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Figure 6.  a) Observed and predicted vertical velocity waveforms at acceler-
ometer UWE. Three columns show unfiltered observed waveforms, catego-
rized by the hypocenter quadrants (relative to the approximate center of ring 
fault; see inset). Relocated VLP epicenters are color-coded by depth. In the 
lower right, two observed traces of waveforms at UWE with VLP epicenters in 
the NW and SE quadrants, respectively, are compared to simulated wave-
forms. 
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Figure 3.  Snapshots of 3D simulation for caldera collapse with silicic magma 
(Maxwell rheology). (a) - (d): Vertical velocity showing the development of vis-
cous boundary layers along the walls of the magma chamber. (e), (f): zoom-in 
views of boundary layers. Arrows scale with local fluid velocity.

Figure 4.  Snapshots of caldera collapse simulation for Kīlauea 2018. (a) Sur-
face vertical velocity. (b) Along-dip slip rate on the ring fault. (c). Vertical veloci-
ty along cross section marked in (a).

Figure 5. Interpretation of near-field waveforms in terms of collapse dynamics. 
Upper panels: Vertical velocity in map (first row) and cross section view (sec-
ond row). The wavefield snapshots correspond to three distinct features of col-
lapse, including elastic rebound outside of ring fault, P-waves reaching cham-
ber bottom/caldera block deceleration, and chamber pressure increase, re-
spectively. These features are identified in velocity and displacement wave-
forms from synthetic receiver A.

Development of boundary layers in 
Maxwell silicic magma

Simulation of Kīlauea caldera collapse
in 2018

t = 0.8 s

t = 1.3 s

t = 0.3 s
(a)

0.4

0.3

0.2

0

-0.4

-0.5

V
z 
(m

 s
-1
) 

-0.3

-0.2

-0.1

0.1

0.5

Boundary 
Layers

Boundary 
Layers

t = 2.3 s

Boundary 
Layers

C
ha

m
be

r 
w

al
l

B
ou

nd
ar

y 
La

ye
r

(b)

(c) (d)

(e) (f)

x
z

x
z

x
z

x
z

C
ha

m
be

r 
w

al
l

B
ou

nd
ar

y 
La

ye
r

t = 0.8 s
zoom-in

t = 1.3 s
zoom-in

1 km

Figure 1. The effect of seismic wave radiation, which is neglected in all previous lumped models. 
a) Schematic showing caldera wave radiation from the ring fault and the magma chamber b) Regime
diagram for the significance of wave radiation as a function of dimensionless parameters ωH/cp

m and 
ωR/cs

r (ω: angular frequency of deformation; H: height of magma chamber; R: radius of caldera block; 
cp

m: P wave speed in the magma; cs
r: S wave speed in the crust). The dimensionless parameters are derived

from Fourier series analysis of elastodynamic antiplane ring fault slip problem and a parameter study with 
SeisSol simulations. Dots on the regime diagram are computed using SeisSol simulations.

Approximate a Maxwell viscoelastic magma
with Generalized Maxwell Body (GMB) 
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Figure 2. (a) Schematic of a GMB.
 (b) Example target relaxation 
functions for Maxwell materials 
and corresponding SeisSol 
approximations. The theoretical 
relaxation functions are specified
with the parameters: μ = 107 Pa, η = 108 Pa s, 
ρm = 2.7 × 103 kg m−3, K = 1010 Pa.  G1: deviatoric stress
relaxatoin function. G2: bulk stress relaxation function.
Y: stiffness. η: viscosity.
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All instrumented caldera collapses at basaltic shield volcanoes generate Mw > 5
very long period (VLP) earthquakes. However, to date, the dynamics of these earth-
quakes,as well as their coupling with the underlying magma chamber, are poorly un-
derstood. We present a self-consistent numerical model using SeisSol (www.seis-
sol.org) capturing the nucleation and propagation of ring fault rupture, the mechanical 
coupling to the underlying viscoelastic magma, and the associated seismic wave field. 
We use the model to interpret seismic waveforms from the 2018 caldera collapse of 
Kīlauea volcano, in terms of the ring fault rupture complexity and magma chamber dy-
namics.

Abstract

Magma is a multi-phase fluid with crystal, melt, and volatile phases. Here we are con-
cerned with the the bulk mechanical properties of magma at time scales relevant to cal-
dera collapse earthquakes and model magma as a homogeneous material. We model 
basaltic magma as an acoustic fluid (a built-in option in SeisSol), which has zero vis-
cosity. We model silicic magma as a Maxwell material, achieved by utilizing the attenu-
ation feature of SeisSol using the following procedure:

Relaxation in deviatoric stress No relxation in bulk stress

1. Seismic wave radiation through caldera ring fault and magma chamber can reduce magni-
tude of co-seismic slip by a factor of two. 

2. A method to model viscoelastic magma with the built-in attenuation feature of SeisSol is
presented.

3. The timing and magnitude of the downward force, which arises due to downward propagat-
ing pressure waves and caldera block deceleration, are captured in nearfield seismic wave-
forms.

4. Earthquakes nucleating on the NW of the ring fault potentially exhibit complex rupture his-
tories due to local fault heterogeneities
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Dynamic rupture simulation of caldera collapse earthquakes: 
evidence of rupture complexity 
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