

What allows seismic events to grow big?: Insights from *b*-value and stress variations in lab and nature

T. H. W. Goebel¹, G. Kwiatek², T. W. Becker³, G. Dresen², E.E. Brodsky¹ 1 UC Santa Cruz; 2 GFZ-Potsdam; 3 University of Texas at Austin

Gutenberg-Richter frequency-magnitude distribution

$$N = 10^{a - bM}$$
$$N \sim M_0^{\beta}$$

 $M_0 \sim L^3$ (constant stress drop) $\log_{10}(N) \sim b \log_{10}(L^{3/c})$ 10^{5} Wgr01 M_w , $b = 1.2 \pm 0.00$ 10^{4} Cumulative Event Number 10^{3} 10² 10^{1} 10⁰

e.g. Gutenberg & Richter 1948; Aki, 1967; Hanks, 1979; King 1983; Frankel 1991, Wyss et al. 2004

-7

-6

SCEC CSM workshop – Pomona – January 2019

-4

-3

 $^{-2}$

-5

Magnitude

What processes give rise to Gutenberg-Richter and govern *b*-value variations?

1) Geometric effects

2) Dynamic effects and stress

 $log_{10}(N) \sim b \log_{10}(L^{3/c})$

Tchalenko and Ambraseys 1970; King 1983

Burridge & Knopoff, BSSA 1967

Are *b*-value variations a measure of absolute stress?

b-value is correlated with stress in lab experiments

Scholz 1968; Main, Meredith, 1989, 1990, 1992

Schorlemmer et al., 2005

b-value variations track stress changes over many seismic cycles

b-values decrease with increasing crustal depths

Spada et al., 2013

b-value shows linear relation with stress in different tectonic regimes

Spatial mapping of *b*-value changes to detect highly-stressed asperity regions

Schorlemmer et al., 2005

Tormann et al., 2015

What additional factors influence *b*?

b-value variations with fault roughness

Surface roughness controls spatial distribution of acoustic emissions during stickslip sliding

b-value increase on rougher faults

Geometric dimension and magnitude distribution is governed by fault roughness

Stress fields are highly heterogenous for rough faults

What promotes larger seismic ruptures?

Both stress and geometric effects should be consider to explain variations in *b*

- Additional Slides -

???

Physical controls on statistical seismicity distributions such as Gutenberg-Richter distribution:

1) Geometric effects

 $\log_{10}(N) \sim b \log_{10}(L^{3/c})$

Tchalenko and Ambraseys 1970; King 1983

2) Dynamic effects and stress

Schorlemmer et al. 2005; Candela et al., 2011

b-value changes due to tidal forcing and seismicity along a ring-shaped seamount fault

Even small stress variations in the lab can significantly modify *b*-values

Riviere et al. 2018

UNIVERSITY OF CALIFORNIA SANTA CRUZ

Different initial conditions, same loading procedure

Surface roughness and power-spectral-density

Applied stress and acoustic emission activity

Waveforms of a large slip event and 'typical' AE

Applied stress and acoustic emission activity

SCEC CSM workshop – Pomona – January 2019

Seismicity distributions across strike-slip faults are influenced by fault roughness

UNIVERSITY OF CALIFORNIA SANTA CRUZ