Quantifying the heterogeneity of the stress field derived from local and global borehole data Martin Schoenball¹ and Nicholas C. Davatzes² ¹ Lawrence Berkeley National Laboratory, ² Temple University # WSM Quality Ranking | Stress
Indicator | A Quality S _{Hmax} believed to be within ± 15° | B Quality S _{Hmax} believed to be within ± 15-20° | C Quality S _{Hmax} believed to be within ± 20-25° | D Quality Questionable S _{Hmax} orientation (± 25-40°) | E Quality no reliable information (> ± 40°) | |---------------------------------|--|---|---|---|--| | Borehole
breakout | ≥ 10 distinct breakout zones and combined length ≥ 100 m in a single well with s.d. ≤ 12° | ≥ 6 distinct breakout zones and combined length > 40 m in a single well with s.d. ≤ 20° | ≥ 4 distinct breakouts
and combined length
≥ 20 m with s.d. ≤ 25° | < 4 distinct breakouts
or < 20 m combined
length in a single well
with s.d. ≤40° | Wells without reliable breakouts or s.d. > 40° | | Drilling
induced
fracture | ≥ 10 distinct fra
zones in a singl
with a combined
length ≥ 100 m and
s.d. ≤ 12° | | tangled conce
ality vs. Stress
with a combined
length ≥ 20 m and s.d.
≤ 25° | Heterogeneity Zones in a single well or a combined length < 20 m and s.d. ≤ 40° | wells without fracture zones or s.d. > 40° | (from Heidbach et al., 2010) ## Stress around wellbores Good for near-vertical wells (DEVI<10°) Non-linear and non-unique problem for larger deviations ## Well deviations at Coso Geothermal Field 50 % of well sections are deviated by more than 10° from vertical ## Well deviations at Coso Geothermal Field 80 % of deep* well sections are deviated by more than 10° from vertical ^{*} below sea level #### Coso Geothermal Field - Young volcanic system - Most recent eruptions ~40 kyr ago - Situated in the Eastern California Shear Zone - Transition from San Andreas Fault to Basin and Ranges systems - Accommodates ¼ of relative plate motion - Geothermal exploration in 1970s 1980s - 270 MW capacity online since 1990 - > 170 wells drilled ### Coso Geothermal Field # Well trajectories ## Approach to deviated wells - Forward problem solved by Mastin (1988), Peška & Zoback (1995) - Full inversion schemes do not provide details on non-uniqueness of best solution - Use a grid search instead - Interpretation of stress indicators - Stress indicators in deviated wells do not coincide with stresses in geographic coordinates - Measure orientation relative to high side of well - Assumptions - S_v is a principal stress (same as with standard analysis of vertical wells) - Constant ratio of S_{Hmax} , S_{hmin} and p_p to S_v ## Grid search - Perform grid search for best-fitting stress state - For each stress magnitude state given by S_{Hmax}/S_{ν} , S_{hmin}/S_{ν} - For each orientation of S_{Hmax} - For each failure stress indicator Sum misfit between observed and expected location # Best-fitting stress magnitude state – for any orientation of S_{Hmax} # Which S_{Hmax} orientation for best-fitting stress state? # Best-fitting stress magnitude state – for any orientation of S_{Hmax} # Which S_{Hmax} orientation for best-fitting stress state? ## How do best-fitting stress orientations compare? Difference of preferred orientations $|azi(S_{Hmax,58A-10}) - azi(S_{Hmax,58-10})|$ ## Local stress orientation - Borehole breakout - Drilling-induced fracture - Petal-centerline fracture - Median filter, 21 samples - – Median filter, 40 m - Standard deviation #### Local stress orientation ## Local stress map # Derived stress orientation vs. logged interval ## Global World Stress Map borehole data ## Stress heterogeneity vs. GSHAP #### **Conclusions** - Deviated wells sample the stress field in different directions - Gather information about stress tensor in various orientations - Results can be non-unique - Heterogeneity of stress is a site characteristic - Large standard deviation of about 23° at Coso - Stress indicators spanning ≥600 m needed for a reliable stress characterization (orientation and standard deviation) - Correlation between stress heterogeneity and seismic activity suggested ## (Almost) full story: Schoenball, M., & Davatzes, N. C. (2017). Quantifying the heterogeneity of the tectonic stress field using borehole data. *Journal of Geophysical Research: Solid Earth*, 122(8), 6737–6756. https://doi.org/10.1002/2017JB014370