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Assumptions & Approximations

* Flat-Earth approximation (Cartesian coordinates),
with preferred map-projection used to translate
(lon, lat) to (x, y).

* Model volume is a rectangular solid with sides of
750 x 600 x 75~100 km (= SCEC area x lithosphere
thickness, + top of asthenosphere).
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Assumptions & Approximations

* Flat-Earth approximation (Cartesian coordinates),
with preferred map-projection used to translate
(lon, lat) to (x, y).

* Model volume is a rectangular solid with sides of
750 x 600 x 75~100 km (= SCEC area x lithosphere
thickness, + top of asthenosphere).

e Gravity is the only body force, and is exactly parallel
to z.

e Quasi-static equilibrium between earthquakes,
eruptions, impacts, landslides, etc.



In this Cartesian model space, the quasi-static momentum equation

(or stress-equilibrium equation) is
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In terms of the stress tensorG; gravityg, and density p.



Next, stress O is expressed as a sum of 3 components:
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where Po =( I Lo (S) ds isa reference lithostatic pressure curve,
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based on a 1-D reference density model ,00 (Z) ;
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,Ll is the topographic stress anomaly,

~J

and T is the tectonic stress anomaly.
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Specifically, | define lLl as any convenient solution to the

Inhomogeneous quasi-static momentum equation driven by density anomaly

AP(X,Y,2) = p(X, ¥,2)— py(2).




and T as any solution to the complementary homogeneous quasi-static

momentum equation:
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The sum ﬁ + 7 will be referred to as the “total stress anomaly”
(relative to standardized reference pressure).

Note that total stress anomaly is not the same as deviatoric stress,
although it shares the same principle axes as deviatoric stress.
The deviatoric stress matrix has zero trace, but the total stress

anomaly matrix does not.



The most convenient solutions for the

topographic stress anomaly  come

from classic published solutions for an

isotropic and homogenous elastic half-

space, with no density or pre-stress, but

subject to:

e Vertical surface point loads
(Boussinesq);

* Horizontal surface point loads

(Cerruti); and

* Vertical internal point loads (Mindlin).
/ |

tractioﬁs and deflections caused by poinht load
orthogonal to flat surface of elastic hal



The only material property in these solutions is the Poisson ratio. One natural
choice is 0.25, based on the common relation between compressional and shear

seismic velocities that VS ;VP/\E :

However, topographic (and tectonic) stress anomalies last for millions of years,
during which there may be some viscoelastic relaxation. It is well-known that the
long-term asymptotic stresses in viscoelastic solutions to problems with traction
boundary conditions resemble elastic solutions with an incompressible Poisson
ratio of 0.5, because viscous permanent strain mechanisms conserve volume.

Therefore, | computed topographic stress anomaly solutions with both values of
the Poisson ratio.

In general, the solutions with Poisson ratio 0.25 have greater shear stresses and
smaller pressure anomalies, while the solutions with Poisson ration 0.5 have
smaller shear stresses and larger pressure anomalies.

Another choice is how to model the Moho shape.

| have tried models with seismic Moho shapes, and others with isostatic Moho
shapes. | prefer the isostatic Moho models because they give less deviatoric
stress in the upper asthenosphere.



Topographic stress anomaly model HiResIsoOp50
Greatest shear stress in horizontal plane 10 km below MSL
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Topographic stress anomaly model HiReslso0p50
Vertical-integral of: Greatest shear stress
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Topographic stress anomaly model HiReslso0p50
Pressure anomaly at plane of section
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Topographic stress anomaly model HiReslso0p50
Greatest shear stress at plane of section
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T

T =Ty e

The tectonic stress anomaly T satisfies the homogeneous quasi-static momentum

equation, and therefore it can be obtained from particular second-derivatives of a

continuous vector field
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This was apparently first discovered by William Thompson
(later, Lord Kelvin) and published in Maxwell [1848].

Fig. 1. James Clerk Maxwell, 24 years old in 1855, about the time he embarked on unifying electro-

statics, electrodynamics, and electrical induction. He was inspired by Faraday's intuition and by

Fourier’s mathematics of diffusion. (Photograph by W.H. Hales; courtesy of Cavendish Laboratories.)
Narasimhan [2003]

Although | have been unable to examine this original source,
secondary sources include Love [1927], Sadd [2005], and the
Wikipedia entry “Stress functions”.



| explore possible vector fields Md  which are formed as weighted sums of

i S 1, c ooy N basis functions,

N
= — i
D(Xx,y,2)= E cd(x,Y,2)
1=1
| have designed a complete and complementary set of basis functions

which provide for:

(1) spatially-constant values of each tectonic stress component;

(2) values of any tectonic stress component that may vary linearly along
any spatial axis;

(3) stress-potential vectors of arbitrary direction that vary harmonically as
a function of any one space direction (“stress waves”);

(4) stress-potential vectors that vary harmonically as a function of any two
space directions (“stress quilts”); and

(5) stress-potential vectors that vary harmonically as function of all three
space directions (“stress crystals”).
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Hybrid coefficient c_3,6,5,0
Greatest shear stress in horizontal plane 10 km below MSL
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Hybrid coefficient ¢c_3,6,5,0
A Greatest shear stress at plane of section Al
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One way to approach a unique solution for D and 7 isto assume the

material is elastic, and is also lacking any pre-stress.

This engineering approach is not suitable for Earth sciences, in which we have
to expect a long history (with unknown initial conditions) involving complex
combinations of elasticity with pressure changes, temperature changes,
compaction, solution transfer, dislocation creep, metamorphic phase changes,

cracking events, and frictional failures.

In this project | pursued another approach: fitting CT) and 7 toa
combination of boundary conditions, data, and a dynamic model by weighted

least-squares.



The soft constraints imposed in this study included:

(1) Boundary conditions: No tractions due to tectonic stress on the
horizontal plane at sea level. No tractions due the total stress anomaly on

the model base (and lower sides) in the asthenospheric depth range.

(2A) Stress data from the World Stress Map [Heidbach et al., 2008]: 449 data,

with only 9 constraints on stress magnitude; OR ...
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The soft constraints imposed in this study included:

(1) Boundary conditions: No tractions due to tectonic stress on the
horizontal plane at sea level. No tractions due the total stress anomaly on

the model base (and lower sides) in the asthenospheric depth range.

(2A) Stress data from the World Stress Map [Heidbach et al., 2008]: 449 data,

with only 9 constraints on stress magnitude; OR ...

(2B) Stress directions from 178152 focal mechanisms of Yang et al. [2012,
BSSA].
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The soft constraints imposed in this study included:

(1) Boundary conditions: No tractions due to tectonic stress on the
horizontal plane at sea level. No tractions due the total stress anomaly on

the model base (and lower sides) in the asthenospheric depth range.

(2A) Stress data from the World Stress Map [Heidbach et al., 2008]: 449 data,

with only 9 constraints on stress magnitude; OR ...

(2B) Stress directions from 178152 focal mechanisms of Yang et al. [2012,
BSSA].

(3) Stress directions and magnitudes in 3-D from a 2.5-D thin-shell model of
southern California neotectonics computed with Shells, using variable heat-
flow, crustal thickness, & lithosphere thickness; UCERF3 fault traces, and

plate-tectonics (PA-NA) velocity boundary conditions.



Vertical Integrals of Shear Stress and Stress Anomaly
CSM2013001, using SHELLS_for_CSM-faulted_expanded.feg
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Heat Flow
SHELLS_for_CSM-faulted_expanded_OrbData.feg
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Crustal Thickness
SHELLS_for_CSM-faulted_expanded_OrbData.feg
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Total Lithosphere Thickness
SHELLS_ for_CSM-faulted_expanded_OrbData.feg
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Change in Horizontal Velocity Across Faults

CSM2013001, using SHELLS_for_CSM-faulted_expanded.feg

119°

118°

117°

116°

115°

114°

21° 120°
|

-

|

-

lg:} | @/jl

122°

121° 120°

119°

118°

17°

116°

115°

114°

29€

oG€

FEe

€€

oC€

ol€

13 mm/a
normal

Horizontal
part of
slip rate



Misfit Measure (degrees, %, or MPa)

Effects of (WSM) Data-Weight (vs. CSM model-weight) on Misfits, with W = 4:
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Tectonic stress anomaly model WaveQlsoOp50 _ .
Vertical-integral of: Greatest shear stress W =0 (waves/side)
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Tectonic stress anomaly model Wave1lso0Op50 _ .
Vertical-integral of: Greatest shear stress W =1 (waves/side)
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Tectonic stress anomaly model Wave2lsoOp50 _ .
Vertical-integral of: Greatest shear stress W =2 (waves/side)
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Tectonic stress anomaly model Wave3IsoOp50 _ .
Vertical-integral of: Greatest shear stress W =3 (waves/side)
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Tectonic stress anomaly model Wave4lsoOp50 _ .
Vertical-integral of: Greatest shear stress W = 4 (waves/side)
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Tectonic stress anomaly model HiRes037 _ .
Vertical-integral of: Greatest shear stress W =5 (waves/side)
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Total stress anomaly model HiRes037
Vertical-integral of: Greatest shear stress
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Total stress anomaly model HiRes037
Vertical-integral of: Greatest shear stress
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Total stress anomaly model HiRes037
Greatest shear stress in horizontal plane 10 km below MSL
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Total stress anomaly model HiRes037
Greatest shear stress in horizontal plane 10 km below MSL
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Total stress anomaly model HiRes037
Pressure anomaly at plane of section
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Total stress anomaly model HiRes037
Greatest shear stress at plane of section
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Total stress anomaly model HiRes037

Greatest shear stress at plane of section
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The FlatMaxwell algorithm and program represent important advances in stress

modeling, in 3 ways:

1. It is now possible to merge stress data (which are usually just stress directions, and
come primarily from the upper crust) with output from dynamic models (based on
laboratory flow laws, plate-velocity boundary conditions, and computed geotherms)
which constrain the likely magnitudes of deviatoric stresses and also the likely form of

the mantle stress field.

2. FlatMaxwell is free of assumptions about which flow laws (and flow-law constants)
regulate the level of deviatoric stress. Admittedly, such assumptions are made in
program Shells, which contributed an important input dataset to this modeling effort.
However, replacing this Shells dataset with that from a competing dynamic model would

be relatively easy, and would not require any reprogramming.

3. Stress fields in FlatMaxwell obey the quasi-static equilibrium equation exactly, at all
points. This is superior to stress fields obtained from finite-element models which solve
a weak form of equilibrium (sometimes weakened further by vertical integration) on a

coarse grid.



