

Quantifying the heterogeneity of the stress field derived from local and global borehole data

Martin Schoenball¹ and Nicholas C. Davatzes²

¹ Lawrence Berkeley National Laboratory, ² Temple University

WSM Quality Ranking

Stress Indicator	A Quality S _{Hmax} believed to be within ± 15°	B Quality S _{Hmax} believed to be within ± 15-20°	C Quality S _{Hmax} believed to be within ± 20-25°	D Quality Questionable S _{Hmax} orientation (± 25-40°)	E Quality no reliable information (> ± 40°)
Borehole breakout	≥ 10 distinct breakout zones and combined length ≥ 100 m in a single well with s.d. ≤ 12°	≥ 6 distinct breakout zones and combined length > 40 m in a single well with s.d. ≤ 20°	≥ 4 distinct breakouts and combined length ≥ 20 m with s.d. ≤ 25°	< 4 distinct breakouts or < 20 m combined length in a single well with s.d. ≤40°	Wells without reliable breakouts or s.d. > 40°
Drilling induced fracture	≥ 10 distinct fra zones in a singl with a combined length ≥ 100 m and s.d. ≤ 12°		tangled conce ality vs. Stress with a combined length ≥ 20 m and s.d. ≤ 25°	Heterogeneity Zones in a single well or a combined length < 20 m and s.d. ≤ 40°	wells without fracture zones or s.d. > 40°

(from Heidbach et al., 2010)

Stress around wellbores

Good for near-vertical wells (DEVI<10°)
Non-linear and non-unique problem for larger deviations

Well deviations at Coso Geothermal Field

50 % of well sections are deviated by more than 10° from vertical

Well deviations at Coso Geothermal Field

80 % of deep* well sections are deviated by more than 10° from vertical

^{*} below sea level

Coso Geothermal Field

- Young volcanic system
 - Most recent eruptions ~40 kyr ago
- Situated in the Eastern California Shear Zone
 - Transition from San Andreas Fault to Basin and Ranges systems
 - Accommodates ¼ of relative plate motion
- Geothermal exploration in 1970s 1980s
 - 270 MW capacity online since 1990
 - > 170 wells drilled

Coso Geothermal Field

Well trajectories

Approach to deviated wells

- Forward problem solved by Mastin (1988), Peška & Zoback (1995)
- Full inversion schemes do not provide details on non-uniqueness of best solution
 - Use a grid search instead
- Interpretation of stress indicators
 - Stress indicators in deviated wells do not coincide with stresses in geographic coordinates
 - Measure orientation relative to high side of well
- Assumptions
 - S_v is a principal stress (same as with standard analysis of vertical wells)
 - Constant ratio of S_{Hmax} , S_{hmin} and p_p to S_v

Grid search

- Perform grid search for best-fitting stress state
 - For each stress magnitude state given by S_{Hmax}/S_{ν} , S_{hmin}/S_{ν}
 - For each orientation of S_{Hmax}
 - For each failure stress indicator

Sum misfit between observed and expected location

Best-fitting stress magnitude state – for any orientation of S_{Hmax}

Which S_{Hmax} orientation for best-fitting stress state?

Best-fitting stress magnitude state – for any orientation of S_{Hmax}

Which S_{Hmax} orientation for best-fitting stress state?

How do best-fitting stress orientations compare?

Difference of preferred orientations $|azi(S_{Hmax,58A-10}) - azi(S_{Hmax,58-10})|$

Local stress orientation

- Borehole breakout
- Drilling-induced fracture
 - Petal-centerline fracture
- Median filter, 21 samples
- – Median filter, 40 m
 - Standard deviation

Local stress orientation

Local stress map

Derived stress orientation vs. logged interval

Global World Stress Map borehole data

Stress heterogeneity vs. GSHAP

Conclusions

- Deviated wells sample the stress field in different directions
 - Gather information about stress tensor in various orientations
 - Results can be non-unique
- Heterogeneity of stress is a site characteristic
 - Large standard deviation of about 23° at Coso
 - Stress indicators spanning ≥600 m needed for a reliable stress characterization (orientation and standard deviation)
 - Correlation between stress heterogeneity and seismic activity suggested

(Almost) full story:

Schoenball, M., & Davatzes, N. C. (2017). Quantifying the heterogeneity of the tectonic stress field using borehole data. *Journal of Geophysical Research: Solid Earth*, 122(8), 6737–6756. https://doi.org/10.1002/2017JB014370