

Using Earthquake Clustering for Short-Term Forecasting

Dr. Lucile Jones
Standing in for Andy Michael, USGS Seismologist
Chief Scientist, Multi Hazards Demonstration Project
U. S. Geological Survey

What is Operational in California?

- Aftershock statistics based on Reasenberg & Jones (1989)
- Automatic updates of STEP aftershock model probability of earthquake shaking
- Foreshock model (based on Agnew and Jones, 1992) used with discussion after possible foreshocks
- STEP is being tested in CSEP

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Aftershock probabilities

- Probability determined from Omori's Law and Gutenberg-Richter relation
 - Reasenberg and Jones, 1989
- Rupture forecast, not shaking
- First issued as public statements in 1989

N = f(1/t)

Aftershock probabilities

- Probability determined from Omori's Law and Gutenberg-Richter relation
 - Reasenberg and Jones, 1989
- Rupture forecast, not shaking
- First issued as public statements in 1989

Aftershock probabilities

- Probability determined from Omori's Law and • **Gutenberg-Richter relation**
 - Reasenberg and Jones, 1989
- Rupture forecast, not shaking ightarrow
- First issued as public statements in 1989 \bullet

Reasenberg and Jones (1989) $\lambda(t,M) = 10^{a'+b(M_i-M)}(t+c)^{-p}$ $\lambda(t,M) = k 10^{bM_i} 10^{-bM} (t+c)^{-bM_i}$ Overall modified-Omori Rate **Productivity** Decay Productivity vs. Probability of m≥M Initiating Event given an Earthquake Magnitude $P(m \ge M | E)$ (Mmin=0)

Small earthquakes are more common

Each unit smaller has 10 times more earthquakes

But what if we look below N=1?

Self-similar Model

Foreshocks as mainshocks with large aftershocks

> Log (Number per sequence)

Evidence for Self-similar Model

- Decay of foreshocks
- Magnitude distribution

Evidence for Self-similar Model

- Decay of foreshocks
- Magnitude distribution

This is exactly what hannens

 Rate of mainshocks after foreshocks

Rate of aftershocks after mainshocks

Wednesday, July 27, 2011

≊USGS

Earthquakes 🛠 Volcanoes 🛠 Landslides 🛠 Floor

The parameters var

Generic Aftershock Model

Generic parameters calculated using California aftershock sequences (1932-1987)

Only requires mainshock magnitude as input

Days following mainshock

California aftershock rates (1988-2003) vs. Generic model

Issued as probability statement

'n

ć

- Predicting events without spatial information
- Time decay not communicated
 - Message on Internet can be days out of date

	CISN California Integrated California's Partner to the ANSS Avanced National Selamic System CGS USGS OES Caltech UC Cost USGS OES Caltech UC Caltech
	09/29/2004 AFTERSHOCK PROBABILITIES
Home	Published on Thu Sep 30 11:45:10 2004 PDT
thquake Info	Southern California Seismic Network: a cooperative project of U.S. Geological Survey, Pasadena, California
n & Updates	Caltech Seismological Laboratory, Pasadena, California
roducta &	Version 1: This report supersedes any earlier probability reports about this event.
	- MAINSHOCK
he We Are	Magnitude : 5.0 Ml
Calendar	Time : 29 Sep 2004 03:54:53 PM PDT : 25 Sep 2004 03:54:53 PM PDT : 25 Sep 2004 23:54:53 PM PDT : 25 Sep 2004 23:54:55 PM PDT : 25 Sep 2004 23:55 PM PDT : 25
Links &	Coordinates : 35 deg. 23.31 min. N, 118 deg. 37.24 min. M 17 mi. (27 km) ME of Arvin, CA
onlact Us	Event ID : 14095628
	STRONG AFTERSHOCKS (Magnitude 5 and larger) -

1

At this time (17 hours after the mainshock) the probability of a strong and possibly damaging aftershock IN THE NEXT 7 DAYS is less than 10 PERCENT.

EARTHQUAKES LARGER THAN THE MAINSHOCK -

Most likely, the recent mainshock will be the largest in the sequence. However, there is a small chance (APPROXIMATELY 5 TO 10 PERCENT) of an earthquake equal to or larger than this mainshock in the next 7 days.

WEAK AFTERSHOCKS (Magnitude 3 to 5) -

In addition, up to approximately 10 SMALL AFTERSHOCKS are expected in the same 7-DAY PERIOD and may be feit locally.

This probability report is based on the statistics of aftershocks typical for California. This is not an exact prediction, but only a rough guide to expected aftershock activity. This probability report may be revised as more information becomes available.

Short Term Earthquake Probabilities (STEP)

- 24 hour forecast
- probability of exceeding MMI VI
- automatic calculations
- online
- real-time
- updated every half-hour

The Aftershock Models Sequence Specific Model

needs minimum of 100 aftershocks before estimating parameters

One set of model parameters (Gutenberg-Richter and modified Omori laws) calculated for the entire aftershock sequence

model complexity

AUTIN

The aftershock zone

The Aftershock Models Spatially Varying Model

model complexity

INASI

Magnitude

0.6

117

0.8

-116.8

5

1.2

-116.6

-116.4

-116.2

Magnitude

5

1.2

-116.6

-116.4

-116.2

0.8

-116.8

0.6

117

Gutenberg-Richter and modified Omori law parameters are mapped at 5km spacing

Our forecasts are consistent with actual earthquakes

Should we say the same thing after every event?

Agnew and Jones, JGR, 1991:

"But it ought to be possible to do better:

Should we say the same thing after every event?

Agnew and Jones, JGR, 1991:

"But it ought to be possible to do better:

the probability of a very large earthquake should be higher if the candidate foreshock were to occur near a fault capable of producing that mainshock than if it were located in an area where we believe such a mainshock to be unlikely.

Should we say the same thing after every event?

Agnew and Jones, JGR, 1991:

"But it ought to be possible to do better:

the probability of a very large earthquake should be higher if the candidate foreshock were to occur near a fault capable of producing that mainshock than if it were located in an area where we believe such a mainshock to be unlikely.

Moreover, the chance of a candidate earthquake actually being a foreshock should be higher if the rate of background (nonforeshock) activity were low."

Mainshocks: which we want to forecast Foreshocks: which are always followed by mainshocks Background Events: which are never followed by mainshocks

Mainshocks: which we want to forecast Foreshocks: which are always followed by mainshocks Background Events: which are never followed by mainshocks

When a moderate event occurs we can't tell if it is a **foreshock** or a **background** event.

Mainshocks: which we want to forecast Foreshocks: which are always followed by mainshocks Background Events: which are never followed by mainshocks

When a moderate event occurs we can't tell if it is a **foreshock** or a **background** event.

We calculate the probability that it is a foreshock by

PF =

Rate of Foreshocks

Rate of Foreshocks + Rate of Background Events

Mainshocks: which we want to forecast Foreshocks: which are always followed by mainshocks Background Events: which are never followed by mainshocks

When a moderate event occurs we can't tell if it is a **foreshock** or a **background** event.

We calculate the probability that it is a foreshock by

Rate of Foreshocks

Rate of Foreshocks + Rate of Background Events

Rate of Foreshocks = Rate of Mainshocks * Probability of Foreshocks Before Mainshocks

PF =

Seemingly good behavior

PF = Rate of Mainshocks * Prob of Foreshocks | Mainshock (Rate of Mainshocks * Prob of Foreshocks | Mainshock + Rate of Background Events)

The resulting probability goes
up with higher mainshock rate and
down with higher background rate.

The rate at which mainshocks are preceded by foreshocks: 50% of San Andreas stress province M≥5 mainshocks have an M≥2 foreshock within 3 days, and 10 km. (Jones, 1984; Michael & Jones, 1998).

M4.8 Event At Bombay Beach On March 24, 2009 Could It Be A Foreshock To A Larger Earthquake In The Next 3 Days?

Wednesday, July 27, 2011

M4.8 Event At Bombay Beach On March 24, 2009 Could It Be A Foreshock To A Larger Earthquake In The Next 3 Days?

M4.8 Event At Bombay Beach On March 24, 2009 Could It Be A Foreshock To A Larger Earthquake In The Next 3 Days?

Reasenberg & Jones, 1989: Probability of M4.8 being followed by an M≥7 event PF = 0.05%

M4.8 Event At Bombay Beach On March 24, 2009 Could It Be A Foreshock To A Larger Earthquake In The Next 3 Days?

Reasenberg & Jones, 1989: Probability of M4.8 being followed by an M≥7 event PF = 0.05%

Agnew and Jones, 1991: PF = 4%

Fault Behavior and Characteristic Earthquakes: Examples From the Wasatch and San Andreas Fault Zones

Wednesday, July 27, 2011

Gutenberg-Richter + Characteristic Earthquake Relationships – Michael 2010 $N(m \ge M) = 10^{a-bM} + DH(M_c - M)$

Rate of Characteristic Earthquake

Heaviside Function Magnitude of Characteristic Earthquake

Gutenberg-Richter + Characteristic Earthquake Relationships – Michael 2010 $N(m \ge M) = 10^{a-bM} + DH(M_c - M)$

Rate of Characteristic Earthquake

Heaviside Function Magnitude of Characteristic Earthquake

$$P(m \ge M \mid E) = \frac{10^{a-bM} + DH(M_c - M)}{10^{a-bM_{\min}} + D}$$

Wednesday, July 27, 2011

Approximate the Probability of an $M \ge M_c$ event following an $M=M_i$ event

assuming: rate of M=0 events $10^a >> D$ the rate of M_c events rate of M_i events $10^{a-bMi} >> D$ the rate of M_c events $D >> 10^{a-bMc}$ the Gutenberg-Richter rate of M≥M_c small probabilities so P≈ λ

Characteristic Reasenberg & Jones Approximate Model $P(M \ge M_c) \approx kI_t \frac{D}{10^{a-bM_i}}$

Agnew & Jones Approximate Model

$$P(C \mid F \cup B) \approx \frac{2N_m}{(10^{b\mu} - 10^{-b\mu})} \frac{D}{10^{a - bM_i}}$$

Both models are proportional to the rate of characteristic events inversely proportional to the rate of initiating events ≥USGS

ETAS-based simulations for UCERF3?

- a) For given start time and forecast duration, collect all observed M≥2.5 events, plus randomly sample spontaneous (non-triggered) events from the model.
- b) For each main shock in (a), randomly sample times of occurrence of **Primary** aftershocks from modified Omori law.
- c) Use the long-term nucleation rate of M>2.5 events throughout the region, plus a spatial decay of *R*^{-*n*} from the main shock surface, to sample a grid-cell location for each primary aftershock.

ETAS-based simulations for UCERF3?

- a) For given start time and forecast duration, collect all observed M≥2.5 events, plus randomly sample spontaneous (non-triggered) events from the model.
- b) For each main shock in (a), randomly sample times of occurrence of **Primary** aftershocks from modified Omori law.
- c) Use the long-term nucleation rate of M>2.5 events throughout the region, plus a spatial decay of *R*^{-*n*} from the main shock surface, to sample a grid-cell location for each primary aftershock.

