Physics-informed deep learning of rate-and-state fault friction

Cody Rucker (crucker@uoregon.edu) and Brittany A. Erickson (bae@uoregon.edu)

Department of Computer Science, University of Oregon

We show that neural networks are able to infer sub-surface friction parameters along a strike-slip fault governed by a nonlinear rate-and-state friction law.

Antiplane strike-slip fault

Fig. 1: 2D schematic of a strike-slip fault governed by nonlinear, depth-dependent friction. Out of plane displacements are denoted by circles and boundary conditions are labeled at each relevant surface.

State evolution (aging law)	$G(V, \psi) = \frac{bV_0}{D_c} \exp$	$\exp\left(\frac{f_0 - \psi}{b} - \frac{ V }{V_0}\right)$
Fault strength	$F(V,\psi) = (\bar{\sigma}_n)$	$\left(\frac{V}{V_0}\right) + \psi,$
State ODE	$\psi_t = G(V)$ $\psi(0) = \psi_0$	V, ψ) for $t \ge 0$
IBVP	$\mu(\nabla \cdot \mathbf{n}) = 0,$ $\mu(\nabla u \cdot \mathbf{n}) + Zu_t = 0,$	on $x = 0$ on $z = 0$ on $\{x = L_x\} \cup \{z = L_z\}$ at $t = 0$

Depth-dependence of $\alpha = a - b$

$$\alpha(z) = \begin{cases} \alpha_{\min} & 0 < z < H \\ (z - H) * ((\alpha_{\max} - \alpha_{\min})/D) + \alpha_{\min} & H \le z \le H + D \\ \alpha_{\max} & H + D < z, \end{cases}$$

 Parameter
 L_x L_z H D μ ρ α_{min} α_{max} f_0 $\bar{\sigma}_n$ V_0 D_c

 Value
 25 km
 25 km
 12 km
 5 km
 32 GPa
 2.67 kg/m³
 -0.005
 0.015
 0.6
 50 MPa
 10^{-6} m/s
 2 m

Physics-informed neural networks

Feed-forward deep neural network:

A single hidden layer with weight W and bias b

$$\ell(\mathbf{y};\theta) = \varphi(W\mathbf{y} + b)$$
, where $\theta = (W,b)$

The recursive definition

$$\ell_0 = \mathbf{y},$$

$$\ell_k = \phi_k(W_k \ell_{k-1} + b_k), \quad \text{for } 0 < k < L,$$

defines a feed-forward, deep neural network:

$$\mathcal{N}(\mathbf{y};\theta) = W_L \ell_{L-1} + b_L$$

PINN architecture:

Given a generic initial-boundary-value problem(IBVP)

$$\mathcal{L}\left[\mathbf{u}; \lambda\right](\mathbf{x}) = \mathbf{k}(\mathbf{x}), \quad \mathbf{x} \in \widehat{\Omega},$$

$$\mathcal{B}\left[\mathbf{u}; \lambda\right](\mathbf{x}) = \mathbf{g}(\mathbf{x}), \quad \mathbf{x} \in \partial \widehat{\Omega},$$

we define a neural network \mathcal{N} which aspires to be the IBVP solution u. To this end we define the loss components

$$MSE_{\widehat{\Omega}}(\theta) = \frac{1}{N_{\widehat{\Omega}}} \sum_{i=1}^{N_{\widehat{\Omega}}} |\mathcal{L}[\mathcal{N}; \lambda](\mathbf{x}_{\widehat{\Omega}}^{i}; \theta) - \mathbf{k}^{i}|^{2},$$

$$MSE_{\partial}(\theta) = \frac{1}{N_{\partial}} \sum_{i=1}^{N_{\partial}} |\mathcal{B}[\mathcal{N}; \lambda](\mathbf{x}_{\partial}^{i}; \theta) - \mathbf{g}^{i}|^{2},$$

over collocation points $\{\mathbf{x}_{\widehat{\Omega}}^i\}_{i=1}^{N_{\widehat{\Omega}}}$ and $\{\mathbf{x}_{\partial}^i\}_{i=1}^{N_{\partial}}$. Then, $\mathcal{N}(\mathbf{x};\theta^*)=u(\mathbf{x})$ when $\theta^*= \mathop{\arg\min}_{\theta} MSE_{\widehat{\Omega}}(\theta) + MSE_{\partial}(\theta)$.

approximation network \mathcal{N} is trained on interior and boundary subdomains which are governed by operators \mathcal{L} and \mathcal{B} , respectively.

Results

PINN is effective in solving the 1D coupled nonlinear fault problem.

Fig. 3: Comparison of results from 1D illustration showing the (a) displacement network approximation \mathcal{N} with (b) manufactured solution u^e . Additionally, the (c) state approximation network \mathcal{N}^{ψ} is plotted against the manufactured state ψ^e along with their absolute error $|\mathcal{N}^{\psi}(t) - \psi^e(t)|$. Absolute displacement error was averaged over 1000 randomly sampled points and measured to be $|\mathcal{N} - u^e|_{\text{avg}} = 1.57e - 5$.

PINN solves a 2D antiplane problem and is consistent over various scales of the domain.

Fig. 4: (a) 2D displacement plot for a PINN trained to solve the inverse problem using hard enforcement of initial conditions compared to (b) the manufactured displacements. (c) L^2 -errors for displacement in space, time, and spacetime (along with L^2 -errors for the friction parameter) are computed on a uniform grid using Simpson's rule as a quadrature. Errors are then recorded over several mesh refinements.

Loss components decrease over 30 training iterations and the inferred friction parameter is learned in the first few training iterations.

Fig. 5: 2D inversion results showing (a) convergence of loss components and (b) convergence of the inferred parameter approximation.

PINN for solving the antiplane strike-slip fault problem

Hard enforcement of initial conditions:

By defining trainable networks $\mathcal{N}_u, \mathcal{N}_{\psi}$ we can define trial functions

$$\Phi(\mathbf{x}, t) = u_0(\mathbf{x}) + tv_0(\mathbf{x}) + t^2 \mathcal{N}_u(\mathbf{x}, t),$$

$$\phi(t) = \psi_0 + t \mathcal{N}_{\psi}(t),$$

satisfying the initial conditions of the above IBVP and state ODE exactly.

IBVP loss components:

$$MSE_{\Omega} = \frac{1}{N_{\Omega}} \sum_{i=1}^{N_{\Omega}} |\Phi_{tt} - c^{2} \Delta \Phi - S|^{2},$$

$$MSE_{f} = \frac{1}{N_{f}} \sum_{i=1}^{N_{f}} |-\mu \Phi_{x} - F((1/2)\Phi, \phi)|^{2},$$

$$MSE_{s} = \frac{1}{N_{s}} \sum_{i=1}^{N_{s}} |-\mu \Phi_{z}|^{2},$$

$$MSE_{r,d} = \frac{1}{N_{r,d}} \sum_{i=1}^{N_{r,d}} |Z\Phi_{t} + \mu(\nabla \Phi \cdot \mathbf{n})|^{2},$$

State component loss:

$$MSE_{\psi} = \frac{1}{N_{\psi}} \sum_{i=1}^{N_{\psi}} |\phi_t - G((1/2)\Phi, \phi)|$$

Objective function to be minimized:

$$MSE = \sum_{\xi \in \chi} MSI_{\xi}, \quad \text{where } \chi = \{\Omega, f, s, r, d, \psi\}$$

Summary

- Neural network inference of subsurface friction parameters.
- Multi-network training to solve system of coupled partial differential equations.
- Mesh-free solution retains good accuracy across multiple domain resolutions.
- Hard and soft boundary enforcement are tested for both forward and inverse problems.
- Network rapidly learns fault friction but further training needed for displacements.

Cody Rucker and Brittany A Erickson. Physics-informed deep learning of rate-and-state fault friction. Computer Methods in Applied Mechanics and Engineering, 430:117211, 2024.