PHYSICS-INFORMED DEEP LEARNING OF RATE-AND-STATE FAULT FRICTION
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We show that neural networks are able to infer sub-surface friction parameters along a strike-slip tault governed by a nonlinear
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Fig. 1: 2D schematic of a strike-slip fault governed by nonlinear, depth-dependent friction. Out of plane . | 304
displacements are denoted by circles and boundary conditions are labeled at each relevant surface. PINN architecture: 0347 we(t) ©
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Fig. 4: (a) 2D displacement plot for a PINN trained to solve the inverse problem using hard enforcement of initial
Ymin 0<z< H conditions compared to (b) the manufactured displacements. (c)L?—errors for displacement in space, time, and
. . . spacetime (along with L?—errors for the friction parameter) are computed on a uniform grid using Simpson’s rule as
&(Z) o (Z —H ) * ((@max - Ckmm)/ D ) + Omin H S 2 S H+D a quadrature. Errors are then recorded over several mesh refinements.
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Fig. 2: A schematic of the PINN architecture for solving a generalized boundary value problem. Displacement Loss components decrease over 30 training iterations and the inferred friction
approximgtion network N is trained on interior and boundary subdomains which are governed by operators £ and parameter is learned in the first few training iterations.
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Summary
e Neural network inference of subsurface friction parameters. e Hard and soft boundary enforcement are tested for both forward and

» Multi-network training to solve system of coupled partial differential ~1nverse problems.
equations. e Network rapidly learns fault friction but further training needed for
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