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Borehole observations can constrain:
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Directions of horizontal principal stress O}, and O
(from breakouts or drilling induced tensile fractures in
a vertical borehole)

Directions and relative magnitudes of all three

principal stresses, 0, O, O3, from multiple deviated
wells in a small volume

Magnitudes of one or more of the principal
stresses, from hydraulic fracturing stress
measurements, leakoff test pressures
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Far field stress related to features in a fluid- or gas-
filled cylindrical hole; NOTE breakouts and hydraulic
fractures may not be found together
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x| From Zoback, Reservoir Geomechanics,
J?’ Kirsch equations for stress around a borehole
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Breakouts depend on stress tensor and rock strength
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FIELD OPERATIONS — MEASURING BREAKOUTS

TYPES OF TOOLS:

» Acoustic borehole televiewer

* QOriented 4-arm or 6-arm caliper

* 4-arm to 8-arm electrical imaging log

1. Lower tool (with arms closed) into bottom of section of
open hole to be logged

2. Open the arms and winch the tool up the hole at a

constant speed.

If the hole is cylindrical, the tool will rotate.

If the hole is not cylindrical, the long diameter of the tool

will tend to stay along the longest axis of the borehole

W
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Azimuth of hole drift ( HAZI)

High side of tool

Caliper tool . _
Relative bearing (RB)

Deviation
(DEVI )

Reference pad 1 with
azimuth relative to north
(P1AZ)

1 Caliper 1 (C1); pad 1-3
i Caliper 2 (C2); pad 2-4

From Reinecker et al., World Stress Map project, after Plumb and Hickman (1985)
4-arm caliper tool

All tools have centralizers above and below (not shown in this diagram)
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|dentifying breakouts from borehole shape and instrument
behavior (tool stops rotating in breakout)

(a) In gauge hole (b) Breakout c) Washout () Ky seat
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From Reinecker et al., World Stress Map project, after Plumb and Hickman (1985)
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Example of
breakouts
Identified from
some newly
obtained
oriented 6-arm
caliper data

Criteria:

no tool rotation,
Cl~C2
C3-C2>2cm
Length >3 m

(criteria modified
from Zajac & Stock,
JGR, 1997)




Method for multiple wells with different deviations
from a central platform

normal faulting S h thrust faulting
S, 8,8, = i B g o 30 Su/Sn 3y =
-2/-1.5/-1 = -

«2/-1.5/-1

reference
tick mark

5 Sy/S, /Sy =
-2/-1.5/-1
strike—slip faulting

Mastin, JGR, 1988

Thrust faulting

Zajac & Stock, 1997 JGR
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Lower Hemisphere Projections
Stress Tensor

0

Breakout observations
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Table 3. Characteristics of the Stress State That Mini-
mized the Weighted One-Norm Misfit of the Point Ped-

ernales Borehole Breakout Data
S1 B Sa 3 Ss
Azimuth N148.5°E Nb55.8°E N318.7°E
Plunge 31.5° 4.4° 58.1°
Value 2 1.821}_34 1

Optimized ¢, 0.8213:22%; minimum weighted one-norm
misfit, 4.84°; 95% confidence level for weighted one-
norm misfit, 5.96°.
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Stress tensor derived from sparse
breakout data, 5 wells in Point
Pedernales oil field (Zajac & Stock, 1997
JGR). Nodal points are constrained by
breakouts in highly deviated well.




CA DOGGR Administrative Boundaries (Oil, Gas, Geothermal) in Southern CA.
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Faults & Oil Fields TS0 g7 e e Legend
; g e SO /' OilField

o» fault

Google“earth

Data S0, NOAS, U5, Mavy, NGA, GEBCO
Image Landsat
Data LDEO-Columbia, MNSF, MOAL

Data ISGS
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Data sets related to Newport-Inglewood Fault
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From Lockman, The Leading Edge October 2005 vol. 24 no. 10 1008-1014
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We have data
from 24 of the
wells here,
mostly on the
west side of the
Newport-
Inglewood fault,
2-3 km depth.

The wells were
drilled 8 to 10
years ago.

Well Bores, Inglewood Field, Baldwin Hills

From Lockman, The Leading Edge October 2005 vol. 24 no. 10 1008-1014
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Our
previous
study
(Wilde &
Stock,
JGR,
1997) had
data from
only 1
older well
in this field




The Hydraulic Fracturing Method
(officially in use since 1957)

USGS Dirill
Rig

Black Butte, Mojave Desert, CA 1987
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Standerd Operating Procedure for Borehole Packer Testing F I E L D O P E R AT I O N S _ H Y D R AU L I C

FIGURE 1: Packer Test Assemblies FR ACTURING
= | L 1. Isolate a cylindrical, smooth section of
i the borehole using a “straddle

packer” (two inflatable packers)

2. Inject fluid under high pressure into this
section of the borehole

Perforated Pipe

3. When pressure is high enough it will
fracture the borehole wall and a fracture
will extend out away from the borehole
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HYDRAULIC — | LEAST
FRACTURE = -~ COMPRESSIVE
s STRESS
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BREAKOUT
Sh - \_f—
Packers in borehole
MAXIMUM
— e
Cross section of borehole _l> § (35,-S,)
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Figures from Stock & Healy, 1988, J. Geophys. Res.
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FLOW TESTS

« Measure fluid flow (top curve, left)
* Measure fluid pressure in interval
between the packers (bottom curve)

Curves show when fluid is going into
fracture and coming out of fracture

Pressure values of curves show the
magnitudes of the principal stresses

Stress vs. depth plot (left) shows
whether faults are close to slipping

19



Vs
12/12/14

ADDITIONAL TEST

Remove straddle packer after

" fluid testing.

Run impression packer to get
impression of fracture that

formed
Determine orientation of

fracture that formed

Unwrappod Yiew ot

¢V reeE airie BLACK BUTTE HYDROFRAC
NUT'E reimrecce v 309 ™m
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Horizontal drilling and hydraulic fracturing are
“unconventional” extraction technologies

Figure from Davies et al., 2013

land surface

« Small volume hydraulic
fractures confined to a
known stratigraphic layer

» Typically cannot be done
In zones of breakouts

* Oil companies usually
want to drill horizontal
holes in the direction of
Sh, and base mud hydm"'c ‘
weights on stress tensor fractures
for hole stability
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Distribution of Monterey Formation and Related OIll Fields
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Obradovich & Naeser, 1981; Pisciotto & Garrison, 1981
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Figure 32 Monterey/Santos Shale Play
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Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays, 2010
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We expect to provide a lot of new constraints in the
regions of the oil fields, compared to this map from Wilde
& Stock 1997
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Summary and Questions

Lots of new drilling in S. California in the last 15 years. However,
state public data base (DOGGR) is very backlogged.

We are obtaining well logs elsewhere, with various restrictions on
data dissemination (depending on who we get the data from).

We are allowed to provide aggregate results on stress information,
which will likely mostly be SH and Sh directions vs depth.

 What cell size or grid size of information is needed by the
modeling community?

* Which areas are highest priority?

 How should we integrate our results with the SCEC web sites
so that the results are most useful?

Web site for previous work (1997):
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