SC/EC

2.56 2.53 0.38 0.89 1.25* 1.51 0.95 0.31 10 11 12 9 0.69 .05 2.05* 13 14 16 0.74 0.82 .86 3.31 M≥6.5 Rate 10-3 (num/5yrs) 10⁻⁶ 10⁻⁵ 10-4 10

SCEC/USGS Working Group on Regional Earthquake Likelihood Models (RELM)

5-year forecasting experiments in the California Natural Laboratory

Papers describing 19 RELMs were published in a special issue of *Seismol. Res. Lett.*, February, 2007

Half-time evaluation published by Schorlemmer et al. in *Pure Appl. Geophys.*, 2010

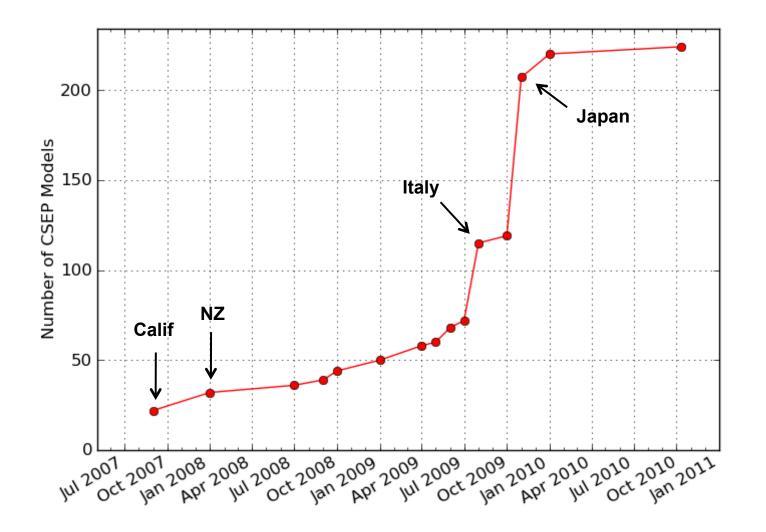
Full 5-year evaluation in production by Zechar et al., 2011

Collaboratory for the Study of Earthquake Predictability

- CSEP goal is rigorous testing of predictability hypotheses and forecasting models
 - Automate blind, prospective testing in a standardized, controlled environment

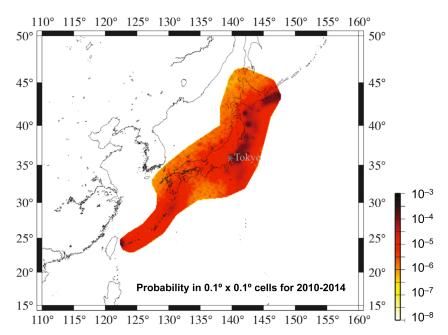
N.B. current testing is only "quasi-prospective" owing to catalog latencies

- Establish experiments in a variety of tectonic environments and on a global scale
- CSEP components:
 - Natural laboratories comprising active fault systems with adequate, authorized data sources for conducting forecasting experiments
 - Testing centers with validated procedures for registering and evaluating prediction experiments
 - Model classes with common target events, forecasting regions, and forecast updating intervals



CSEP Testing Regions & Testing Centers 224 models under test in June, 2011 Western Pacific 16 models China EU **Testing Center Testing Center** ERI SCEC Global **Testing Center Testing Center** Zurich 8 models Beijing ōkyo Los Angeles Italy 48 models Japan California 91 models North-South 46 models Seismic Belt **GNS** Science **Testing Center** Wellington **Testing Center Testing Region** New Zealand 15 models Upcoming Upcoming

CSEP Models Under Test



CSEP Components

Example models

- RELM Regional Earthquake Likelihood Models
- PPE Proximity to Past Earthquakes
- TripleS Simple Smoothed Seismicity
- EEPAS Every Earthquake a Precursor According to Scale
- STEP Short Term Earthquake Probability
- ETAS Epidemic Type Aftershock Sequence
- ETES Epidemic Type Earthquake Sequence
- DBM Double Branching Model
- Coulomb Coulomb stress + rate/state friction

DBM model of Lombardi & Marzocchi (2011) for M ≥ 8 earthquakes in All-Japan testing region

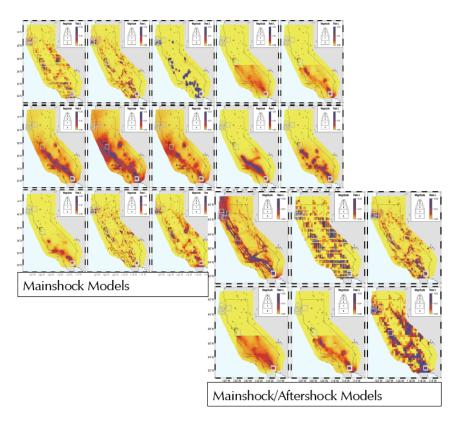
CSEP Components

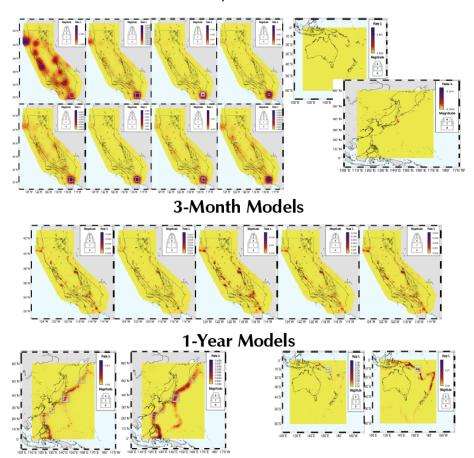
Example models

RELM	Regional Earthquake Likelihood Models
PPE	Proximity to Past Earthquakes
TripleS	Simple Smoothed Seismicity
EEPAS	Every Earthquake a Precursor According to Scale
STEP	Short Term Earthquake Probability
ETAS	Epidemic Type Aftershock Sequence
ETES	Epidemic Type Earthquake Sequence
DBM	Double Branching Model
Coulomb	Coulomb stress + rate/state friction

Example tests

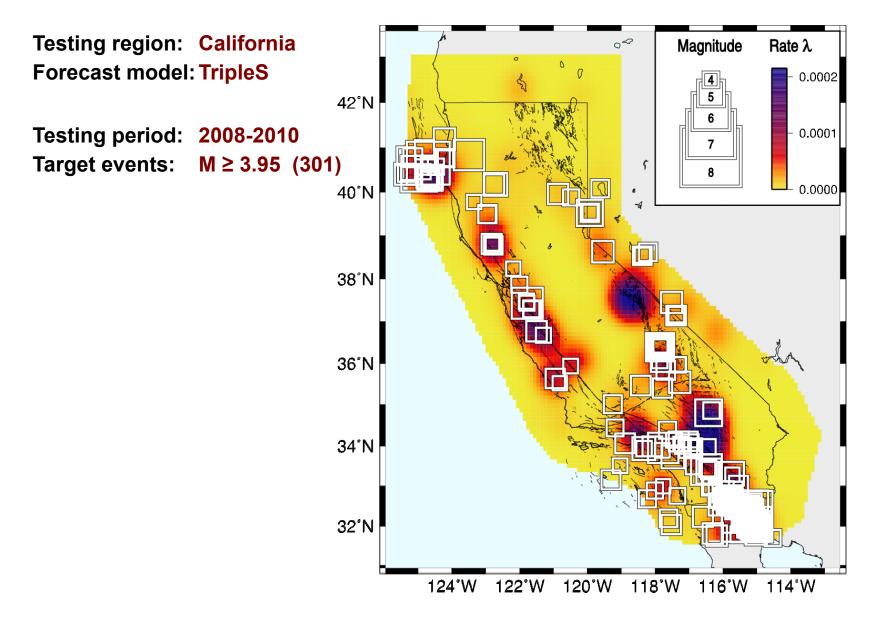
- L-test likelihood
- N-test number
- M-test magnitude
- S-test space
- R-test likelihood ratio
- T-test paired student t
- W-test Wilcoxon signed rank

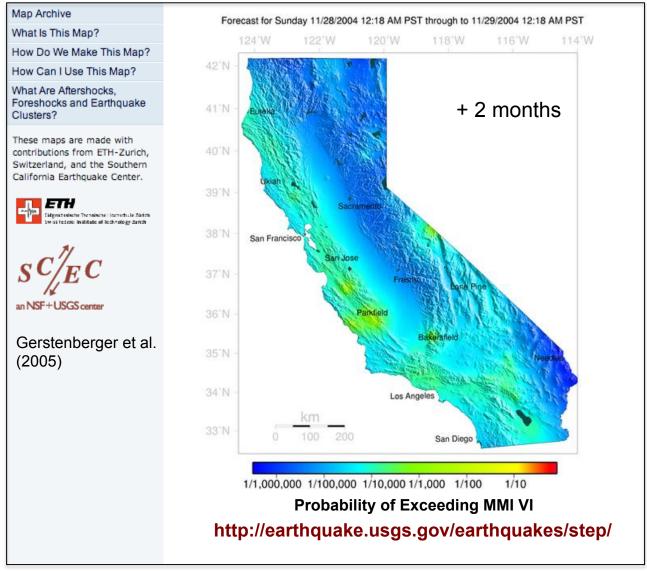




Examples of Forecasting Models Currently Under CSEP Testing in California

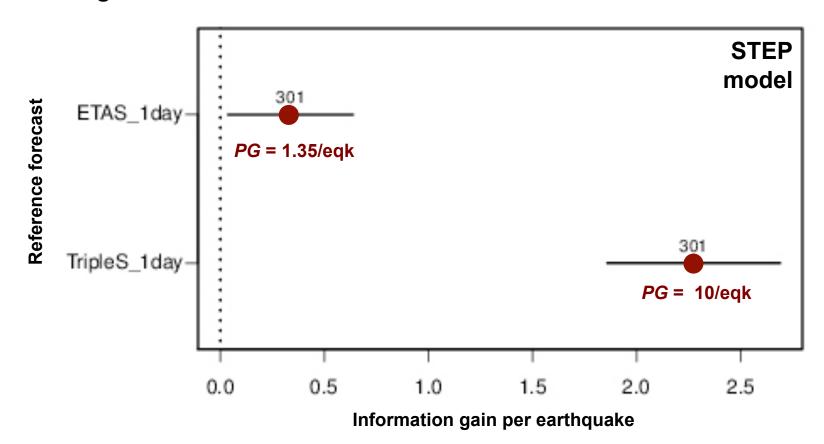
RELM 5-Year Models




Examples of Forecasting Models Currently Under CSEP Testing in California

Short-Term Earthquake Probability (STEP) Model

2004 Parkfield Earthquake


Triggering Models vs. Smoothed Seismicity

Testing region:	California
Target events:	M ≥ 3.95
Testing period:	2008-2010
Testing method:	T-test

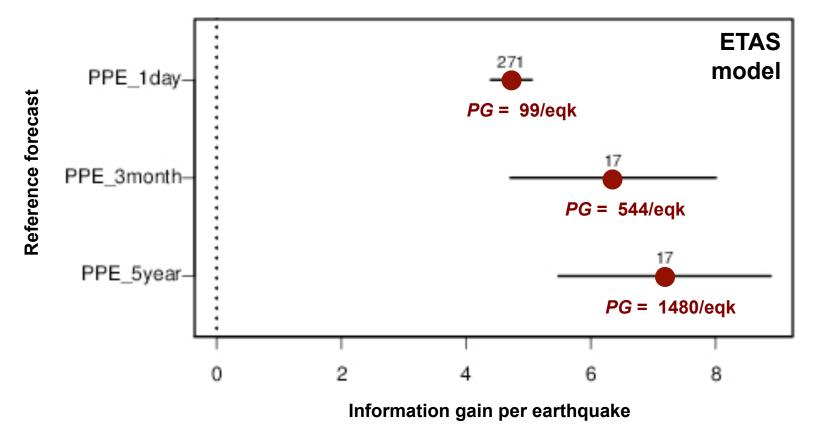
SC/EC

PG = probability gain = P/P_0

IG = information gain = log_e(*PG*)

Japan and NZ Testing Regions

Testing	Model class				
region	1 day	3 month	1 year	3 year	Total
All Japan	5	9	12	9	35
Mainland	2	9	11	7	29
Kanto	4	7	8	8	27
Total	11	25	31	24	91
	1 day	3 month	6 month	5 year	Total
New Zealand	2	8	1	4	15

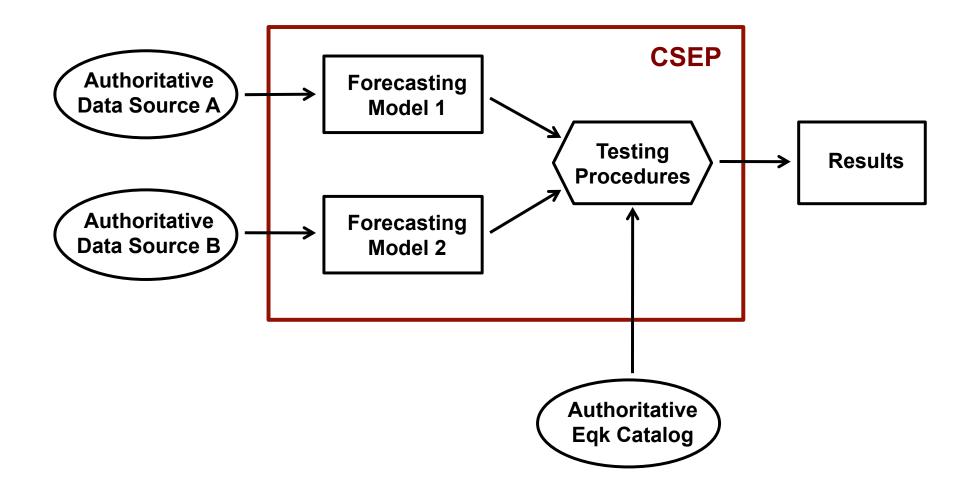


Darfield Aftershock Forecasting

(Gerstenberger & Rhoades)

Testing region:	New Zealand
Target events:	M ≥ 4 (PPE-1d), M ≥ 5 (PPE-3m, PPE-5y)
Testing period:	4 Sept 2010 - 8 Mar 2011
Testing method:	T-test

Summary of Probability Gains


Method	Gain Factor	P _{max} (3 day) SAF-Coachella	Prospectively validated?
Long-term renewal	1-2	1 x 10 ⁻⁴	
Medium-term seismicity patterns	2-4	2 x 10 ⁻⁴	~
Short-term STEP/ETAS	10-100	3 x 10 ⁻³	~
Short-term empirical foreshock probability	100-1000	3 x 10 ⁻²	

<u>ICEF Finding</u>: The probability gains of short-term, seismicity-based forecasts can be high (> 100 relative to long-term forecasts), but the absolute probabilities of large, potentially destructive earthquakes typically remain low (< 1% per day).

CSEP Structure

End

Pathway Towards Practical Utility

- Exploratory research on earthquake precursors
 - Physics-based concepts regarding physical principles and statistical properties of earthquake predictability
- Hypothesis formulation
 - Casting of testable precursory hypotheses
- Hypothesis testing
 - Retrospective and prospective testing of forecasting methods to assess reliability, skill, and information gain
- Implementation
 - Incorporation of significant precursory information into operational earthquake forecasting

What Is Validation?

- Criteria for asserting model is credible representation of the real system, usable for forecasting behaviors (not that "model is true")
 - Consistent with knowledge of the system (includes verification)
 - Not too sensitive to initial conditions or unknown forcings
 - Aleatory and epistemic uncertainties are properly characterized
 - Consistent with relevant observations
- Substantiation that a model is sufficiently accurate in predicting system behaviors
 - within its domain of applicability
 - consistent with its intended purposes
- Techniques
 - Testing against observations (surviving *invalidation*)
 - Competition among models
 - Validation of model components
 - Improvement by data assimilation (inversion)

Problems in Assessing the Quality of Earthquake Forecasts & Predictions

- Scientists are over-optimistic about their own results
- Scientific publications provide insufficient information for independent evaluation
- Active researchers are constantly tweaking their procedures, which become moving targets
- Standards are lacking for testing predictions against reference forecasts
- Data to evaluate prediction experiments are often improperly specified
- Infrastructure for conducting and evaluating long-term prediction experiments has not existed

Validation of Forecasting Methods

Criteria for operational fitness:

- Quality validated by retrospective and prospective testing
- Consistency across temporal and spatial scales
- Value to users

ICEF Recommendations:

- To be qualified for operational use, forecasting methods should be scientifically tested against the available data for reliability and skill, both retrospectively and prospectively.
- All operational models should be under continuous prospective testing.