

Using Earthquake Clustering for Short-Term Forecasting

Dr. Lucile Jones

Standing in for Andy Michael, USGS Seismologist Chief Scientist, Multi Hazards Demonstration Project U. S. Geological Survey

What is Operational in California?

- Aftershock statistics based on Reasenberg & Jones (1989)
- Automatic updates of STEP aftershock model probability of earthquake shaking
- Foreshock model (based on Agnew and Jones, 1992) used with discussion after possible foreshocks
- STEP is being tested in CSEP

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Earthquake Clustering

Aftershocks/Foreshocks > 50% of all events in California

Wednesday, July 27, 2011

Aftershock probabilities

- Probability determined from Omori's Law and Gutenberg-Richter relation
	- Reasenberg and Jones, 1989
- Rupture forecast, not shaking
- First issued as public statements in 1989

 $N = f(1/t)$

Aftershock probabilities

- Probability determined from Omori's Law and Gutenberg-Richter relation
	- Reasenberg and Jones, 1989
- Rupture forecast, not shaking
- First issued as public statements in 1989

 $N = f(1/t)$

Aftershock probabilities

- Probability determined from Omori's Law and Gutenberg-Richter relation
	- Reasenberg and Jones, 1989
- Rupture forecast, not shaking
- First issued as public statements in 1989

IsusGS

$\lambda(t,M) = k10^{bM} (t+c)^{-p}$ Rate **Overall** Productivity Productivity vs. Initiating Event Magnitude Probability of m≥M given an Earthquake P(m≥M|E) (Mmin=0) modified,Omori Decay Reasenberg and Jones (1989) $\lambda(t, M) = 10^{a' + b(M_i - M)} (t + c)^{-p}$

Small earthquakes are more common

Each unit smaller has 10 times more earthquakes

But what if we look below N=1?

Self-similar Model

Foreshocks as mainshocks with large aftershocks

> Log (Number per sequence)

Evidence for Self-similar Model

- Decay of foreshocks
- Magnitude distribution

Evidence for Self-similar Model

- Decay of foreshocks
- Magnitude distribution

Magnitude("Aftershock") — Magnitude(Initial event)

This is exactly what hannens

• Rate of mainshocks afte foreshocks

 $=$

• Rate of aftershocks afte mainshocks

をUSGS

Earthquakes \clubsuit Volcanoes \clubsuit Landslides \clubsuit Floods

The parameters var

Hector Mine Joshua Tree

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

of Sequences

Generic Aftershock Model

Generic parameters calculated using California aftershock sequences (1932-1987)

Only requires mainshock magnitude as input

Days following mainshock

California aftershock rates (1988-2003) vs. Generic model

Issued as probability statement

- **Predicting events without spatial information**
- Time decay not communicated
	- Message on Internet can be days out of date

Barnett Street

At this time (17 hours after the mainshock) the probability of a strong and possibly damaging aftershock IN THE NEXT 7 DAYS is less than 10 PERCENT.

EARTHQUAKES LARGER THAN THE MAINSHOCK -

Most likely, the recent mainshock will be the largest in the sequence. However, there is a small chance (APPROXIMATELY 5 TO 10 PERCENT) of an earthquake equal to or larger than this mainshock in the next 7 days.

WEAK AFTERSHOCKS (Magnitude 3 to 5) -

In addition, up to approximately 10 SMALL AFTERSHOCKS are expected in the same 7-DAY PERIOD and may be felt locally.

This probability report is based on the statistics of aftershocks typical for California. This is not an exact prediction, but only a rough guide to expected aftershock activity. This probability report may be revised as more information becomes available.

Short Term Earthquake Probabilities (STEP)

- 24 hour forecast
- probability of exceeding MMI VI
- automatic calculations
- online
- real-time
- updated every half-hour

Sequence Specific Model The Aftershock Models

needs minimum of 100 aftershocks before estimating parameters

One set of model parameters (Gutenberg-Richter and modified Omori laws) calculated for the entire aftershock sequence

medium

model complexity

The aftershock zone

Spatially Varying Model The Aftershock Models **The Aftershock Model**

Gutenberg-Richter and modified Omori law parameters are mapped at 5km spacing

Magnitude

 $b = 1.12$

 $+/- 0.02$

 0.6

-117

 0.8

 -116.8

سىت

п

□

5

 1.2

 -116.6

 -116.4

 -116.2

Wednesday, July 27, 2011

IsusGS

Magnitude

 0.8

 -116.8

 0.6

-117

 1.2

 -116.6

 -116.4

 -116.2

modified Omori law parameters are mapped at 5km spacing

IsusGS

Our forecasts are consistent with actual earthquakes

Should we say the same thing after every event?

Agnew and Jones, JGR, 1991:

"But it ought to be possible to do better:

Should we say the same thing after every event?

Agnew and Jones, JGR, 1991:

"But it ought to be possible to do better:

the probability of a very large earthquake should be higher if the candidate foreshock were to occur near a fault capable of producing that mainshock than if it were located in an area where we believe such a mainshock to be unlikely.

Should we say the same thing after every event?

Agnew and Jones, JGR, 1991:

"But it ought to be possible to do better:

the probability of a very large earthquake should be higher if the candidate foreshock were to occur near a fault capable of producing that mainshock than if it were located in an area where we believe such a mainshock to be unlikely.

Moreover, the chance of a candidate earthquake actually being a foreshock should be higher if the rate of background (nonforeshock) activity were low."

Mainshocks: which we want to forecast **Foreshocks**: which are always followed by mainshocks **Background Events**: which are never followed by mainshocks

Mainshocks: which we want to forecast **Foreshocks**: which are always followed by mainshocks **Background Events**: which are never followed by mainshocks

When a moderate event occurs we can't tell if it is a **foreshock** or a **background** event.

Mainshocks: which we want to forecast **Foreshocks**: which are always followed by mainshocks **Background Events**: which are never followed by mainshocks

When a moderate event occurs we can't tell if it is a **foreshock** or a **background** event.

We calculate the probability that it is a **foreshock** by

PF = $Rate of Foreshocks$

Rate of Foreshocks + Rate of **Background Events**

Mainshocks: which we want to forecast **Foreshocks**: which are always followed by mainshocks **Background Events**: which are never followed by mainshocks

When a moderate event occurs we can't tell if it is a **foreshock** or a **background** event.

We calculate the probability that it is a **foreshock** by

PF = $Rate of Foreshocks$

Rate of Foreshocks + Rate of Background Events

Rate of **Foreshocks** = Rate of **Mainshocks** * Probability of **Foreshocks** Before **Mainshocks**

Seemingly good behavior

 $PF =$ Rate of Mainshocks $*$ Prob of Foreshocks | Mainshock (Rate of Mainshocks * Prob of Foreshocks | Mainshock + **Rate of Background Events)**

The resulting probability goes •up with higher mainshock rate and • down with higher background rate.

The rate at which mainshocks are preceded by foreshocks: 50% of San Andreas stress province M≥5 mainshocks have an M≥2 foreshock within 3 days, and 10 km. (Jones, 1984; Michael & Jones, 1998).

M4.8 Event At Bombay Beach On March 24, 2009 Could It Be A Foreshock To A Larger Earthquake In The Next 3 Days?

Wednesday, July 27, 2011

≈USGS

M4.8 Event At Bombay Beach On March 24, 2009 Could It Be A Foreshock To A Larger Earthquake In The Next 3 Days?

M4.8 Event At Bombay Beach On March 24, 2009 Could It Be A Foreshock To A Larger Earthquake In The Next 3 Days?

Reasenberg & Jones, 1989: **Probability** of M4.8 being followed by an M≥7 event $PF = 0.05%$

M4.8 Event At Bombay Beach On March 24, 2009 Could It Be A Foreshock To A Larger Earthquake In The Next 3 Days?

Reasenberg & Jones, 1989: **Probability** of M4.8 being followed by an M≥7 event $PF = 0.05%$

Agnew and Jones, 1991: $PF = 4%$

Fault Behavior and Characteristic Earthquakes: Examples From the Wasatch and San Andreas Fault Zones

Wednesday, July 27, 2011

$N(m \ge M) = 10^{a-bM} + DH(M_c - M)$ Gutenberg-Richter + Characteristic Earthquake Relationships – Michael 2010

Rate of Characteristic **Earthquake**

Heaviside Function

Magnitude of Characteristic **Earthquake**

$N(m \ge M) = 10^{a-bM} + DH(M_c - M)$ Gutenberg-Richter + Characteristic Earthquake Relationships – Michael 2010

Rate of Characteristic **Earthquake**

Heaviside Function

Magnitude of Characteristic **Earthquake**

$$
P(m \ge M \mid E) = \frac{10^{a-bM} + DH(M_c - M)}{10^{a-bM_{min}} + D}
$$

Wednesday, July 27, 2011

י ויי

Approximate the Probability of an M≥M_c event following an M=M_i event

assuming: rate of M=0 events $10^a \gg D$ the rate of M_c events rate of M_i events $10^{a-bM_i} >> D$ the rate of M_c events $D \gg 10^{a-bMC}$ the Gutenberg-Richter rate of M≥M_c small probabilities so P≈λ

Characteristic Reasenberg & Jones Approximate Model $P(M \geq M_c) \approx kI_t$ *D* 10^{a-bM} *i*

Agnew & Jones Approximate Model

$$
P(C \mid F \cup B) \approx \frac{2N_m}{(10^{b\mu} - 10^{-b\mu})} \frac{D}{10^{a-bM_i}}
$$

Both models are proportional to the rate of characteristic events inversely proportional to the rate of initiating events **I**seuses

ETAS-based simulations for UCERF3?

- a) For given start time and forecast duration, collect all observed M≥2.5 events, plus randomly sample spontaneous (non-triggered) events from the model.
- b) For each main shock in (a), randomly sample times of occurrence of *Primary* aftershocks from modified Omori law.
- c) Use the long-term nucleation rate of M>2.5 events throughout the region, plus a spatial decay of $Rⁿ$ from the main shock surface, to sample a grid-cell location for each primary aftershock.

Probability aftershock falls in bin

ETAS-based simulations for UCERF3?

- a) For given start time and forecast duration, collect all observed M≥2.5 events, plus randomly sample spontaneous (non-triggered) events from the model.
- b) For each main shock in (a), randomly sample times of occurrence of *Primary* aftershocks from modified Omori law.
- c) Use the long-term nucleation rate of M>2.5 events throughout the region, plus a spatial decay of $Rⁿ$ from the main shock surface, to sample a grid-cell location for each primary aftershock.

Probability aftershock falls in bin

