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1 O\ The time-dependent strain rate field for the southwestern

" North American Lithosphere Since 36 Ma
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Contours of dilatational strain rates of western U.S. from 36 Ma to
present-day (Bahadori et al., 2018) Geosphere



8 Reconstruction of Crustal Thickness Evolution in

" Western U.S.

QAGUPUBLICATIONS

1) tracking coordinate changes through time based on the time-dependent horizontal
§ velocity gradient tensor field.

\ . . . .
® 2) tracking the crustal thickness changes of those corresponding coordinates.
summarize the inversion results, which are then interpolated onto a regular 0.25°x0.25" grid across the U S.to 82’ g
define the final 3-D model. We present arguments that show that the standard deviation of the pesterior

distribution overestimates the effect of nonsystematic errorsin the final model by a factor of 4-5 and identify
uncertainties in density and mantle Q as primary potential sources of remaining systematic error in the final
model. The model presents a great many nevdy resolved structural features across the U.S. that require - "
further analysis and dedicated explication. We highlight here low-velocity anomalies in the upper mantie that  ~' -120 -6

underlie the Appalachians with centers of anomalies in northern Georgia, western Virginia, and, mest dET - D

prominently, New England, 5 10 15 20 25 30 35 40 45 50 55

present day model of western U.S. crustal
thickness in km from Shen and Ritzwoller (2016).
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‘ Finite Strain Estimate Inferred From Distribution of

Vertical Strain

5

— €—— Nx (1+€))
Y
=0 / :’9
S — AY (1+e)) « N
&N > o o
Lithosphere ' Lithosphere H,= Hoexp(-0.2At)
Asthenosphere

Instantaneous strain rate distribution

Assumptions:
1) We approximate zero volume change, and thus the vertical strain rates €,, = -(€,*€,, ).
2) We assume that the lithosphere deformation is vertically coherent.

3) We ignore erosion and igneous input



‘ Finite Strain Estimate Inferred From Distribution of

Vertical Strain
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‘ Western U.S. Crustal Thickness Evolution Vs. Time
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(W Contour map of standard error estimates
(km) of crustal thickness for the Basin
and Range of the western United States
at 36 Ma.
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White circles are reconstructed position of Metamorphic Core Complexes (MCCs)
(Bahadori et al., 2018) Geosphere



Q\ Influence of Thermal Perturbations on Western U.S. Upper

Mantle Densities

U Using the Laplace equation and assuming constant
thermal conductivity, the steady-state conductive
heat distribution with no heat generation is:

92T /Ox2+02T /oy?2 = 0

O Using the Fourier equations, then the heat flow (Q)
in the x and y directions is calculated as: 36’

Q, =k, dT,(X / Ox
Q, = —Ka GT 0
hg/ y

O Bised on thermal expansion of upper mantle at
constant pressure and differential temperatures the

© Active Magmatism
© Previously Active Magmatism

new time and temperature dependent upper mantle 37.0 Ma
is produced as: 28° .
-124° =120 -116 -112 -108" -104°
O) = 0/ [1+axA ) q - Em—— TS
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(Bahadori et al., 2018) Geosphere UpporMantia Densiy




’\ The Correlation of Ignimbrite Flare-up with collapse
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U Final integrated  topography
model shows a highland with an
average elevation of ~3.9 + 0.3
km in central, eastern, and
southern Nevada, western Utah,
parts of easternmost California,
and for northwestern Arizona. The
Mogollon Highlands are also
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present within central and s 2 w
. 1000 .
southeastern Arizona at 36 Ma. - S .
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. Paleoelevation evolution of western U.S. from 36 Ma to present-day. Red
(Ba hadorl et al’l 2018) Geosphere and gray dots are the reconstructed positions of present-day coordinates

of magmatism in western U.S. (Bahadori et al., 2018)



¥ Force Balance Solution — GPE gradients
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» Depth Integrated Forward Dynamic Deviatoric Stresses

1) Invert for stress boundary
conditions. Observations =
kinematic tensor field

2) Apply Forward model using
velocity boundary conditions,
GPE gradients (body forces),
laterally varying effective
Viscosity (T/E) from inverse
model. Method outlined in
Flesch et al. (2001)

-3000 %

m
3500

1800

1000 H
450 H
O -

~124° 5
112" -108

rer WP WS A, -
) '\ NN T s NV 4 L e
* 4 P e . E //_////l'/-//

L4 A '/.v,(,v-..A "
Nl AR\ T X <
. B AN, Sarosermy Lo

—112° -108
GPE Deviatoric Stresses + Stress Field Boundary Conditions



What do boundary condition solutions represent? Answer = coupling with global mantle flow
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SH11_TX2008-1?7

[Becker, 2012; Schmandt and Humphreys, 2010; Schmandt
and Humphreys, 2011; Simmons et al., 2009]
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SH11_TX2008-1?7

[Becker, 2012; Schmandt and Humphreys, 2010; Schmandt
and Humphreys, 2011; Simmons et al., 2009]
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Forward Dynamic Model Compared with stretch directions from

R 3 core complexes, Miocene faults and dikes
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£ ) The Role of GPE For Driving the Extensional Collapse of

" the Western U.S.
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1 ‘ Forward Dynamic Model Velocities Compared with Kinematic Model Velocities

Forward model:
velocity boundary
conditions, GPE
gradients (body
forces), laterally
varying effective
Viscosity (T/E) from
inverse model




@ Effective Viscosity of Lithosphere in Western U.S. from

¥ Forward Dynamic Model
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Hydration hypothesis for Laramide and mid-
Tertiary magmatism, tectonism and uplift for
western U.S. (Humphrey et al., 2003).
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Depth integrated effective viscosity of the lithosphere in western U.S. from 36
Ma to present-day.



Computation of Lithospheric Effective Water Content
* Variation in Western U.S.

*

i / 2 [ ~124* _y00° o o 104"
o 2) =L F (H+mV)\|" . ¢ 122° 120" _11g° _11g 114 g1z 110" ~108" -106 1%
B =B " /A Coy |exp| ———— 10 42 | h :
RE
Dixon et al. (2004)
40°
7o effective viscosity
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Velocity and strain rate field from forward dynamic model (velocity boundary conditions,
GPE gradients, laterally varying effective viscosity).
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Vertically averaged effective viscosities and velocity residuals (dynamic vs. GPS — Pacific

frame)
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’ Conclusions

*  Our results indicate GPE gradients originating from high paleotopography dominated the
extensional stress field prior to and during core-complex formation.

* Dramatic weakening of the lithosphere viscosity  accompanied the collapse. Some
regions have experienced rheological hardening.

* The most likely weakening influence is heat and fluids associated with slab rollback and
volcanism.

* The 45° rotation of extension directions between Miocene to present-day can be
explained by the increasing importance of Pacific-North America relative plate motions

* Present-day rheology in Southern-California is consistent with intermediate mix between
dry and wet end-members



@ Present-day Seismic Velocity Constraints for Upper Mantle

Temperature and Viscosity Variations

T
Vs = ’-Ii I
p P
V

= Shear modulus and upper mantle density are both a
function of temperature and pressure .
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= Using calculated pressures in WUS for each 0.5 km depth
(Moho to 100 km) and a reference dataset for pressure,
temperature and Vs (Goes et al., 2000) we determine the
temperatures for each specific depth.
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= Using the method of Wu et al. (2013) the depth integral of
viscosity is computed using the shear velocity data (Shen
and Ritzwoller, 2016) and temperature data.
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| Q\The Role of Mantle Fluid Input on Lithospheric Deformation

We find that dlfferences between the two viscosity models can be reconciled if the FLUID CONTENT
within the upper mantle lithosphere below the actively straining regions of the Great Basin is
elevated relative to areas along the edges of the Colorado Plateau and within the Rio Grande Rift,

which are both relatlvely dry in comparison to the Great Basm
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Depth integral of viscosity from geodynamic forward model
constraints (Moho to 100 km depth).
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‘ Influence of Thermal Perturbations on Western U.S. Upper

* Mantle Densities
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y Lithosphere Foundering of Laramide Flat Subduction and
* Upper Mantle Temperature Variation
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At 100 km depth, most of the Basin and Range
PIOM province is essentially at asthenospheric
temperatures (Schutt et al., 2012)
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Upper mantle temperature variation in western U.S. from 36 Ma to

present-day. Gray dots are the reconstructed position of western U.S.
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| U Upper Mantle Density and Compensation of Topography
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Present-day Upper Mantle Density Model for Western U.S.
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