
Fusing tomography models with different resolutions is desired when 

updating community models, to enable more accurate ground motion 

simulations. Toward this goal, we introduce a novel approach called the 

Physics-Informed Probability Graphical Model (PIPGM) designed to 

integrate seismic models with varying resolutions and uneven data point 

distributions. The PIPGM is able to capture relationships between 

subdomains of multiple resolutions, such as well-defined high-resolution 

(HR) embedded into low-resolution (LR) regions. We assess the efficacy of 

the proposed methodology using both 2D and 3D velocity models, 

including synthetic checkerboard models as well as a fault zone model 

derived from the 2019 Ridgecrest, CA, earthquake sequence. Our findings 

demonstrate a ~38% reduction in travel time residuals compared to 

conventional Gaussian kernel smoothing in the 2D experiments, with 

similar reductions expected in 3D. Our proposed PIPGM holds significant 

potential for enhancing our understanding of Earth's structure and offers 

promising advancements in other seismic research applications, such as 

earthquake ground motion prediction.

Abstract

Motivation and Objective

• Our PIPGM-based tomography model fusion method achieves a balance 

between smoothing undesired sharp boundaries and preserving detailed 

information from HR models.

• Currently, our proposed model informs physical and seismological 

information (ray-path density and the gradient of tomography models) as 

prior knowledge for MRF weights. The physics-based constraints produce 

improved interpretation of the fusion results.
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• Combining models with different resolutions is an essential step for 

updating community models.

• A direct merging will preserve the sharp changes on boundary areas 

(a2), while a strong smoothing will lose the detailed information from HR 

models (a3).

• We propose a probability graphical model to adaptively balance the 

trade-off between smoothness and sharp details.
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Markov Random Field
A Markov random field can consider the geometric property and balance between  

smoothness and sharpness (detailed information) in images [2].

Let 𝐴𝑖,𝑗 be the observed velocity value (continuous), and 𝑋𝑖,𝑗 be the hidden label 

(discrete). We assume 𝐴𝑖,𝑗 follows the distribution approximated by a weighted-

Gaussian distribution, so that we iteratively solve the following problems with 

Expectation–maximization (EM) and Markov chain Monte Carlo (MCMC) algorithm:

 ω𝒊,𝒋  is a weight term related to physical information (ray-path density and 

gradients), 𝜇𝑛 and 𝜎𝑛
2 are the mean and variance of all the pixels with hidden label 

n. C is a bias constant which only depends on the model setting. Index (𝑖′, 𝑗′) 

represents the neighboring pixels of pixel (i, 𝑗). 
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Figure (a1) The LR SCEC CVM-S4.26 [4] around the Ridgecrest area. (a2) 

Directly superimposing the velocity models from HR 1 Hz Rayleigh wave 

tomography (top 1 km depth, converted to S-wave velocity) and the LR CVM 

model. (a3) Smoothed by 7x7 Gaussian kernel filter. (a4)  Fused by our PIPGM 

method. (a5) Synthetic sensors ('X') are placed in the boundary areas to calculate 

travel time residuals. We use travel time Root-Mean-Squared-Error (RMSE, which 

measures how much information is lost after model fusion [3]) to evaluate our 

tomography model fusion results. 
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Figure (c1-c4) Checkerboard and (d1-d4) Ridgecrest 2D models. (c1, 

d1) Superimposed HR and LR models. (c2, d2) 6-class label mask maps 

for HR models (pixels with the same label are learned together). (c3, d3) 

Smoothing results with a 7×7 Gaussian kernel filter. (c4, d4) Fusion 

results with our PIPGM method. The emulation results show that our 

PIPGM achieves smaller RMSE results, indicating smaller information 

loss.
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Figure (e1-e4) Ridgecrest 3D models. (e1) The LR 0-5 km depth S-wave velocity model 

from CVM-S4.26 around the Ridgecrest area. (e2) Direct superposition of the HR model 

from surface wave dispersion inversion [1] and the LR CVM-S4.26. (e3) Fusion results 

with cosine taper smoothing. (e4) Fusion results with our PIPGM method. Our PIPGM 

removes the discontinuous changes on boundary areas and adaptively preserves sharp 

patterns from HR models. This results in a significant reduction in RMSE errors.

Figure (b) Each pixel has a continuous velocity value 𝐴𝑖,𝑗  and a discrete label 𝑋𝑖,𝑗  . The 

objective function designed for model fusion has two parts: (1) the data cost 𝜃0 that 

forces the pixels with the same label to follow the same Gaussian distribution, and (2) 

the smoothness cost 𝜃1 that promotes the smoothness among neighboring pixels.
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