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Dilatancy-Diffusion

*For Coulomb material, failure is
preceded by microcrack growth and
volume increase

*Leads to pore fluid pressure
decrease

*Followed by diffusion of pore
water and pressure recovery
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A Dilatancy-diffusion-like experiment
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Figure 7.  Time histories of strain step B: (a) mechanical parameters, (b) calculated
P-wave velocities of five-element model, (c) calculated P-wave attenuation of five-
element model. The timing of the velocity and attenuation response was much like the
response to strain step A.

Amplitude, mV Amplitude, mV Amplitude, mV

Amplitude, mV

3000

2000
Trace 2-C
1000 . .

Perer e

-1000

-2000

e

-3000 © ; i L

Y ST TR

150
100
50

-50
100 ©
150 }

150 1 i L

0 10 20 30 40 50
Time, us

Figure 9. Waveforms recorded for trace 2-C at
different loading times (see loading history in Fig. 2).
The end of the P-wave packet used to evaluate fre-
quency content is indicated by f,. The loading times
are (a) 0.4 hr, (b) 24.4 hr, (c) 73 hr, and (d) 120.4 hr.



Clustering of AE (microcracking) before and after fracture of
Intact granite
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Fig. 1 Correlation integral C(r) is shown for pre- and post-nucleation stages of Westerly granite
deformation at 50 MPa confining pressure. C(r) provides a measure of the distribution of
interevent distances. AE events occurring randomly within a fault plane (post-nucleation) will have
a slope D = 2. Events occurring randomly within a volume (pre-nucleation) would have a slope D
= 3. The observed value of D = 2.7 indicates a tendency for events to cluster spatially somewhat
more than would be expected for a purely uncorrelated population.
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FIG. 3. The change in m-slope between background and foreshock microfractures prior to the first

four stick-slip events is illustrated. Slopes are calculated by a least-squares fit. Stations 3 and 4 are the
two transducers located at the center of the sample.



Fault Nucleation
In Granite
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Change in electrical conductivity Failure
during creep in granite
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Stick-
slip
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Strong influence of

‘I : T T !T\TH‘ T T T\!T!w T T T T 11717 T T \TWIH[ T T T T TTTT
stress oscillations on © v=0.1um/s A * CAO A o
. . . i ' - RRELATED -
timing of stick-slip : 95%\3 . o K
occurs above about I
0.1 MPa amplitude N ./ 0.1
- AN
g 0.1 ¢ V=0.01um/s ~ A / s © ° ©
= L' 0 ¥
& C95% =
0] I~ N
= i - UNCORRELATED - L
wn o
o 0.01
»
0.01 -
: \% Correl'd Uncor'd
~ § M2 Tidal r
i Stress 0.1Tum/s| ® o
i (relative to 0.01 um/s | 4 A
L CFF scale) 0.001 ym/s .
0.001
OOO‘I 1 lJ\lH‘ 1 1 l\llHl 1 JJlJH‘ 1 1 \lllHl 1 1 l\lJH‘
107 10 10° 107 10 10°

Frequency, Hz



CONCLUSIONS

Most of the measureable effects shown are either directly or
indirectly the result of strain — generally dilatancy and crack growth

This fact has a number of implications, including:

Strain changes that are large enough to produce measureable effects
are likely to also produce microseismicity, and measureable velocity
changes

*Coseismic changes should be larger and more easily observable than
precursory changes

*Slowly evolving precursory signals should be modulated by tidal
strains

Rupture nucleation is likely to involve a small volume that is deep in
the (wet) crust and is likely to be very difficult to detect or distinguish
from background.



