Predictions of the brittle-ductile transition and lithospheric stress from viscoelastic earthquake cycle simulations

KALI ALLISON (UNIVERSITY OF MARYLAND) AND ERIC DUNHAM (STANFORD UNIVERSITY)

Transitions in deformation style

(diagrams show a vertical strike-slip fault for simplicity)

Combining friction and viscoelasticity

Combining friction and viscoelasticity

Effect of assuming strain rate

Building the model

method described in Allison and Dunham (2017)

Building the model

method described in Allison and Dunham (2017)

recurrence interval: 307 years

nucleation depth: 14.5 km

down-dip limit of eq. slip: 19 km

bulk viscous flow prevents interseismic fault creep

recurrence interval: 266 years

nucleation depth: 14.5 km

down-dip limit of eq. slip: 19 km

red: contoured every 1 s

blue: contoured every 10 years

Shear stress on the fault through cycle

Using a steady-state calculation to characterize stress

150

200

How accurate was the estimate which was based on a steady-state flow and a constant reference strain rate?

The strain rate beneath the fault is higher than 10^{-14} s⁻¹.

This pushes the brittle-ductile transition slightly deeper than was estimated.

The strain rate beneath the fault is higher than 10^{-14} s⁻¹.

This pushes the brittle-ductile transition slightly deeper than was estimated.

Far from the fault, the strain rate is much lower, and therefore the transition is much shallower.

What could change these results?

- assumed composition, water content
- geotherm
- pore fluid pressure
- shear heating
- additional weakening mechanisms (e.g. foliation)

Background geotherm T_{amb}

The warmer the geotherm, the shallower the BDT.

Decreasing pore pressure produces a lower effective normal stress, and therefore a lower shear stress.

Shear heating

frictional and viscous dissipation generate heat

w = 0.1 - 10 mfrictional shear zone width

viscous strain rates and stresses change

$$\frac{\partial \gamma_{ij}^{V}}{\partial t} = \eta_{\text{eff}}^{-1} \sigma_{ij}$$

increasing temperature decreases the effective viscosity

$$\eta_{\text{eff}} = e^{B/T} A^{-1} / (\bar{\tau}^{n-1})$$

recurrence interval: 386.5 years

nucleation depth: 13.1 km

down-dip limit of eq. slip: 16.1 km

recurrence interval: 307 years

nucleation depth: 14 km

down-dip limit of eq. slip: 19.1 km

red: contoured every 1 s

blue: contoured every 10 years

Transient temperature rise on top of ambient geotherm

Relative importance of frictional and viscous shear heating

LAB 60 km, λ = 0.37, w = 1 m

Relative importance of frictional and viscous shear heating

LAB 60 km, λ = 0.37, w = 1 m

Shear heating significantly weakens the root of the fault, shallowing the BDT.

Effect of varying geotherm

viscoelastic, no shear heating

thermomechanical

Effect of varying pore pressure $\lambda = \frac{P_f}{\rho qz}$

Conclusions

- Assuming steady-state flow and a constant reference strain rate does not capture the spatial pattern of stress on or off of the fault.
- However, a steady-state simulation in which the fault slips steadily without the transient effects of earthquakes, can be used to predict stress in the lithosphere as a function of rheology, friction, and plate rate information (with a significant reduction in computational cost).
- Modelling approaches like this could be used to evaluate the consistency of between the CRM and the CSM.