
Uncertainty Quantification of Dynamic Rupture Modeling
Eric G. Daub1, Hamid Arabnejad2, Derek Groen2

1. Research Engineering Group, Alan Turing Institute, London 2. Department of Computer Science, Brunel University, London

SCEC activities rely heavily on simulations to study rare earthquake 
phenomena. Significant challenge to calibrate, validate, and propagate 
uncertainties through simulations. Complicated further by poor 
observational constraints, missing physics, and computational limitations.

In other words, how do we put error bars on our (known to be) imperfect 
simulations in a principled, robust way? This is a general problem, so broad 
goal is to develop methods that apply to all sorts of simulation 
phenomena.

Surrogate-based Calibration:

Approach aims to fit a cheap computational approximation, sometimes 
known as a “surrogate” or “emulator.”

1.The simulation is run as many times as is feasible, with an effort to use an 
Experimental Design to choose points in a way that maximizes the 
accuracy of the surrogate.

2.These simulations are used to fit an approximation to the simulator based 
on a Gaussian Process Emulator that, once fit, can quicky estimate the 
simulator output for an arbitrary input.

3.The parameter space is then densely queried, and points are compared 
with the available observations while accounting for all uncertainties. 
Points can be systematically ruled out as unlikely using an approach 
known as History Matching.

The result is a set of points that are “Not Ruled Out Yet” that are plausible 
inputs to the simulator given all data and associated modeling 
uncertainties.

Experimental Design

Dynamic Rupture on a 
rough fault. Can we invert 
seismic moment to 
estimate the stress state 
on the fault and calibrate 
“plausible” values for the 
initial stress tensor?

Intentionally spread points out in 
parameter space. Use a Latin 
Hypercube design, which guarantees 
we sample from every quantile of 
each input parameter. Some 
randomness, but generally a good 
strategy given limited computation. 
Goal is not to choose best points for 
fitting the data, but best points for 
effectively approximating the 
simulation.

Gaussian Process Emulator

Fit an approximate model using 
Gaussian Process Regression, a non-
parametric Bayesian regression 
method. GPs tend to be relatively 
robust to overfitting, and give an 
uncertainty for their predictions. 
Once fit, predictions are 
computationally cheap.

History Matching

With fit emulator, can use 
Experimental Design to query 
densely from parameter space and 
compare to observations. With 
History Matching, don’t necessarily 
invert a ”best” solution but rather try 
to rule out points where the 
emulator prediction is implausibly 
different from observations 
(accounting for all uncertainties).

Results

Emulator cross-validation and output: (a) Standard error of fit 
Gaussian Process predictions on validation data set. The 
emulator produces reasonable predictions over much of the 
parameter space. (b) White dots are training points, black dots 
are valid hold-out test points, and red dots are the points where 
cross-validation failed. Failures tend to be in points where the 
simulation behavior changes rapidly, making the approximate 
emulator overconfident in the output value.

History Matching results for a synthetic test: (left) NROY points 
tend to cluster around a line with a particular shear/normal
stress, with some dependence on the normal stress. This is 
because seismic moment is highly sensitive to stress, particularly 
on rough faults. (right) Implausibility metric (standard error 
between emulator predictions and “observed” value. Even with 
only 20 simulations, can learn some useful information about 
the parameter space.

More information:
• Paper: 

https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0076
• Instructions for how to reproduce this work can be found at: 

https://github.com/alan-turing-institute/fabmogp_paper
• UQ software package implementing the methods described here:

https://github.com/alan-turing-institute/mogp-emulator
• mogp-emulator documentation with demos: 

https://mogp-emulator.readthedocs.io

Example Application

https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0076
https://github.com/alan-turing-institute/fabmogp_paper
https://github.com/alan-turing-institute/mogp-emulator
https://mogp-emulator.readthedocs.io/

