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Combining friction and viscoelasticity
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Effect of assuming strain rate
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Building the model
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recurrence interval: 266 years
nucleation depth: 14.5 km
down-dip limit of eq. slip: 19 km
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bulk viscous flow prevents 
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Shear stress on the fault through cycle



Using a steady-state calculation to 
characterize stress steady-state shear stress



How accurate was 
the estimate which 
was based on a 
steady-state flow 
and a constant 
reference strain 
rate?



The strain rate 
beneath the fault is 
higher than 10-14 s-1.

This pushes the 
brittle-ductile 
transition slightly 
deeper than was 
estimated.
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Far from the fault, 
the strain rate is 
much lower, and 
therefore the 
transition is much 
shallower.



What could change these results?

• assumed composition, water 
content

• geotherm

• pore fluid pressure

• shear heating

• additional weakening 
mechanisms (e.g. foliation)



Background geotherm Tamb

figure from Lekic (2011)
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The warmer the geotherm, the shallower the BDT.
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Decreasing pore pressure produces a lower effective 
normal stress, and therefore a lower shear stress.

increasing l

LAB 50 km

Moho



Shear heating
frictional and viscous 
dissipation generate 
heat

increasing temperature 
decreases the effective 
viscosity

viscous strain rates 
and stresses change
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Viscoelastic,
no shear heating

recurrence interval: 307 years
nucleation depth: 14 km
down-dip limit of eq. slip: 19.1 km

red: contoured every 1 s
blue: contoured every 10 years

recurrence interval: 386.5 years
nucleation depth: 13.1 km
down-dip limit of eq. slip: 16.1 km

Thermomechanical,
w = 1 m

LAB 50 km, l = 0.37



Transient temperature rise on top of ambient geotherm
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Relative importance of frictional and viscous 
shear heating
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Shear heating 
significantly 
weakens the root 
of the fault, 
shallowing the 
BDT.
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l = 0.37

Effect of varying geotherm
viscoelastic, no shear heating thermomechanical
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Effect of varying pore pressure
viscoelastic, no shear heating thermomechanical
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Conclusions
• Assuming steady-state flow and a constant reference strain 

rate does not capture the spatial pattern of stress on or off of 
the fault.

• However, a steady-state simulation in which the fault slips 
steadily without the transient effects of earthquakes, can be 
used to predict stress in the lithosphere as a function of 
rheology, friction, and plate rate information (with a significant 
reduction in computational cost).

• Modelling approaches like this could be used to evaluate 
the consistency of between the CRM and the CSM.




