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Glossary

Byzantine node A participant in a distributed system which tries to dam-
age its operation intentionally, e.g., by not forwarding messages to other
participants.

Consensus The problem of agreeing on a specific data or value in distributed
multi-agent systems in presence of faulty processes.

Coordinator A trusted entity issuing milestones in order to guarantee finality
and protect the Tangle against attacks.

Dictionary attack A form of brute force attack technique for defeating an
authentication mechanism by trying to determine its passphrase by trying
millions of likely possibilities, such as words in a dictionary.

Eclipse attack A cyber-attack that aims to isolate and attack a specific user,
rather than the whole network.

Genesis The first transaction ever generated in the Tangle.

Heartbeat A periodic signal generated by hardware or software to indicate
normal operation or to synchronize other parts of a computer system.

History The list of transactions directly or indirectly approved by a given
transaction.

Milestone A special transaction issued by the Coordinator. The properties of
the milestones are discussed in detail in Section 2.1.

Neighboring nodes Nodes sharing the same link in a network.

Node A machine which is part of the IOTA network. Its role is to issue trans-
actions and to validate existing ones.

Peering The procedure of discovering and connecting to other network nodes.

Proof-of-Work A piece of data which is difficult (costly, time-consuming) to
produce but easy for others to verify and which satisfies certain require-
ments.

Rainbow table attack A precomputed table for reversing cryptographic hash
functions.

Random walk A mathematical object that describes a path that consists of
a succession of random steps on some mathematical space.

Salt A random number used as an additional input to a one-way function that
hashes data.



Social engineering The use of deception to manipulate individuals into di-
vulging confidential or personal information that may be used for fraudu-
lent purposes.

Sybil attack A sybil attack is an attempt to gain control over a peer-to-peer
network by forging multiple fake identities.

Tip A transaction that has not been approved yet.

Transaction A message that transfers funds or information between two nodes.
A transaction is solid if its entire history is known.

Acronyms

ASIC Application-Specific Integrated Circuit.
CA Cellular Automata.

CLIRI Coo-Less IOTA Reference Implementation.
DAG Directed Acyclic Graph.

DLT Distributed Ledger Technology.

IF IOTA Foundation.

IRI IOTA Reference Implementation.

PoW Proof-of-Work.

TSA Tip Selection Algorithm.

VDF Verifiable Delay Function.



1 Introduction

IOTA’s vision aims to establish a real-time economy for Internet-of-Things and
the future Internet through a secure zero fee payment and data transmission
system. Realizing this vision is subject to a combination of features that cannot
be found in current distributed ledger technologies (DLTs): First, it is required
significantly higher throughput than blockchains which have an intrinsic bottle-
neck forcing transactions to be aggregated under a chain-type data structure;
second, fees can be considered a barrier for micro transactions, but they are
necessary in PoW-based DLT's where the network distinguishes between miners
and users. Conversely, IOTA utilizes a directed acyclic graph (DAG) structure
as explained in the IOTA white paper [30] which permits a theoretical infinite
throughput!. Furthermore, enabling each network participant to both issue
and approve transactions allows IOTA to eliminate the fees found in blockchain
architecture, thus facilitating a micropayment-ready network (see also [31]).

One common problem for early stage DLTs is that the networks are not
robust enough for proposed security mechanisms to function as intended, since
such security mechanisms presuppose a mature network. Therefore, it is typical
that DLTs employ various “bootstrapping” security measures at the outset,
ensuring network growth to the mature stage can take place?. Thus, in its
current implementation, IOTA relies on a centralized Coordinator to provide
security given the risk of dishonest actors seeking to undermine the nascent
network. IOTA’s definition of consensus requires a confirmed transaction to be
referenced (either directly or indirectly) by a signed transaction issued by the
Coordinator. In other words, the Coordinator can be thought of as a “finality
device”.

We believe that the vision of cryptocurrency networks based on Nakamoto
consensus can be improved upon by changing the key underlying assumption
about those controlling the majority of the network’s hashing power being con-
sidered “honest” by definition (the “longest chain wins” rule). In IOTA, the
requirement for honest actors to control a majority of the network’s hashing
power is currently replaced by the use of the Coordinator. The Coordinator is
a temporary measure as the IOTA network develops beyond Nakamoto’s vision
for network consensus. The Coordicide project is focused on the removal of
the Coordinator through the implementation of several network components,
as discussed in this working paper. Despite these additional components, all
existing fundamental design features of the Tangle remain in-place.

In line with the IOTA Foundation’s charter as a non-profit organization,
our goals as a research department include transparency, collaboration, and
community engagement. We aim to open our research work in order to obtain
feedback from academia as well as the broad community of enthusiasts. One
note of caution, however, is in order: Since our research is highly dynamic in
nature, proposed ideas need to be simulated and tested in order to develop

IThe actual throughput is bounded by hardware limitations and by law of physics.
2For example, Bitcoin has in the past employed checkpoints. See https://en.bitcoin.it/
wiki/Checkpoint_Lockin
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Figure 1: Interconnection between the Coordicide building blocks.

specific network components which we feel confident to deploy on the main
network. We stress that some of the ideas presented here are works in progress
and as such are not fully fleshed out. They are therefore likely to be modified
as we make progress and perform simulations.

In order to get rid of the Coordinator, a number of challenges must be
solved. This working paper covers those challenges, which are summed up by
the building blocks in Fig. 1. In the following, we give a concise overview about
the current state of the Coordicide as well as future research directions:

e Node accountability. In Section 3 we propose the concept of global node IDs
and we describe a novel Sybil protection mechanism that does not require
node owners to risk or disclose their funds. Identifying the issuing node of
a message is fundamental to enforce a specific network topology (through
auto peering) or to penalize bad behaviours (through rate control).

o Auto peering and node discovery. An automated process to discover and
reliably connect to neighbors is needed in every distributed system. In
Section 4 we discuss an auto peering proposal for the Tangle.

e Rate control. To ensure the network does not exceed its capacity, in Sec-
tion 5 we introduce a mechanism to control the rate of transactions that
are propagated through the network. This method selectively filters some
transactions out according to the statistics of the issuing node.

e Consensus. The previous building blocks lead to an extended consensus
framework described in Section 6. This is made up of two complementary
building blocks: First, we describe the current status of research on tip
selection algorithms (Section 6.1); then, to proactively resolve certain con-



flicts, we describe two voting mechanisms where nodes query other nodes
to find out their current opinion on the network status (Section 6.2).

2 State of the art

In the introduction, we mentioned that the current IOTA main network uses the
Coordinator to reach consensus and, more generally, to guarantee the security
of the network. However, this centralized component should only be considered
as a necessary bootstrapping mechanism, rather than a long-term solution. In
this section, we first discuss the current status of the IOTA main network imple-
mented through the IOTA reference implementation (IRI) software?®, and then
we describe the challenges we are facing when building a Coo-less network (i.e.,
a network without the Coordinator) according to the IOTA white paper [30].
Since the Coordinator and its milestones are currently deeply embedded in IRI,
removing those dependencies not only implies comprehensive changes to the
software, but also leads to new research questions.

2.1 Current IOTA implementation

The current IOTA main network is implemented according to the IRI software,
in which the Coordinator plays an important role. In the following we describe
the main tasks implemented in the current main network, not all of them strictly
related to consensus:

e Manual peering. In order to join the Tangle, a node is required to connect
to some existing nodes (peering). The current IRI software only permits
manual peering, i.e., a node has to manually look for the addresses of
other Tangle’s nodes. Peering is fundamental to propagate transactions
and to synchronize to the current status of the ledger. As for the latter,
milestones are useful anchors to determine whether two nodes have fallen
out of synchronization: If a node’s latest solid milestone is much older
than its peers, it is probably lagging behind.

e Rate control mechanism. In order to issue a transaction, a node must solve
a cryptographic puzzle (Proof-of-Work). This is necessary to guarantee
that nodes do not spam arbitrarily the network, or to avoid that they
inject more transactions than the network can handle.

e Tip selection strategy. Approving transactions is a fundamental procedure
which leads to the DAG structure of the Tangle. To approve a transaction,
a node must verify that no inconsistencies with respect to the ledger state
are introduced. Although it is not possible to enforce which transaction to
validate, the IOTA white paper suggests a tip selection algorithm based
on a random walk which: (i) Discourages lazy behavior and encourages
approving fresh tips; (ii) continuously merges small branches into a single

Shttps://github.com/iotaledger /iri



large branch, thus increasing confirmation rate; (iii) in case of conflicts,
kills off all but one of the conflicting branches.

e (Consensus. The main role of a milestones is to determine the consensus.
The Tangle applies a simple rule: A transaction is confirmed if and only if
it is referenced by a milestone. In IRI, this is reflected in the getBalances
and getInclusionStates API calls, which indicate how many tokens an
account has and whether a transaction is confirmed, respectively.

Furthermore, we also want to highlight that milestones are used to optimize
the IRI code: For instance, rather than compute the full ledger state starting
from the genesis, an intermediate state is saved for each milestone; similarly,
milestones are used in local snapshots, i.e., the IRI pruning mechanism, which
allows nodes to avoid storing older parts of the Tangle.

2.2 Coo-less IOTA network

As a preliminary implementation for a Coo-less network, we are building CLIRI,
which stands for Coo-less IRI. At its core, it is a fork of IRI, with all Coordinator-
related components removed. The main purpose of CLIRI is to provide a work-
ing testbed for running the first Coo-less IOTA network, on which we could
emulate the various Coordicide proposals. This is a necessary first step towards
understanding the challenges that a Coo-less main network will one day face.
As discussed above, the Coordinator plays a crucial role in the current IOTA
implementation. For this reason, building CLIRI introduces a number of chal-
lenges. For its first iteration, we follow the original IOTA white paper [30] when
possible, and we choose heuristic algorithms and simplified models otherwise:

e Ledger validation. Since rewriting the ledger computation logic without
milestones is a significant effort, as a first iteration CLIRI only supports
zero-value transactions.

e Local snapshots. We remove local snapshots on CLIRI, and we simply
discard the entire database automatically at weekly intervals.

e Random walk starting point. CLIRI chooses a tip at random, and then
backtracks until reaching a transaction “far enough” in the past.

CLIRI is currently at an early development stage, with the first testnet
launched on March 5th, 2019.

2.3 New research challenges

Apart from the aforementioned “engineering” choices for CLIRI, its logic is
based on the IOTA white paper, and thus it shares the same modeling as-
sumptions. The most significant of these is the (assiduous) honest transaction
magority condition [3]: Specifically, to be considered valid, the white paper con-
sensus algorithm requires that the majority of transactions always come from
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honest network participants, i.e., honest actors need to own a majority of the
hashing power and to constantly produce transactions. The implication is that
honest nodes need to continuously send transactions, regardless of whether they
are actually using the network or not. Furthermore, achieving this hashing ma-
jority must be expensive, otherwise it would be easy for malicious agents to
buy enough hashing power and overtake the network. In addition to this in-
centivization problem, issuing transactions is subject to Proof-of-Work (PoW).
Due to its complexity, slow nodes would be excluded from participating in the
network.

The above concerns directly lead to the following research questions which
will be investigated throughout the paper:

e Rate control. A more efficient rate control algorithm is needed to solve
the following tradeoff: If the PoW difficulty is too high, then small de-
vices (e.g., phones or sensors) would take an unreasonably long amount of
time to compute it, and will therefore be unable to send transactions; on
the other hand, low difficulty can favor network congestion and/or spam
attacks.

e (Consensus. We need a consensus mechanism which is solid under the
honest transaction majority assumption without the support of the Coor-
dinator.

In the next section, we will introduce the notion of node identity which is a
prerequirement to the solution of the above research topics.

3 Node accountability

In a network without the Coordinator, several applications require to reliably
associate transactions or other messages with the node which issued them. These
applications include:

e Rate control. In an overload scenario, where the nodes are trying to is-
sue more transactions than the overall network can handle, particularly
transactions originating from the most heavily contributing nodes should
be blocked or penalized.

o Voting-based consensus mechanisms. To prevent double voting and to
associate votes with node weights, the actual votes must be linked to
node IDs.

In Section 3.1, we suggest a way to associate global identities to nodes.
Since this may expose the network to potential Sybil attacks, in Section 3.2 we
introduce mana, a novel anti-Sybil mechanism.



3.1 Global node identities

In order to identify nodes, it is necessary to introduce global node identities. To
this end, we envision using common public key cryptography to sign certain data
and to link it to its issuing node in a tamper proof way. Additionally, we require
that the issuing node adds its public key to every signed message. This way,
every node can verify the authenticity of the issuing node without the need for
some form of global database of IDs and keys. It is important to note that these
mechanisms only need to be implemented to protect the communication layer
and that keys, IDs and signatures do not need to be stored in the Tangle once
processed by the node. This allows for greater flexibility as the actual signing
scheme can be exchanged without any impact on stored data. In contrast to
any data stored in the Tangle, the communication layer, therefore, does not
necessarily require the use of post-quantum cryptography right now, but it can
be swapped when quantum attacks become more imminent in the future.
When node identities are relevant, a distributed system becomes vulnerable
to Sybil attacks [16], where a malicious entity masquerades as multiple coun-
terfeit identities. This would overcome any mechanism that relies on a limited
number of such identities and would open the network to coordinated attacks.
A possible way to deal with this problem is described in the following section.

3.2 Sybil protection

One very common way to make such a Sybil attack harder is the so-called
resource testing, where each identity has to prove the ownership of certain
difficult-to-obtain resources. Since in the cryptocurrency world users own a
certain amount of tokens, we propose a Sybil protection mechanism based on
the ownership of such tokens. However, instead of requiring the identity to proof
the ownership itself, we allow each user of the network issuing transactions to
assign tokens to any node of his choosing. We call these tokens mana; they serve
as a hard to obtain resource as well as some form of “reputation” which can be
assigned to trustworthy nodes. The fundamentals of the actual mechanism are
described below:

e When a transaction is issued, it generates a double flow: It (i) transfers
data or tokens from one address to another, and (ii) adds virtual tokens
(called mana) to some nodes. The amount of mana corresponds to the
tokens transferred.

e The node ID that should receive the mana must be specified in the signed
part of the transaction. The node gets credited with the mana after a
certain time. This is necessary to prevent nodes from generating a new
ID for every message they issue.

e Assoon as the actual tokens are transferred again, the corresponding mana
is deducted from the previously referenced node, and can potentially be
reassigned to a new node.



We stress here that this process does not influence the actual balances in
any way, but it is only used to give higher weight to “trusted” nodes.

The amount of mana people can delegate is determined by how many tokens
they own, which means that people who own more tokens will have a larger
influence in this process. In particular, nodes could accumulate large amounts
of mana without having much stake in the network of their own. In a traditional
proof-of-ownership Sybil protection mechanism, each node has to prove that it
owns a certain amount of collateral. Conversely, delegating mana brings several
key advantages: As mana is credited as part of regular transactions, nodes do
not have to constantly use their account’s private keys to sign, which would
pose a severe security risk; furthermore, this approach does not need incentives
for node operators to own or declare a high amount of tokens; finally, users can
issue additional mana to nodes providing good service to the community.

Since we have now established reliable node identities, we can use these
identities to discover and connect to other nodes in the network.

4 Auto Peering

In IOTA, a node is the machine owning all the information about the Tangle.
In order for the network to work efficiently, nodes exchange information each
other to be kept up-to-date about the new ledger state. Currently, a manual
peering process is used for nodes to mutually register as neighbors. However,
manual peering might be subject to attacks (e.g., social engineering) to affect
the network topology. To prevent these attacks, and to simplify the setup
process of new nodes, we introduce a mechanism that allows nodes to choose
their neighbors automatically. The process of nodes choosing their neighbors
without manual intervention by the node operator is called auto peering.

Specifically, in this section we propose an auto peering mechanism which
achieves two important goals: First, it creates an infrastructure where new
nodes can easily join the network; second, we make sure that an attacker cannot
target specific nodes during the peering process, i.e., we ensure the network to
be secure against Eclipse attacks.

4.1 Peer discovery

Every node chooses its neighbors from a list of potential peering partners. In a
permissionless environment, this list changes over time since nodes can contin-
uously join or leave the network. To keep this list up-to-date, we assume that
nodes periodically communicate a subset of their known peers with others. This
mechanism is simple and effective as it allows every node to learn about other
network participants. It is important to note that this mechanism only requires
to have access to a large enough fraction of the network such that the list of
potential peering partners contains “enough” nodes?.

4The required number of potential peers needed in the list depends on the gossip protocol
as well as global system parameters such as the number of neighbors.
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4.2 Choosing neighbors

Nodes choose half of their neighbors themselves and let the other half be com-
prised of neighbors that choose them. The two distinct groups of neighbors are
consequently called:

e Chosen neighbors. The neighbors that the node proactively choose from
his list.

o Accepted Neighbors. The neighbors that choose the node as their peer.

In order to select chosen neighbors from the list of potential peering partners,
we measure the distance between two nodes through the distance function d
defined as

d(nodeldy,nodelds, () = hash(nodeldy + ¢) ® hash(nodelds),

where ¢ is a public salt®.

In order to connect to new neighbors, each node with ID ownld and pub-
lic salt ¢ keeps a list of potential peers sorted by their distance d(ownld,-, ().
Then, the node sends them peering requests in ascending order containing its
own node ID, its current public salt and its address (i.e., IP + port). After that,
the requested node can decide to either accept or reject the connection as ex-
plained below. The connecting node repeats this process until it has established
connections to enough neighbors. Those neighbors make up its list of chosen
neighbors. This entire process is also illustrated in Algorithm 1.

Algorithm 1: Select chosen neighbors

Input: desired amount of neighbors k, current list of chosen neighbors C,
list of potential peers P

Psorted + sortByDistanceAsc (P, ownld, ()

foreach p € Psyrieq do
peer Request <— sendPeerRequest (p)

if peer Request.accepted then
append (C, p)
if |C| > k/2 then

return

else
append (P, peer Request.proposedCandidates)

Psorted < sortByDistanceAsc (P, ownld, ()

5Salts defend against dictionary attacks or against their hashed equivalent, the pre-
computed rainbow table attack.
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Similarly to the previous case, in order to accept neighbors, every node with
ID ownld must generate a private salt (*. When it receives a peering request
from a node with ID remoteld, it measures d(ownld,remoteld,(*) and only
accepts the request if at least one of the following conditions is satisfied:

e The connecting node is closer than an existing accepted neighbor.
e The connecting node does not have enough neighbors.

When a node rejects the peering request because it does not match the above
requirements, it can use the public salt to propose new potential peers among
its list. This is more formally explained in Algorithm 2.

Algorithm 2: Filter accepted neighbors

Input: incoming peering request r, desired amount of neighbors k,
current list of accepted neighbors A

if |A| < k/2 then
L accept(r)

else
distance, < distance(ownld, r.nodeld, *)

foreach a € A do
distance, < distance(ownld, a.nodeld, (*)

if distance, < distance, then
accept(r)
drop(a)
return

| reject(r)

4.3 Network reorganization

The public and the private salts help to create an asymmetric perception of the
network, which is supposed to discourage an attacker from harming the system.
In fact, the only way to target a node in the auto peering process is by brute
forcing different node identities and hoping to get closer (in terms of distance d)
than an existing neighbor. To prevent brute force attacks from being successful,
we let the salts be valid only for a certain amount of time, after which the node
updates both its chosen neighbors and its accepted neighborsS.

This frequent reorganization brings a twofold benefit: First, it prevents at-
tackers from affecting the network topology; second, it favors new nodes that
want to join the network as their peering requests will be accepted with larger
probability.

6 Another approach of reducing an attackers ability to control the network topology is by
including a “global source of randomness” when generating the salts.

12



4.4 Bootstrapping

A new node who wants to join the network initially knows nothing about the
network. It neither knows the state of the ledger nor who is currently part of the
network. To allow new nodes to get a first list of “other peers”, we implement
a hard coded list of trusted “entry nodes” that will be run by the IF or trusted
community members and that answer to peering requests from new nodes.

This is common practice and is handled this way in virtually all distributed
networks.

5 Rate control

A basic goal of every communication network is to handle the traffic injected by
its nodes by limiting the rate of transactions joining the network. In fact, such
a traffic could lead to unpleasant situations such as network congestion, due to
resource limitations, or spam, due to malicious actors:

e (longestion control. In most networks, there are circumstances where the
incoming traffic load is larger than what the network can handle. If noth-
ing is done to restrict the influx of traffic, bottlenecks can slow down the
entire network. A similar analysis can be applied to distributed ledgers,
where the incoming traffic (i.e., transactions issued by the nodes of the net-
work) exploits limited resources such as bandwidth, computational power,
or disk space. Additionally, nodes can lose synchronization with each
other, sometimes without being aware of it.

e Spam detection. Gossip protocols (which are currently implemented to
forward transactions in the IOTA network) are an efficient and reliable way
to disseminate information. These protocols have nevertheless a drawback:
They are unable to limit the dissemination of spam messages. Indeed,
messages are redundantly distributed in the network and it is enough that
a small subset of nodes forward spam messages to have them received by
a majority of nodes.

Rate limitation strategies for communication networks are well studied in the
context of both congestion control [24] and spam detection [17]. As for DLTSs,
PoW is a built-in rate limitation mechanism, not only used to reach consen-
sus. However, PoW leads to undesirable side effects such as mining races: The
discrepancy between smaller general purpose devices and optimized hardware
with respect to the PoW performance is several orders of magnitude. Hence,
any rate control based on PoW would eventually leave smaller devices behind.
A new transaction rate control mechanism for the Tangle is therefore required
to deal with the global and per-node limitations of the network.

13



5.1 Rate control algorithm

In a pure PoW-based architecture, a high difficulty value would prevent low-
power nodes from issuing transactions, which is not desirable, especially in the
context of Internet-of-Things; on the other hand, low difficulty can quickly lead
to network congestion. We propose an adaptive PoW algorithm to allow every
node to issue transactions while penalizing spamming actions.

In our algorithm, when a node decides to issue a transaction, it must solve
a cryptographic puzzle where the difficulty is a function of the mana owned
and of the number of transactions issued recently. Assume node i generates
n! transactions in the previous 7' > h time units where h is a bound on the
network latency which means that, if a message is sent at time ¢, then all online
nodes will receive the same message within time ¢ + h. The same node 7 has to
set the difficulty of the PoW to d; defined by

d; = do + w(si, nl),

where dj is the basic difficulty, and w is a function that depends on the mana s;
and on n. The time window 7', the difficulty dy as well as the function w are
parameters chosen depending on the fairness level we are aiming for.

As an additional security measure, we require that the total number of trans-
actions issued by a user is limited, i.e.,

nl <z(si), Vi, (1)

where z : RT — R* is a function that depends on the mana s; such that the
larger the mana of a node, the higher the number of transactions the same
node can issue. The threshold of Eq. (1) ensures that even a user with infinite
computational power cannot arbitrarily spam the network.

5.2 Implementation details

For the sake of simplicity, we assume incoming transactions are checked in the
same order as they are issued by the sending node. As the expected time needed
to perform the PoW is typically much larger than the network latency h, this
is a reasonable assumption.

When a transaction is seen for the first time, the node stores the id of the
node issuing the transaction, the time ¢y at which it is received and the PoW
difficulty. The identity id of the issuing node as well as its mana s;q can be
determined using the methods described in Section 3. Based on this information,
it can then be checked that the number of transactions issued in the recent T'
time units by the same node does not exceed the allowed maximum z(s;4) based
on its mana s;q and that the difficulty of the most recent transaction is indeed
sufficient. This idea is more formally described in Algorithm 3.

5.3 Verifiable delay functions

While the adaptive rate control algorithm described in this section mitigates
some of the drawbacks of the PoW, we believe that, in the current era of dis-

14



Algorithm 3: Rate control algorithm

Input: incoming transaction ¢, set of known transactions X, time
window T, basic difficulty dy, weight function w.
Output: forward or ignore t.

to < time(t)
td +— nodeId(t)
T « t' € X such that time(#') € (to — T, to] and nodeId(t’) = id
if || < 2(s4q) then
if difficulty(t) > do + w(siq,|T]) then
L L return forward ¢

return discard ¢

tributed ledger ecosystems, the need for more efficient algorithms is evident. In
the following, we present a more sustainable mechanism that might be used as
a replacement of the PoW component: verifiable delay functions (VDF's).
Informally, the VDFs are special functions that are (i) difficult to evalu-
ate, even under the assumption of using unbounded parallelism (i.e., using an
infinite number of CPUs) [6] and (ii) easy to verify. Various researchers have pro-
posed different VDF's based on specific number-theoretic functions (e.g., mod-
ular exponentiation [17, 27], supersingular isogenies over elliptic curves [15],
pairings over elliptic curves, injective rational maps between extensions of finite
fields [5]). Compared to PoW, these functions bring the following advantages:

e VDFs can be considered more environment friendly since they avoid min-
ing races.

e As they are not parallelizable, they make inefficient the usage of dedi-
cated hardware (e.g., ASIC), inherently solving the problem of unfairness
between slow and fast nodes.

The condition for resistance against parallelization is what makes the quest
for such functions an interesting and highly non-trivial problem. From an im-
plementation point of view, the main figure of merit is the ratio between the
time needed to compute the solution of the function (evaluation) and the time
needed to verify its correctness (verification). Table 1 offers good insights on the
comparison between different proposed VDFs with respect to this performance
metric.

The first ideas about verifiable delay functions can be traced back to the
seminal paper of Dwork and Naor in the field of spam protection [17], but it is
only after the recent paper by Boneh et al. [5] that the interest in the develop-
ment and implementation of VDFs has substantially increased. In fact, VDFs
are already an essential ingredient in some DLT designs (e.g., Chia Network?).

7www.chia.net
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VDF ratio
Exponentiation-based (RSW)  8000:1

Supersingular isogenies 400:1
Pairings over elliptic curves 300:1
Injective rational maps n/a

Table 1: Evaluation/verification ratio for different VDF's.

Furthermore, [5] has shown a potential application for decentralized random-
ness. We believe that VDF's can be of great help in replacing algorithms based
on PoW as they are able to restrict the capabilities of nodes with strong hashing
power.

6 Consensus

Due to the propagation delay of transactions in the network, not all nodes share
the same vision of the Tangle at the same time. This might lead to situations
where the validation process lets multiple transactions in conflict with each other
join the Tangle. It is a fundamental assumption of the IOTA white paper that
the Tangle itself can indeed contain conflicting transactions. In case of a conflict,
however, the nodes need to decide which transaction(s) should eventually be
considered valid, i.e., they need to come to a consensus on those conflicting
transactions.

In the IOTA white paper this is solely achieved by consistently applying the
tip selection algorithm (TSA), i.e., the mechanism used by (honest) nodes to
select the transactions to approve, which currently uses a biased random walk.
In case of a conflict, this bias will eventually leave all but one of the conflicting
branches behind. However, as already stated throughout this document, this
approach is only sufficient under the honest transaction majority assumption.
Furthermore, the conflict resolution is slow, which leads to leave transactions
that chose the “wrong” branch behind, creating the need for reattachments.

In this work, we present a novel consensus mechanism which integrates a
voting system, helping to deal with the aforementioned issues. Whilst the vot-
ing models have their limitations, they have been successfully applied in a wide
rage of engineering and economical applications [2, 26, 33], leading to the emerg-
ing science of sociophysics [10]. For the sake of presentation, we decouple the
consensus in two main components (see also Fig. 2):

o Tip selection algorithm. In Section 6.1, we present a few important en-
hancements to the random walk-based algorithm proposed in the IOTA
white paper with the objective of increasing the overall throughput and
the robustness against parasite chain and splitting attacks.

e Voting mechanism. In Section 6.2, we describe two voting mechanisms
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where nodes communicate to each other to decide, in case of a conflict,
which transaction(s) should be accepted in the Tangle.

( Tip selection algorithm 1 + Voting mechanism 1
Local Alternative FPC Cellular
modifiers TSA consensus
/ improved security / conflicts resolved
v higher throughput / honest majority assumption not required

Figure 2: Our novel consensus mechanism adds a voting layer to improve secu-
rity and to deal with the honest majority assumption.

6.1 Tip selection

The Tangle is a data structure built in accordance with the following rule:

In order to join the Tangle, a transaction has to validate two existing
transactions.

The validation of a transaction is a procedure that verifies whether an address
owns the tokens spent®. If transaction y validates transaction x, we say that
y directly approves x. Conversely, if there is not a directed edge between the
transactions x and y, but there exists a directed path between them, then we
say that y indirectly approves x.

The IOTA white paper originally uses only a TSA based on a biased random
walk to determine the tips to approve. This TSA has a double benefit: First,
it is effective against selfish nodes that do simple selections (e.g., at random or
at the genesis) to avoid the effort of tip selection; second, it makes the Tangle
more resistant against malicious nodes performing, e.g., parasite chain attacks
(see Fig. 3). However, the white paper proposal comes with its own limitations
as discussed in Section 2; in particular, an honest transaction majority is a
necessary condition for the security of the algorithm.

In the rest of this section, we provide an overview of the current status
of the research on TSAs: Specifically, in Section 6.1.1 we introduce a random
walk-based TSA which aims to improve the original white paper algorithm;
then, in Section 6.1.2 we investigate an alternative approach where two different
algorithms are used to choose each one of the two tips to approve.

8The actual validation process in IOTA is more complex, and we invite the interested
reader to visit https://docs.iota.org for more information.
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time

main tangle

parasite subtangle

Figure 3: An illustration of the parasite chain attack: The transaction x spends
the funds that the attacker wants to spend once more in transaction y, before
revealing the subtangle containing x. The grey area contains many transactions
which are not shown for sake of clarity. The thick blue line corresponds to a
trajectory of a typical random walk.

It is important to stress that, since the TSA is not (and cannot be) enforced,
the choice of the particular TSA is, ultimately, up to the node’s owner. There-
fore, the actors will choose their TSAs in a reasonable way, as argued in [31].
Because of this intrinsic freedom of choice, and also because the “space” of all
possible TSAs is enormous, it is crucial to have all reasonable options on the
table. We are absolutely not obliged to be ever content with a particular version
of TSA; instead, our vision is that, similarly to the human society itself, the sys-
tem will continue evolving. Therefore, although the existing random walk-based
TSAs are already doing a good job, we will describe below several over promis-
ing options and research directions, which would hopefully invite the academic
community to provide more valuable input.

6.1.1 Random walk-based TSA

The TSA of the white paper is a biased random walk that starts from the genesis
transaction and walks towards the tips. Once the walk has reached a tip, that
tip is chosen as the first direct approvee. A second walk is then performed to
choose the second direct approvee. In order to prevent the random walk from
“lazy” tips choosing to validate old transactions, the transition probability from
transaction x to transaction y is biased and proportional to

Plz — y] x exp{a - wy}, (2)

where o > 0 is a weight parameter, and w, is the cumulative weight?, i.e., the
number of transactions that directly or indirectly approves y. In order to obtain
the actual probability, one can simply normalize Eq. (2). Since every node sees
a different set of tips, it is thus not possible to impose a given TSA.

9The definition of cumulative weight in the white paper is slightly more general and also
considers the work needed to issue transactions.
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In this section, we provide an alternative random walk-based algorithm to
improve security and performance. As already specified in the text, although
the TSA cannot be enforced, we expect that a node would follow the “best”
algorithm available. The main idea is to introduce a local (i.e., per-node) view
of the Tangle such that some transactions are preferred based on various kinds
of information locally available at the nodes. For instance, the time of solid-
ification'® could be used to reduce the effectiveness of parasite chain attacks:
Since an attacker would require some time to build a subtangle, an honest node
could decide to penalize a transaction that appears later than it should. Such
a local view is commonly called local modifiers [29].

In general, local modifiers enable multiple features: They strengthen the se-
curity of the Tangle, especially against parasite chain and splitting attacks; they
reduce the dependency on PoW and the cumulative weight calculations; they
enable the network to survive a temporary loss of honest transaction majority.

Let ¢, (resp. t,) be the time of solidification of transaction x (resp. trans-
action y) at a given node. According to the above discussion, the transition
probability from transaction x to transaction y becomes proportional to

Plz — y] x exp{a-wy, — - (t, —tz)}, ift,—t, <D, (3)

where § > 0 is a weight parameter, and D is the time difference cutoff parameter.
If t, —t, > D, then the transition probability becomes equal to 0, i.e., the
corresponding edges are excluded both from the random walk and from the
cumulative weight calculation. Basically, we can envision a system where the
TSA is performed on a subset of the existing transactions, depending on the
local view of the nodes. This idea will be expanded in Section 6.2.

It is interesting to understand how the introduction of the solidification time
can increase the robustness of the Tangle against parasite chain and splitting
attacks. To perform a parasite chain attack, a malicious actor attaches a hid-
den subtangle (approving a double spending transaction) after that the original
transaction containing the funds has already been accepted, and tries to make
it growing. The splitting attack consists of the situation where an agent splits
the Tangle in two branches: As one of the branches grows, the agent publishes
transactions on the other branch to maintain both alive. The objective is to
double spend and damage the network. What both those situations have in
common is the fact that transactions are hidden for some time. From a node
perspective, this situation looks like a new transaction approving an old one.
The solidification time discovers this atypical time difference, and reduces expo-
nentially the probability of such transactions being chosen by the TSA. Apart
from the above examples, any attack using hidden transactions or unusual long
gap in solidification time will increase its robustness by using local modifiers.

It is also important to mention that Eq. (3) can be easily extended in order
to actually model any local information known by the node, such as issuing
node reputation. As another natural example of such an extension, consider

10The time of solidification of transaction z is the time at which not only the transaction
itself, but also all transactions referenced by x have been received by a given node.
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two transactions z,y, where y approves xz. Let us now define the sibling num-
ber s(y,z) € N, in the following way: If yo,...,yr are the transactions that
approved z directly, and the node heard them in this consecutive order, then
we define s(y;,u) = 4. Let us consider the following modification of (3):

Plz — y] x 'ys(y""”) exp{a-wy, —B-(ty —ty)}, ift,—t, <D, (4)

where v € (0, 1] is the sibling number importance parameter. In (4), the walker
currently located at u would thus give some (additional) preference to those
“successors” of u which were seen earlier by the corresponding node. To explain
why it is reasonable to adopt a rule of this kind, note first that, on average, each
transaction will be (directly) approved by two transactions, and so a very high
number of the direct approvals can be considered suspicious. That can be indeed
a strategy of a malicious actor aimed at “censoring” a virtuous transaction (i.e.,
preventing it to be chosen by the TSA): By issuing a lot of other transactions
which are attached to the same place, the attacker hopes that the TSA would
typically select one of “his” transactions rather than that virtuous transaction.
Now, observe that the above modification will indeed be efficient in protecting
against such a development.

6.1.2 Alternative TSA

The aleatory nature of the random walk-based TSA leaves open the possibility
that not all transactions will eventually be validated. In general, this can be
considered as a feature since it allows to “leave behind” potentially harmful
parts of the Tangle. However, if a legitimate transaction is not validated within
a certain delay, one can assume that it would not be validated anymore and
it should be reattached to newer tips. Since this introduces an overhead in
the system as long as a lower confirmation rate, we are also exploring a novel
algorithm which aims to ensure that all transactions are approved in finite
time [21].

The key intuition is that high values of « (see previous subsection) in the
white paper TSA favour longer paths from the genesis to the tips, hence the
probability of selecting older tips decreases with time. By contrast, small values
of «a allow older tips to be selected, but they make the Tangle vulnerable to
double spending attacks. The proposed approach aims to combine the best
properties of the two scenarios (large and small «) through the use of two
different algorithms for selecting each of the tips: The first tip is selected by
using the white paper algorithm with a high value of « to guarantee security by
ensuring that honest tips get selected preferentially; as for the second tip, we
use a random selection to ensure that no tips get left behind by the first, more
accurate selection.

Some directions still require to be investigated more carefully. For instance,
there is no deterrence against a node that only selects tips at random to re-
duce its validation overhead. In this case, additional controls may be needed to
prevent such lazy behaviors. For example, one possible counter-measure could
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use the node accountability feature of Section 3: The participants of the net-
work may somehow penalize nodes which issue transactions that approve “what
should not be approved”.

6.2 Voting

In this section we discuss a voting mechanism, that is an additional layer to se-
cure the consensus against potential attacks. The idea is that nodes query other
nodes about their current opinion of the ledger, and adjust their own opinion
over the course of several rounds based on the proportion of other opinions they
have observed. For this section, we only consider algorithms that find consensus
on the value of a single bit, i.e., of a single conflict. The result of this consensus
process can then be used to mark a transaction as either “liked” or “disliked”.

The general idea is to let the nodes talk to each other in order to resolve
the conflicts pro-actively. The conflict resolution is performed starting from an
initial opinion on the ledger status described as follows: Consider a transaction
v. If in a given interval a node does not see any other transaction spent from
the same address, we say that the node likes transaction v; otherwise, the
node dislikes v''. The decision whether a transaction is liked or disliked must
then be taken into account for the tip selection. The most straightforward
way of integrating this in any random walk-based TSA is to simply remove the
corresponding edges of disliked transactions and, thus, excluding them and any
transaction in their future cone from the tip selection.

After that, we periodically apply a voting scheme to every transaction in
the Tangle where each node asks for the opinion of some of its neighbors. After
the vote, a transaction is either definitely liked or definitely disliked by a node,
and this value will never change. We would like to keep monotonicity in the
sense that if a node likes u then it likes any transaction u approves, and if the
node dislikes v then it dislikes any transaction that approves v, see Figure 4. To
achieve this, we can safely assume that we can only like transaction v when we
like all of its past cone, and if we dislike v then we dislike all of its future cone.

In the following two subsections, we will describe two voting mechanisms
we are considering. The first one, called Fast Probabilistic Consensus, is certi-
fied by rigorous mathematical proofs; however, this solution requires nodes to
accept connections from nodes which are not neighbors, and uses decentralized
randomness, that needs to be acquired as part of an additional layer. On the
other hand, the cellular automaton approach of Section 6.2.2 does not have
those requirements and seems to be somewhat faster from the first simulations;
however, this scheme lacks rigorous proofs and requires a stricter auto peer-
ing solution to avoid Eclipse attacks, and formation of “islands” of adversarial
nodes. The two solutions can be considered as different non-mutually exclusive
implementations of the voting mechanism, and they can be used in combination
to build a bullet-proof framework.

111t is important to note, that this rule does not include reattachments: If vy, ..., v are all
reattachments of the same transaction, we either like all or none of them.
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Figure 4: Votes must be consistent

6.2.1 Fast probabilistic consensus

The paper [32] introduces a protocol of low communicational complexity which
allows a set of nodes to come to a consensus on a value of a bit by means
of (possibly randomized) voting (see e.g. [3, 13, 14, 18, 19, 25] and references
therein for the vast available literature on this subject; we mention also the
classical work on (probabilistic) Byzantine consensus protocols, see e.g. [1, 4,
, 11, 20, 22, 34], where, typically, the communicational complexity is much
larger). The distinguishing feature of the mechanism described in [32] is that a
larger number of adversarial (or Byzantine) nodes is allowed, which may be a
(fixed) proportion of the total number of nodes. Those adversarial nodes intend
to either delay the consensus, or break it (i.e., make at least a couple of honest
nodes come to different conclusions). It is shown that, nevertheless, the protocol
works with high probability when its parameters are suitably chosen, and some
explicit estimates on the probability that the protocol finalizes in the consensus
state in a given time are also provided (Theorems 2.1 and 2.4).
Differently from the classical work in this area, it is not required that the
consensus should be achieved, with high probability, on the initial majority
value. Rather,

e if, initially, no significant magjority® of nodes prefer 1, then the final con-
sensus will be on the value 0 with high probability;

e if, initially, a supermajority'® of nodes prefer 1, then the final consensus
will be 1 with high probability.

To explain why this is relevant in cryptocurrency applications, consider a situ-
ation when there are two contradicting transactions; for example, one of them
transfers all the balance of address A; to address As, while the other transfers all

121,00sely speaking, a significant majority is something statistically different from the 50/50
situation; for example, the proportion of 1-opinion is greater than ¢ for some fixed ¢ > 1/2.

13 Again, this is a loosely defined notion; a supermajority is something already close to
consensus, e.g., more than 90% of all nodes have the same opinion.
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the balance of address A; to address A3 # As. In the case when neither of the
two transactions is strongly preferred by the nodes of the network, by declaring
both invalid we are on the safe side. On the other hand, it would not be a good
idea to always declare them invalid. Indeed, if we do this, then a malicious actor
would be able to exploit it in the following way: First, he places a legitimate
transaction, e.g., to buy some goods from a merchant. When he receives the
goods, he publishes a double-spending transaction as above in the hope that
both would be canceled by the system, and so he would effectively receive his
money back (or at least take the money away from the merchant). To avoid
this kind of development, it would be desirable if the first transaction (payment
to the merchant) which, by that time, have probably gained some confidence
from the nodes, would stay confirmed, and only the subsequent double-spend
gets canceled.

A special feature of the protocol of [32] is that it makes use of a sequence
of random numbers which are either provided by a trusted source or generated
by the nodes themselves using some decentralized random number generating
protocol, see e.g. [9, 28, 35, 36]. It is important to observe that, even if from time
to time the adversary can get (total or partial) control of the random number,
this can only lead to delayed consensus, but he cannot convince different honest
nodes of different things, i.e., safety is not violated. Also, it is not necessary
that really all honest nodes agree on the same number; if most of them do, this
is already enough for the protocol (that is, the specific task of random number
generation does not require any sort of “strong consensus”).

We do not describe all the details of the proposed protocol here, and refer
the interested reader to [32] instead.

6.2.2 Cellular consensus

The second implementation discussed in this paper is cellular automata (CA).
The use of a CA approach has originally been developed as a formal descrip-
tion of the Ising model [23]. One of the biggest advantages of the CA-based
techniques over other consensus algorithms is the opportunity to achieve a very
high level of parallelism. This advantage alone is a sufficient incentive for deeper
studies. CA brings the following novel key properties:

e Every node acts as a cellular automaton [12] that, in the presence of
conflicts, changes its opinion only based on the state of its direct neighbors
and always adopting the majority opinion.

e The set of neighbors of a node does not change during one run of the con-
sensus algorithm. In this case, the reorganization mentioned in Section 4
must only happen for different runs, i.e., different conflicts.

e When evaluating the opinions of neighbors, nodes will require a “proof”
that includes the opinions of the neighbors’ neighbors. This will allow
nodes to monitor each others’ behavior and prevents a node from lying
independently of its neighbors.
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e Misbehaving neighbors, i.e., neighbors that hold an opinion that is incon-
sistent with this proof, will be dropped immediately. This information is
then also broadcasted to the network for other nodes to verify and mark
that corresponding node as malicious and prevent future connection at-
tempts.

At the beginning of each round, every node sends a “heartbeat” of its current
status. This includes its signed current opinion, as well as the opinions of each
of its neighbors from the previous round, each signed by the issuing node. Since
the previous opinions of the neighbors cannot be faked, every node receiving this
heartbeat can validate that the current opinion is indeed correct and follows the
rules of the consensus mechanism.

We formalize the above ideas in the consensus protocol described in the next
subsection.

Algorithm 4: Send heartbeat

Function heartbeat (Node i, Round m):
foreach neighbor j € N; do
send opinion X,,(7) to neighbor j
foreach j' € N; \ {j} do
L send opinion X,,_1(j’) to neighbor j

Model Suppose that there is a network composed of n nodes, and these nodes
need to come to a consensus on the value of a bit. For clarity, we assume in the
following that each node is directly connected to k neighbors, through the auto
peering mechanism described in Section 4. The set of neighbors of node i is
denoted by NN;. The auto peering mechanism is a key factor for the security of
this approach: Indeed, a malicious node should not be able to select or influence
its neighbors.

During each stage of the algorithm, each node holds an opinion on the value
of the bit. The opinion can be either 0, 1 or L, depending on whether the
node prefers 0, 1 or none at all. The opinion of node 4 in round m is denoted
by X,.(i) € {0,1,1}. We further assume, that each node i has the initial
opinion Xy(7) € {0,1}.

The protocol depends on the following parameters:

e k € N, number of (initial) neighbors of each node.
e M € N, maximum number of rounds.

e / € N, the number of consecutive rounds with the same opinion after
which it becomes final.

p:{0,...,k} = R>p, monotonically increasing weight function that maps
the number of neighbors to a weight. This penalizes nodes having fewer
than k neighbors.
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Algorithm 5: Cellular consensus

foreach node i do
L Send initial opinion X¢(¢) to neighbors N;

for m <1 to M do
foreach node i do
foreach neighbor j € N; do
if X,,—1(4) is inconsistent wrt X, (j') for
j' € Nj,m’ <m —1 then
// drop neighbor j
L Ni < Ni\{j}

if node i finalized then
‘ X?rz(i) — Xm—l(i)
else
// adopt majority opinion
total < 3 rien,y PUN;I)
. otal
i 32 enu X1 ()=0y P(IN;]) > #5% then
| Xm(i) <0
else if 30y x.. ,(j)=1) P(IN;]) > total then
| X (i) 1
else
L Xpm(i) « L // cancel all

heartbeat (¢, m)

if opinion X (i) did not change in the last ¢ rounds then
| mark node i finalized

Algorithm Each node i knows the opinions of its neighbors j € N; as well as
the opinions of all their neighbors /V;. This is assured by a broadcasting step
where all the opinions are signed in such a way that the originating nodes as
well as broadcasting node are unforgeable. This is formalized in Algorithm 4.

The consensus mechanism is a CA where a node uses the opinions of its
neighbors to update its own state. When the majority of neighbors support
either 0 or 1, the node adopts that opinion. If none of these opinions has a
majority, it adopts L, i.e., none of them. As long as we assume that the set IV;
is known at least for all of its neighbors i, any node can use these simple rules
to validate whether the reported opinion of neighbor ¢ is consistent with the
opinions of all nodes in N;. The overall consensus mechanism is more formally
illustrated in Algorithm 5 and an illustration of the CA process for an example
scenario can be found in Fig. 5.
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7 Conclusion

In this paper, we outline our approach for the Coordicide project. In particu-
lar, we describe our main ideas around the consensus mechanism, security and
protection against attacks, spam control and auto peering; all of which pro-
vide the building blocks that are cruicial for the Coordicide project. Although
our proposal towards the path to Coordicide is now well-defined, we are cur-
rently evaluating various options and settings to implement and deploy these
components together in a holistic framework.
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(a) opinions “collide” (first nodes update opin- (b) opinions “compete” (nodes update their
ion) opmlons)

(c) opinions “compete” (nodes update their a single opinion “survives” (network
opinions) reaches consensus)

Figure 5: Visualization of the CA consensus process: Each square corresponds to
a node connected to random neighbors. Initially, the two conflicting transactions
are propagated through the network. Then, nodes are consistently adapting
their opinions (0: red, 1: cyan, L: black) before eventually coming to consensus.
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