Summary of 2014 Crustal Deformation Modeling Workshop Community Stress Model Related Information

Brad Aagaard

October 27, 2014

2014 Crustal Deformation Modeling Workshop

CIG/SCEC sponsored workshop

Agenda with links to presentations: http://geodynamics.org/cig/events/calendar/ 2014-cdm-workshop/meeting-info/agenda/

- June 23–27 at Stanford University with \sim 80 participants
- PyLith tutorials: Mon–Tue
- Science talks and discussions: Wed–Fri
- Attempt to address three action items from CSM workshop
 - Development of stressing rate models from strain rate models derived from geodetic observations
 - Comparison of methods for determining perturbations in the lithostatic overburden associated with gravitational body forces due to topography and lateral density variations
 - Discussing the potential for developing a Community Rheology Model of the crust and upper mantle

2014 Crustal Deformation Modeling Workshop

CIG/SCEC sponsored workshop

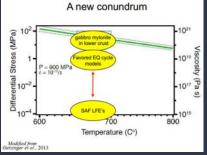
Agenda with links to presentations: http://geodynamics.org/cig/events/calendar/ 2014-cdm-workshop/meeting-info/agenda/

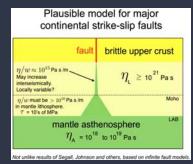
- June 23–27 at Stanford University with \sim 80 participants
- PyLith tutorials: Mon–Tue
- Science talks and discussions: Wed–Fri
- Attempt to address three action items from CSM workshop
 - Development of stressing rate models from strain rate models derived from geodetic observations
 Stress in the lithosphere over the earthquake cycle
 - Comparison of methods for determining perturbations in the lithostatic overburden associated with gravitational body forces due to topography and lateral density variations
 - Discussing the potential for developing a Community Rheology Model of the crust and upper mantle

Stress in the Lithosphere over the Earthquake Cycle

Yuri Fialko

- Lab-derived rheologies give rise to permanent localization of strain in deep roots of major strike-slip faults
- Ductile strength of the lithosphere is of the order of 50 MPa, only weakly dependent on composition, water content, and geotherm in good agreement with petrologic data

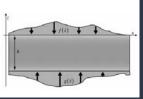




Stress in the Lithosphere over the Earthquake Cycle

- Yuri Fialko
 - Lab-derived rheologies give rise to permanent localization of strain in deep roots of major strike-slip faults
 - Ductile strength of the lithosphere is of the order of 50 MPa, only weakly dependent on composition, water content, and geotherm in good agreement with petrologic data

Elizebeth Hearn

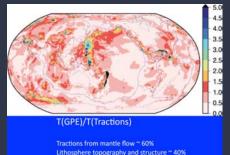


Stresses from Topography and Gravity

Bridget Smith-Konter: Absolute Stress in Southern California

3-D stress within a thick elastic plate

- Calculate critical failure stress in crust in a thick elastic plate loaded with surface topography and Moho topography
- Semi-analytic (pseudo-spectral)
 - Green's function for elastic plate loaded with non-identical point loads
 - Convolve with short-wavelength (< ~ 350 km, SH 100°-140°) topography at surface and Moho
 - Moho depth constrained by receiver functions (h ~ 35 km), shape constrained by gravity (~ 5 km)



- Bill Holt: Dynamics of Lithosphere-Mantle Coupling
- Charles Williams: Gravitational Stresses in FE Simulations

Stresses from Topography and Gravity

- Bridget Smith-Konter: Absolute Stress in Southern California
- Bill Holt: Dynamics of Lithosphere-Mantle Coupling

Charles Williams: Gravitational Stresses in FE Simulations

Stresses from Topography and Gravity

- Bridget Smith-Konter: Absolute Stress in Southern California
- Bill Holt: Dynamics of Lithosphere-Mantle Coupling
- Charles Williams: Gravitational Stresses in FE Simulations
 - Use initial stresses matching gravitational body forces with small strain formulation
 - Gravity + viscoelasticity + free surface \rightarrow "drunken sailor" or "sloshing" instability
 - Courant condition (Kaus et al., 2010) prescribes a time step smaller than the "standard" stable time step

Community Rheology Model

Will require a champion to push it forward

- Use cases
 - Forward prediction of postseismic deformation (loading of other faults) and time-dependent stress changes
 - More realistic loading of faults in earthquake simulators
 - Prediction of geologic structure in southern California
 - Provide link b/t Community Stress Model and Community Geodetic Model
- Model construction
 - Collection of input data and assembling reasonable flow laws
 - Preliminary model developed by a PI or group of PIs
 - Group effort to improve and extend model (similar to CVMs)
- Inputs: 3-D descriptions of
 - Temperature
 - Composition
 - Water content
 - Laboratory flow laws to define the constitutive behavior

