the interfaces and behavior

of the block. The block definition file is used by UHD to discover capabilities of

the block and to load the appropriate block controller class. It is also used by the

RFNoC Image Builder (see below) to assemble an FPGA design using the block.

The user can interact with RFNoC ModTool using a GUI or using the CLI and specifying a

YAML file with following format.

4.2.2 Input Format

The following is a description (and example) of the input YAML format.

General parameters

schema: rfnoc_modtool_args # Name of the schema used to validate this file

module_name: my_block # Name of the RFNoC block

version: "1.0" # Format version of this file

rfnoc_version: "1.0" # Version of RFNoC

chdr_width: 256 # Bit width of the CHDR bus

noc_id: 0xDEADBEEF # NoC ID for this block

A list of all clocks needed by this block

- rfnoc_chdr_clk and rfnoc_ctrl_clk are required clocks

- All other clocks will be considered as user-defined clocks

clocks:

 - rfnoc_chdr: # Clock name prefix

 freq: 'range(100e6, 300e6)' # Acceptable frequency range of this clock

 - rfnoc_ctrl:

 freq: 'range(10e6, 100e6)'

 - user0:

 freq: 'range(0, 1e9)'

Options for the control interface

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 82

control:

 sw_iface: nocscript # Software controller implementation: {nocscript, c++}

 fpga_iface: axis_ctrl # Type of FPGA interface: {axis_ctrl, ctrlport}

 interface_direction: slave # Direction of control endpoint:

 # {slave, master_slave, remote_master_slave}

 fifo_depth: 32 # Number of 32-bit words in input buffer: [32, 4096]

 clk_domain: rfnoc_ctrl # Clock domain for ctrl interface: {<Choose from "clocks">}

 ctrlport: # ctrlport specific options

 byte_mode: True # Instantiate a byte enable: {True, False}

 timed: False # Allow timed commands: {True, False}

 has_status: False # Instantiate a status bus: {True, False}

 axis_ctrl: # axis_ctrl specific

 64_bit: False # Instantiate a 64-bit bus instead of 32: {True, False}

Options for the data interface

data:

 fpga_iface: axis_pyld_ctxt # Type of FPGA interface:

 # {axis_chdr, axis_pyld_ctxt, axis_data}

 clk_domain: user0 # Clock domain for data interface: {<Choose from "clocks">}

 # A list of all input ports for this block:

 inputs:

 in0: # Port name

 context: True # Is context port instantiated?: {True, False}

 num_ports: 2 # Optional number of ports (if not 1): [1, 64]

 item_width: 32 # Bit width of a sample

 nipc: 2 # Number of samples per cycle (items per cycle)

 format: sc16 # Sample data format: {int16, sc8, sc16, ...}

 mdata_sig: ~ # Hash of the metadata signature: {~, MD5 sum}

 context_fifo_depth: 32 # Depth of context FIFO: Powers of 2 in [1, ∞)

 payload_fifo_depth: 32 # Depth of payload FIFO: Powers of 2 in [1, ∞)

 in1:

 context: True

 item_width: 16

 nipc: 4

 format: int16

 mdata_sig: 0412ffc5e7e1a19d8d23b4e288b3ced2

 context_fifo_depth: 32

 payload_fifo_depth: 32

 # A list of all output ports for this block:

 outputs:

 out0:

 context: True

 item_width: 32

 nipc: 2

 format: sc16

 mdata_sig: 0412ffc5e7e1a19d8d23b4e288b3ced4

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 83

 context_fifo_depth: 32

 payload_fifo_depth: 32

 out_1:

 context: True

 item_width: 16

 nipc: 4

 format: int16

 mdata_sig: ~

 context_fifo_depth: 32

 payload_fifo_depth: 32

A list of all IO ports for this block

io_port:

 timestamp: # Name of IO port

 type: time_keeper # Descriptor for the IO signature of this port

 drive: listener # Drive mode for port: {master, slave, listener, broadcaster}

 custom_xy:

 type: my_iface_sic

 drive: slave

A list of all registers in the block

registers:

 - user_reg_0: # Register name

 offset: 0x0000 # Byte offset of the register in the block memory space

 - user_reg_1:

 offset: 0x0004

A list of all user properties for the block

(Edge properties not supported in nocscript)

--

properties:

 - user_arg_0: # Name of argument

 type: uint32_t # C++ data-type of argument

 nocscript: 'REG_WRITE(user_reg_0, $val)' # NoC script code to execute when set

 - user_arg_1:

 type: string

 nocscript: 'REG_WRITE(user_reg_1, $val)'

 - user_arg_2:

 type: int32_t

 nocscript: ''

...

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 84

4.3 RFNoC Image Builder

4.3.1 Overview

RFNoC Image Builder should be used to generate an FPGA design and a bitstream using

blocks provided by Ettus Research or created by the user. RFNoC Image Builder will generate

Verilog to instantiate blocks requested by the user, connect them and integrate all components

with the USRP board support package, to create a full design that can be synthesized and built

into a bitstream. The code and the bitstream is the only output of this tool.

The user can interact with RFNoC Image Builder using a GUI or using the CLI and specifying a

YAML file with following format.

4.3.2 Input Format

The following is an example of the input YAML format.

General parameters

schema: rfnoc_imagebuilder_args # Identifier for the schema used to validate this

file

version: "1.0" # File version

rfnoc_version: "1.0" # RFNoC protocol version

chdr_width: 64 # Bit width of the CHDR bus for this image

device: 'x310' # USRP device to build for

default_target: 'X310_HG' # Default FPGA image type to build

A list of all stream endpoints in design

--

stream_endpoints:

 ep0: # Stream endpoint name

 ctrl: True # Endpoint passes control traffic

 data: True # Endpoint passes data traffic

 num_data_i: 1 # Number of data input ports

 num_data_o: 2 # Number of data output ports

 buff_size: 32768 # Ingress buffer size for data

 ep1:

 ctrl: False

 data: True

 num_data_i: 1

 num_data_o: 1

 buff_size: 32768

A list of all NoC blocks in design

noc_blocks:

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 85

 blk0: # NoC block name

 block_desc: 'blk0_desc.yml' # Block device descriptor file

 parameters: # Optional list of module parameters

 MEM_DEPTH: 64 # Block-specific module parameters to use

 MASKS: '{8'hE0, 8'h1F}'

 blk1:

 block_desc: 'blk1_desc.yml'

A list of all static connections in design

--

Format: A list of connection maps (list of key-value pairs) with the following keys

- srcblk = Source block to connect

- srcport = Port on the source block to connect

- dstblk = Destination block to connect

- dstport = Port on the destination block to connect

connections:

 - {srcblk: blk0, srcport: out_0, dstblk: blk1, dstport: din }

 - {srcblk: blk1, srcport: dout, dstblk: ep0, dstport: in0 }

 - {srcblk: ep1, srcport: out0, dstblk: blk0, dstport: in_1 }

 - {srcblk: blk0, srcport: user_iface_0, dstblk: blk1, dstport: user_iface_0 }

 - {srcblk: _device_, srcport: time_keeper, dstblk: blk0, dstport: timestamp }

A list of all clock domain connections in design

--

Format: A list of connection maps (list of key-value pairs) with the following keys

- srcblk = Source block to connect (Always "_device"_)

- srcport = Clock domain on the source block to connect

- dstblk = Destination block to connect

- dstport = Clock domain on the destination block to connect

clk_domains:

 - {srcblk: _device_, srcport: radio, dstblk: blk1, dstport: user0 }

...

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 86

5 Index

5.1 Figures

Figure 1: A typical RFNoC flow graph ... 7

Figure 2: Example topology with for a multi_usrp compatible image (X310_XG) .. 9

Figure 3: Anatomy of a NoC Block (FPGA) .. 27

Figure 4: ctrlport write transaction ... 33

Figure 5: ctrlport read transaction ... 33

Figure 6: Read completion status (Success and Failure) ... 34

Figure 7: Timed write transactions .. 34

Figure 8: A 4-word packet with only the header on AXIS Payload Context port .. 40

Figure 9: A 4-word packet with a header and timestamp on the AXIS Payload Context port (CHDR_W =

64) ... 40

Figure 10: A 4-word packet with a header, timestamp and 2 metadata words on the AXIS Payload

Context port (CHDR_W = 64) ... 41

Figure 11: A 4-word packet on the AXIS Payload Context port with a gap between the context and

payload (CHDR_W = 64) .. 41

Figure 12: Two back-to-back packets on the AXIS Payload Context port (with header prefetching;

CHDR_W = 64) ... 42

Figure 13: An example of a time-base reconfiguration from 200 MHz to 160 MHz 46

Figure 14: Initialization sequence for an RFNoC flow-graph .. 50

Figure 15: Example FPGA and SW objects in an RFNoC graph.. 51

Figure 16: RFNoC Tool flow Overview ... 80

5.2 Tables

Table 1: Memory layout of a CHDR packet .. 13

Table 2: CHDR field descriptions .. 15

Table 3: Memory layout for CHDR_W = 64 (Example without a timestamp and 2 metadata words) 15

Table 4: Memory layout for CHDR_W = 64 (Example with a timestamp and 2 metadata words) 15

Table 5: Memory layout for CHDR_W = 128 (Example with a timestamp and 2 metadata words) 16

Table 6: Memory layout for CHDR_W = 256 (Example with a timestamp and 2 metadata words) 16

Table 7: Memory layout of the CHDR payload of a control packet ... 18

Table 8: CHDR Control field definitions .. 19

Table 9: OpCode definitions for control transactions .. 20

Table 10: Memory layout of the CHDR payload of a stream status packet .. 21

Table 11: Stream status packet field definitions ... 22

Table 12: Memory layout of the CHDR payload of a stream command packet .. 22

Table 13: Stream command packet field definitions ... 23

Table 14: Memory layout of the CHDR payload of a Route Setup packet ... 24

Table 15: Route define packet field definitions ... 26

Table 16: Memory layout of an AXIS-Ctrl packet .. 29

RFNoC™ Specification Version 1.0.1

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 87

Table 17: Additional AXIS-Ctrl field definitions ... 29

Table 18: Control Port signal definitions ... 32

Table 19: AXI-Stream Payload Context port signal definitions ... 39

Table 20: AXI-Stream Data port signal definitions .. 44

