### 4-D earthquake cycle modeling of the San Andreas Fault System: Stress rates, historical stress accumulation, and uncertainties



# Reconciling Stress Models & Data

i.e., earthquake cycle stress rate, or fault loading stress rate



**Up next:** Earthquake cycle influence on the plate boundary stress budget, as constrained by seismology, geodesy, and topography – K. Luttrell

### Earthquake Cycle Stress

Which factors are most important for evaluating earthquake cycle stress?

- I. Physical model: 3-D Maxwell viscoelastic
- 2. Long-term slip rates (geology)
- 3. Crustal velocity (geodesy)  $\rightarrow$  fault locking depths
- 4. Slip history from major ruptures (paleoseismology)
- 5. Mantle viscosity, elastic plate thickness, coef. of friction, etc.

# How sensitive is stress rate and stress accumulation to model parameters and assumptions?

### A Preview

Most important factors for estimating earthquake cycle stress on faults today

#### Not very important

- lithospheric thickness/rheology
- coefficient of friction
- mantle viscosity

<u>Very important</u>

Stress accumulation rate

- locking depth
- long-term slip rate\*

Stress (accumulation)

• rupture/slip history\*

### Modeling 4D Earthquake Cycle Deformation



#### **3D** semi-analytic Fourier model [Smith and Sandwell, 2004]

- analytic calculations for depth and time-dependence
- numeric calculations for 2-D Fourier transforms



**3D** deformation(t) = interseismic +  $\Sigma$  earthquakes (deep slip) (co. + postseismic)

### Model efficiency

- 2048 x 2048 grid cells
- common locking depth, single event: ~ 3s of CPU time
- 50+ depths, 100+ events over 1000 years: ~20 min.



### 4D visualization

ParaView

- ParaView visualization package
- 3D meshed volumes

### Resolving Fault Depths With PBO Velocities



- Locking depth inversion from PBO velocity field
- Modeled stress rates inversely proportional to locking depth







[Smith-Konter and Sandwell, 2009] [Tong, Smith-Konter, and Sandwell, 2014]

### Interseismic Stress Rates

- Static <u>Coulomb stress</u> rates due to interseismic strain accumulation at depth
- Variations due to slip rate, locking depth (d), local fault geometry
- Observation depth is important



 $\tau_{c} = \overline{\tau} - \overline{\mu_{f} \sigma}$ 

### Stress Accumulation Rates vs. Recurrence Intervals



[Smith-Konter and Sandwell, 2009]



Seismogenic Thickness vs. Geodetic Locking Depth

• How well do we know *d* ?

#### Seismic depths

• 95% cutoff depth

• 12-20 km

#### Geodetic depths

• thickness of locked zone

• 6-22 km

#### Outliers

 Coyote Creek, Borrego, Imperial

[Smith-Konter, Sandwell, Shearer, JGR 2011]

# Stress Rate Sensitivity Test





• How does stress rate vary as a function of locking depth *d* ?



### Stress Rate Uncertainties: Locking Depth



### Stress Rate Uncertainties

 Maximum uncertainties in stress rate from locking depth uncertainties:

-0.7 to 0.9 MPa/100 yrs (geodetic σ)
-1.8 to 0.4 MPa/100yrs (seismogenic thickness)

• Individual segment uncertainties highly variable





### **Time-Dependent Stress Evolution**

- Prescribed rupture year & fault segmentation assigned from historical + prehistorical database
- Events preceding prehistorical data are prescribed by recurrence intervals
- Every event relieves accumulated slip deficit (unjustified assumption)



# Time-Dependent Stress Evolution



### **Stress Accumulation Uncertainties**



### **Stress Accumulation Uncertainties**

- Maximum uncertainties in stress accumulation from locking depth uncertainties: -0.6 to 0.9 MPa (geodetic σ)
   -1.3 to 0.6 MPa (seismogenic thickness)
- Present day stress accumulation largely depends on time since last event



### Paleoseismic Data – How to use it, when to trust it?











### How Does Stress Vary With Depth and Time?

#### San Andreas Fault System Stress Accumulation



### How Does Stress Vary With Depth and Time?

#### San Andreas Fault System Stress Accumulation



# Conclusions/Summary

- Uncertainty in locking depth/seismogenic thickness:
- Stress rate uncertainties -2 to | MPa/100 yrs
- Stress accumulation uncertainties I to I MPa
- Uncertainty in slip rate:
- Stress rate uncertainties -0.5 to 1 MPa/100 yrs
- Uncertainty in paleoseismic slip:
- Stress accumulation uncertainties I to 3 MPa

Worst case, stress rates could be off by +/- 10-20 kPa/yr (not too bad)
Stress accumulation could be off by 3 MPa (bad)

• How do these uncertainty estimates map into present day stress field (focal mechanisms)?