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Assumptions & Approximations

• Flat-Earth approximation (Cartesian coordinates), 
with preferred map-projection used to translate 
(lon, lat) to (x, y).

• Model volume is a rectangular solid with sides of 
750 × 600 × 75~100 km (= SCEC area x lithosphere 
thickness, + top of asthenosphere).





Assumptions & Approximations

• Flat-Earth approximation (Cartesian coordinates), 
with preferred map-projection used to translate 
(lon, lat) to (x, y).

• Model volume is a rectangular solid with sides of 
750 × 600 × 75~100 km (= SCEC area x lithosphere 
thickness, + top of asthenosphere).

• Gravity is the only body force, and is exactly parallel 
to z.

• Quasi-static equilibrium between earthquakes, 
eruptions, impacts, landslides, etc.
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In this Cartesian model space, the quasi-static momentum equation
(or stress-equilibrium equation) is

In terms of the stress tensor   , gravity   , and density . g
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Next, stress       is expressed as a sum of 3 components:

where                                        is a reference lithostatic pressure curve,

based on a 1-D reference density model                  ,

is the topographic stress anomaly,

and               is the tectonic stress anomaly.
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Specifically, I define             as any convenient solution to the 

Inhomogeneous quasi-static momentum equation driven by density anomaly
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:



and          as any solution to the complementary homogeneous quasi-static

momentum equation:


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The sum                will be referred to as the “total stress anomaly” 

(relative to standardized reference pressure).  

Note that total stress anomaly is not the same as deviatoric stress, 

although it shares the same principle axes as deviatoric stress.  

The deviatoric stress matrix has zero trace, but the total stress 

anomaly matrix does not.

 



The most convenient solutions for the 

topographic stress anomaly       come 

from classic published solutions for an 

isotropic and homogenous elastic half-

space, with no density or pre-stress, but 

subject to:

• Vertical surface point loads 

(Boussinesq);

• Horizontal surface point loads 

(Cerruti); and

• Vertical internal point loads (Mindlin).



The only material property in these solutions is the Poisson ratio.  One natural 
choice is 0.25, based on the common relation between compressional and shear 
seismic velocities that                                 .  

However, topographic (and tectonic) stress anomalies last for millions of years, 
during which there may be some viscoelastic relaxation.  It is well-known that the 
long-term asymptotic stresses in viscoelastic solutions to problems with traction
boundary conditions resemble elastic solutions with an incompressible Poisson 
ratio of 0.5, because viscous permanent strain mechanisms conserve volume.  

Therefore, I computed topographic stress anomaly solutions with both values of 
the Poisson ratio.  

In general, the solutions with Poisson ratio 0.25 have greater shear stresses and 
smaller pressure anomalies, while the solutions with Poisson ration 0.5 have 
smaller shear stresses and larger pressure anomalies.

-------------------------------------------------------
Another choice is how to model the Moho shape.
I have tried models with seismic Moho shapes, and others with isostatic Moho
shapes.  I prefer the isostatic Moho models because they give less deviatoric
stress in the upper asthenosphere. 
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The tectonic stress anomaly       satisfies the homogeneous quasi-static momentum 

equation, and therefore it can be obtained from particular second-derivatives of a 

continuous vector field                 by:
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This was apparently first discovered by William Thompson
(later, Lord Kelvin) and published in Maxwell [1848].

Although I have been unable to examine this original source, 
secondary sources include Love [1927], Sadd [2005], and the 
Wikipedia entry “Stress functions”.
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I explore possible vector fields               which are formed as weighted sums of

basis functions,


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I have designed a complete and complementary set of basis functions 
which provide for: 

(1) spatially-constant values of each tectonic stress component;
(2) values of any tectonic stress component that may vary linearly along 
any spatial axis; 

(3) stress-potential vectors of arbitrary direction that vary harmonically as 
a function of any one space direction (“stress waves”); 

(4) stress-potential vectors that vary harmonically as a function of any two 
space directions (“stress quilts”); and 

(5) stress-potential vectors that vary harmonically as function of all three 
space directions (“stress crystals”).











One way to approach a unique solution for                           is to assume the 

material is elastic, and is also lacking any pre-stress.  

This engineering approach is not suitable for Earth sciences, in which we have 

to expect a long history (with unknown initial conditions) involving complex 

combinations of elasticity with pressure changes, temperature changes, 

compaction, solution transfer, dislocation creep, metamorphic phase changes, 

cracking events, and frictional failures.  

In this project I pursued another approach: fitting                         to a 

combination of boundary conditions, data, and a dynamic model by weighted 

least-squares.
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The soft constraints imposed in this study included:

(1) Boundary conditions: No tractions due to tectonic stress on the 

horizontal plane at sea level.  No tractions due the total stress anomaly on 

the model base (and lower sides) in the asthenospheric depth range.

(2A) Stress data from the World Stress Map [Heidbach et al., 2008]: 449 data, 

with only 9 constraints on stress magnitude; OR …
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The soft constraints imposed in this study included:

(1) Boundary conditions: No tractions due to tectonic stress on the 

horizontal plane at sea level.  No tractions due the total stress anomaly on 

the model base (and lower sides) in the asthenospheric depth range.

(2A) Stress data from the World Stress Map [Heidbach et al., 2008]: 449 data, 

with only 9 constraints on stress magnitude; OR …

(2B) Stress directions from 178152 focal mechanisms of Yang et al. [2012, 

BSSA].

(3) Stress directions and magnitudes in 3-D from a 2.5-D thin-shell model of 

southern California neotectonics computed with Shells, using variable heat-

flow, crustal thickness, & lithosphere thickness; UCERF3 fault traces, and 

plate-tectonics (PA-NA) velocity boundary conditions.
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The FlatMaxwell algorithm and program represent important advances in stress 

modeling, in 3 ways:

1. It is now possible to merge stress data (which are usually just stress directions, and 

come primarily from the upper crust) with output from dynamic models (based on 

laboratory flow laws, plate-velocity boundary conditions, and computed geotherms) 

which constrain the likely magnitudes of deviatoric stresses and also the likely form of 

the mantle stress field.

2. FlatMaxwell is free of assumptions about which flow laws (and flow-law constants) 

regulate the level of deviatoric stress.  Admittedly, such assumptions are made in 

program Shells, which contributed an important input dataset to this modeling effort.  

However, replacing this Shells dataset with that from a competing dynamic model would 

be relatively easy, and would not require any reprogramming.

3. Stress fields in FlatMaxwell obey the quasi-static equilibrium equation exactly, at all 

points.  This is superior to stress fields obtained from finite-element models which solve 

a weak form of equilibrium (sometimes weakened further by vertical integration) on a 

coarse grid.


